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Starting with the hypothesis that quark and lepton mixings are identical at or near the GUT scale,
we show that the large solar and atmospheric neutrino mixing angles together with the small reactor
angle Ue3 can be understood purely as a result of renormalization group evolution provided the three
neutrinos are quasi-degenerate and have same CP parity. It predicts the common Majorana mass
for the neutrinos larger than 0.1 eV, which falls right in the range reported recently and also the
range which will be probed in the planned experiments.
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I. INTRODUCTION

The idea that disparate physical parameters describ-
ing forces and matter at low energies may unify at very
short distances (or high mass scales) has been a very help-
ful tool in seeking a unified understanding of apparently
unrelated phenomena [1]. In the context of supersym-
metric grand unifed theories, such an approach explains
the weak mixing angle sin2 θW and thereby the different
strengths of the weak, electromagnetic and strong forces.
One of the key ingredients of the grand unified theories
is the unification between quarks and leptons. One may,
therefore, hope that in a quark-lepton unified theory, the
weak interaction properties of quarks and leptons param-
eterized by means of the flavor mixing matrices will be-
come identical at high energies.

On the experimental side, recent measurements on at-
mospheric and solar neutrino fluxes and those at K2K
and KamLAND which are a manifestation of the phe-
nomena of neutrino oscillations suggest that two of the
neutrino mixings i.e. the mixings between νe − νµ and
νµ − ντ (to be denoted by θ12 and θ23, respectively) are
large [2, 3, 4, 5, 6] while the third mixing between the
νe − ντ is bounded to be very small by the CHOOZ-Palo
Verde reactor experiments i.e. sin2 2θ13 < 0.15 [7]. On
the other hand, it is now quite well established that all
observed quark mixing angles are very small. One may
therefore ask whether there is any trace of quark lepton
unification in the mixing angles as we move to higher
scales.

The first question in this connection is whether high
scales have anything to do with neutrino masses or it is
purely a weak scale phenomenon. One of the simplest

ways to understand small neutrino masses is via the see-
saw mechanism [8] according to which the neutrino mix-
ing is indeed a high scale phenomenon, the new high scale
being that of the right handed neutrino masses (MR) in
an appropriate extension of the standard model. Present
data put the seesaw scale MR very close to the conven-
tional GUT scales. It is therefore tempting to speculate
whether quark and lepton mixing angles are indeed uni-
fied at the GUT-seesaw scale. This would of course imply
that all neutrino mixing angles at the high scale MR are
very small whereas at the weak scale two of them are
known to be large. In this paper we show that simple ra-
diative correction effects embodied in the renormalization
group evolution of parameters from seesaw scale to the
weak scale can indeed provide a complete understanding
of all neutrino mixings at the weak scale, starting with
very small mixings at the GUT-seesaw scale.

The fact that renormalization group evolution from
the seesaw scale to the weak scale [9, 10] can lead to
drastic changes in the magnitudes of the mixing angles
was pointed out in several papers [9, 11, 12, 13, 14, 15].
In particular, it was shown in [11] that this dependence
on renormalization group evolution can be exploited in
simple seesaw extensions of the minimal supersymmet-
ric standard model (MSSM) to explain the large value
of the atmospheric mixing angle starting with a small
mixing at the seesaw scale, provided two conditions are
satisfied: (i) the two neutrino-mass eigen states have
same CP-parity and (ii) they are very nearly degener-
ate in mass. In general, in gauge models that attempt
to explain the large neutrino mixings [16], one needs to
make many assumptions to constrain the parameters. In
contrast, in this class of “radiative magnification” mod-
els [11, 12, 14], there is no need to invoke special con-
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straints on the parameters at high scales beyond those
needed to guarantee the quasi-degeneracy. In fact the
main content of radiative magnification models is the
quasi-degeneracy assumption and since the value of com-
mon Majorana mass m0 for all neutrinos is required to
be in sub-eV range (≥ 0.1 eV,), this assumption is ex-
perimentally testable in the ongoing neutrinoless double
beta decay searches [12].

It is well known that the radiative magnification tech-
nique requires adjustment of initial neutrino mass eigen
values at the see-saw scale [9, 11, 12, 13, 14]. In view of
the model independence and simplicity of the method in-
volved, and the attractive nature of the results achieved,
the question of finetuning has been discussed at lengh by
Casas, Espinosa, Ibarra, and Navarro(hereafter called as
CEIN) [14] who have also discussed the relevant magni-
fication criteria and shown that, in three flavor case, the
existence of infrared stable quasifixed points in the rele-
vant RGEs lead to vanishing mixing matrix elements at
low energies. Thus, magnification for mixing angles is ex-
pected to occur only if RG-evolutions are stopped before
reaching the quasifixed point regime. It has been noted
that the radiative magnification mechanism leading to
large neutrino mixing can only be achieved if there is
substantial cancellation between the initial and the RG-
generated mass splittings [11, 12, 13, 14]. In this context
we note that similar cancellations are common in well
known grand unified theories(GUTs). In the bottom-up
approach large differences between low-energy coupling
constants of the SM are reduced to vanishing differences
due to cancellation with RG-generated contributions. In
the well known b− τ unification scenario, the low-energy
mass splitting mb−mτ ≃ 2.5 GeV is almost cancelled out
by RG-generated mass difference leading to mb ≃ mτ at
the GUT scale. Both these examples apply to nonSUSY
as well as SUSY GUTs.

In this paper[17], we show that under the same con-
ditions for radiative magnification as just outlined, if we
start with the hypothesis that at the seesaw scale the
quark and neutrino mixings are unified to a common set
of values, i.e. the known extrapolated values of the well
known CKM angles, after renormalization group evolu-
tion to the weak scale, we can obtain the solar and the
atmospheric mixing angles that are in agreement with ob-
servations without contradicting the CHOOZ-Palo Verde
bound on θ13. The possibility of achieving two large
neutrino mixings by radiative magnification has been re-
ported for the first time in ref.[17].

This result has two important implications: (i) it
would provide a very simple and testable way to un-
derstand the observed large neutrino mixings and (ii)
if confirmed by the neutrinoless double beta decay ex-
periments, it would provide a strong hint of quark lep-
ton unification at high scales. One may wonder why we
are addressing the question of unification of the mixing
angles for neutrinos with those of quarks and not the

unification of neutrino masses with quark masses. The
answer is of course the well-known one, namely neutrino
masses have their origin (seesaw mechanism) that dis-
tinguishes them from the quark masses. Furthermore,
within the seesaw mechanism neutrinjos are Majorana
fermions whereas the quarks are Dirac fermions. Thus as
far as the masses go, we have no reason to expect unifi-
cation with quarks. We take up the question of neutrino
masses in Sec 5.

This paper is organized as follows: in sec. 2, we dis-
cuss the RGes for the neutrinos in the mass basis, in
sec. 3, we present the main result of our paper i.e. the
magnification of mixing angles at the weak scale; in sec.
4, we discuss predictions of our approach for neutrino-
less double beta decay and other processes; in sec. 5, we
present a gauge model where approximate mixing unifi-
cation hypothesis is realized and in sec. 6, we present
our conclusions.

II. RENORMALIZATION GROUP EQUATIONS

FOR MASSES AND MIXINGS

Our basic assumption will be a seesaw type model
which will lead to equal quark and lepton mixing an-
gles at the seesaw scale as well as to a quasi-degenerate
neutrino spectrum. In sec. 5, we present a model where
at the seesaw scale the neutrinos have this property. We
will then follow the “diagonalize and run” procedure for
the neutrino parameters and use the RGEs directly for
the physical observables, namely, the mass eigenvaluesmi

and the mixing angles θij (i, j = 1, 2, 3). We also assume
the neutrino mass eigenstates to possess the same CP and
ignore CP violating phases in the mixing matrix. Also for
simplicity, we adopt the mass ordering among the quasi-
degenerate eigenstates to be of type m3

>
∼ m2

>
∼ m1. The

real 3 × 3 mixing matrix is parametrized as,

U =





c13c12 c13s12 s13
−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23
s12s23 − c12s13c23 −c12s23 − c23s13s12 c13c23



 ,

(1)
where cij = cos θij and sij = sin θij(i, j = 1, 2, 3). U
diagonalizes the mass matrix M in the flavor basis with
UTMU = diag(m1,m2,m3). The RGEs for the mass
eigen values can be written as [13, 14]

dmi

dt
= −2FτmiU

2

τi −miFu, (i = 1, 2, 3) . (2)

For every sin θij = sij , the corresponding RGEs are,

ds23
dt

= −Fτ c23
2 (−s12Uτ1D31 + c12Uτ2D32) , (3)

ds13
dt

= −Fτ c23c13
2 (c12Uτ1D31 + s12Uτ2D32) , (4)

ds12
dt

= −Fτ c12 (c23s13s12Uτ1D31 − c23s13c12Uτ2D32

+Uτ1Uτ2D21) . (5)
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where Dij = (mi +mj)) / (mi −mj) and, for MSSM,

Fτ = −h2

τ/
(

16π2 cos2 β
)

,

Fu =

(

1

16π2

) (

6

5
g2

1 + 6g2

2 − 6
h2

t

sin2 β

)

, (6)

but, for SM,

Fτ = 3h2

τ/
(

32π2
)

,

Fu =
(

3g2

2 − 2λ− 6h2

t − 2h2

τ

)

/
(

16π2
)

. (7)

RGEs of mixing angles in the three flavor case have been
shown to possess infrared stable quasifixed points leading
to vanishing values of mixing matrix elements [14]. Thus
as in two-flavor case [11, 12] the radiative magnification
of two mixing angles, if at all feasible, could be realiz-
able only if RG-evolution is stopped before reaching the
quasifixed point regime. In the CEIN [14] approach this
was implemented to magnify the atmospheric mixing an-
gle by adjusting the initial mass eigen values to achieve
maximal mixing at MSUSY ∼ MZ such that decrease in
mixing angles after reaching the maximum is smaller. In
this approach MSSM operates for all scales starting from
MZ .

In order to avoid the vanishing matrix elements of the
quasifixed point region in this paper we follow a differ-
ent approach described in [12] which is found to work
also for three flavor case in the presence of MSSM with
O(TeV) SUSY scale.When the mass difference between
mi and mj tends to vanish, Dij → ∞, and the cor-
responding term in the RHS of (3)-(5) predominantly
drives the RG evolution for sin θij which might become
large or even approach its maximal value anywhere be-
tween µ = MSUSY −MR. Since mi and mj are scale de-
pendent, the initial difference existing between them at
µ = MR is narrowed down during the course of RG evolu-
tion as we approach µ = MSUSY. This causes Dij → ∞
and hence large magnification to the mixing angle due
to radiative effects. Also Fτ is enhanced by a factor
∼ 103 in the large tanβ region in the case of MSSM
as compared to the SM where such effects do not ex-
ist. Thus, if the SUSY scale is significantly larger with
MZ < MSUSY ≤ 1TeV, radiative magnification to large
mixings may occur through RG evolution from the see-
saw scale down to MSUSY. Then the standard model
evolution below MSUSY causes negligible contribution to
the magnified mixings because of two reasons: (i)absence
of tan2 β effects, and (ii)small range of RG evolution from
MSUSY to MZ . Consequently, the predicted mixings re-
mains almost flat and very close to sin θij(MSUSY) for
all energies below MSUSY. This aspect of RG-evolution
below the SUSY scale to avoid the approach to infrared
stable quasifixed point corresponding to vanishing mix-
ing angle which was demonstrated in [12] is also found to
operate in three flavor case. .

The mixing unification hypothesis implies that we
choose all neutrino mixings at the seesaw scale equal to

the corresponding quark mixings, which in the Wolfen-
stein parameterization are dictated by the parameter
λ0 = .2. We then have, at the seesaw scale, s12 ≃ λ0,
s23 ≃ O(λ2

0) and s13 ≃ O(λ3
0). These values get sub-

stantially magnified in the region around MSUSY. Using
|D31| ≃ |D32| ≪ |D21|, we see from (3)-(5), that the
dominant contribution to RG evolution of s23(µ) is due
to the term ∼ λ2

0FτD32. Similarly the terms contributing
to the evolution of s13(µ) are ∼ λ3

0FτD32 or ∼ λ3
0FτD31.

On the other hand the evolution of s12 is dominated by
the term ∼ λ5

0FτD21 where the large enhancement likely
to be caused by the largeness in |D21| is damped out due
to higher power of λ5

0. Since the mixing angles change
substantially only aroundMSUSY, such dominance to RG
evolutions holds approximately at all other lower scales
below MR.

If the neutrino mixing angles are to be compatible with
experimental observations at low energies, we need at
most the magnification factors: (sin θ23/ sin θ023) ≃ 20,
(sin θ13/ sin θ013) ≤ 60, and (sin θ12/ sin θ012) ≃ 4, where
we have used the experimental neutrino mixings for θij

[2, 3, 4, 5, 6, 7] and quark mixings for θ0ij [18]. That the
CHOOZ-Palo Verde bound can tolerate a magnification
factor as large as 60 is crucial to achieve bi-large mixings
by radiative magnification while keeping the magnified
angle θ13 at low energies well below the upper bound.
This is of course because of the smallness of (λ0)

3, which
is the starting value (order of magnitude) of the reactor
angle. One can also observe that it is the smallness of
the reactor angle that provides the ”hidden” signal for
the unification!

III. BI-LARGE NEUTRINO MIXINGS BY RG

EVOLUTION

Starting from known values of gauge couplings, masses
of quarks and charged leptons, and CKM mixings in the
quark sector at low energies, at first we use the bottom-up
approach and all the relevant RGEs to obtain the corre-
sponding quantities at higher scales, 1011 GeV-2 × 1018

GeV. Assuming the neutrino mixing at µ = MR to be
small and similar to quark mixings, we then expect the
initial conditions at µ = MR to be sin θ023 ≃ 0.038,
sin θ013 ≃ 0.0025 and sin θ012 ≃ 0.22 [18]. Using these
as input and the mass eigenvalues m0

i as unknown pa-
rameters at the high scale, we then follow the top-down
approach though (2)-(5) and other standard RGEs. The
unknown parameters m0

i are determined in such a way
that the solutions obtained at low energies agree with
mass squared differences and the mixing angles given by
the experimental data within 90% C.L. [2, 3, 4, 5, 6, 7]

∆m2

12 = (2 − 50) × 10−5eV2,

∆m2

23 = (1.2 − 5) × 10−3eV2,

sin θ23 = 0.54 − 0.83, sin θ12 = 0.40 − 0.70,
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sin θ13 ≤ 0.16 . (8)

Our model described in sec.5 is consistent with
quasidegenerate mass eigen values over a wider range
of the see-saw scale: MR = 1011 GeV-1015 GeV. How-
ever, in view of the phenomenological importance of the
rersults, we have explored the RG-evolutions to bi-large
mixings including higher scales upto the reduced Planck
scale(2 × 1018 GeV). In Table I we prersent input mass
eigenvalues at the see-saw scale MR = 1013 GeV and our
solutions at MZ in the large tanβ(= 55) region. The
solutions clearly exhibit radiative magnification of both
the mixing angles, θ23 and θ12 for a wide range of input
values of m0

i . We find that although enhancement due
to RG evolution occurs in the νe − ντ sector also, sin θ13
remains well within the CHOOZ-Palo Verde bound [7].

In Table II we present three sets of initial mass eigen-
values and our solutions for three different high-scale val-
ues, MR = 1011, 1015 and 2× 1018 GeV. We find that for
the same value of tanβ = 55, the predicted lowest mass
eigenvalue at MZ decreases slowly with increase of the
see-saw scale. For example, the lowest mass eigenvalues
predicted at µ = MZ are 0.27 eV, 0.22 eV , 0.209 eV,
and 0.17 eV for MR= 1011 GeV, 1013 GeV, 1015 GeV
and 2 × 1018 GeV , respectively.

A magnification formula has been derived by CEIN [14]
for the product of the mixing matrix elements,

Fm =
UτiUτj(µ)

UτiUτj(MR)

≃

[

1 +
h2

τ

32π2
Dij(MR) ln

MR

µ

]−1

. (9)

Using the values given in Tables I-II, we find that the
magnification predicted by the formula matches reason-
ably well with our estimations for mixing between the
second and the third generations(i, j=2, 3).

Our result on the approximate unification of quark
and neutrino mixings at the high scale MR = 1013 GeV
is exhibited in Fig.1 where we present the RG evolu-
tions of the sines of the three neutrino mixing angles
starting from MR = 1013 GeV down to MZ for one
set of input masses given in Table I: m0

1 = 0.2983 eV,
m0

2 = 0.2997 eV, and m0
3 = 0.3383 eV. The flatness of

the curves below MSUSY is due to negligible renormal-
ization effect from SM which evades the approach to the
quasifixed points. The corresponding low-energy solu-
tions are m1 = 0.2201 eV, m2 = 0.2223 eV, m3 = 0.2244
eV, ∆m2

12 = 1.6 × 10−4 eV2, ∆m2
23 = 1.0 × 10−3 eV2,

sin θ23 = 0.667, sin θ13 = 0.09, and sin θ12 = 0.606. Al-
most horoizontal lines in the figure represent the sines of
the CKM mixings, sin θq

ij , having negligible one-loop ra-
diative corrections [18]. Unification of the neutrino mix-
ings with the corresponding quark mixings are clearly
demonstrated at the high scale.

The evolution of mass eigen values corresponding to
mixings given in Fig. 1 are shown in Fig.2 for MR = 1013

GeV. In cntrast to sines of mixing angles which have neg-
ligible RG-corrections below the SUSY scale, the mass
eigen values are found to decrease till the lowest scale
MZ . The rate of decrease of the third eigen value is the
highest, but the rates of decrease of the first and the
second eigen values are similar. The initial mass split-
tings at the higest scale are narrowed down to match the
experimental values at low energies due to cancellations
caused by RG-generated splittings.

In Fig.3-Fig.5 we present evolutions of neutrino mix-
ing angles for MR = 1011 GeV, 1015GeV and 2 × 1018

GeV with input mass eigen values given in Table II.
In Fig.6-Fig.8 the RG-evolution of corresponding mass
eigen values with input parameters given in Table II for
MR = 1011 GeV, 1015 GeV, and 2 × 1018 GeV are pre-
sented. It is quite clear that radiative magnification to
bi-large mixings is possible over a wide range of choices
of MR and input mass eigenvalues.

In addition to the solutions of the type shown in Fig. 1
which are valid for MSUSY > MZ , we have also found so-
lutions corresponding to two large and one small mixings
for MSUSY = MZ with somewhat different mass eigen
values in agreement with the experimental data at low
energies. We have also noted that the radiative magnifi-
cation mechanism leading to bilarge mixings works more
easily if we take all other initial values same as mentioned
above but sin θ013 = 0.0 which could be relevant to certain
neutrino mass textures. In this case the CHOOZ-Palo
Verde bound is always protected.

It is worth re-emphasizing that since we determine 3
input parameters (the 3 mass eigenvalues at high scale)
to fit 5 experimentally known numbers as output param-
eters it is a over-determined problem and there may be
no solution. So there is a possibility of not being able to
obtain correct mixing angles at the weak scale. But we
have found that it is possible, thus showing that there is
perhaps an element of truth in the unification hypoth-
esis. It is also significant that the scale of 0.16 - 0.65
eV comes out as the range of allowed mass eigenvalues
although such a scale was not put in at all a priori.

IV. PREDICTIONS FOR BETA-DECAY, DOUBLE

BETA DECAY, Ue3 AND WMAP

Very recently the possibility of testifying our mix-
ing unification hypothesis through lepton-flavor violating
processes like µ → eγ and τ → µγ has been investigated
[19]. We discuss here other possible experimental tests of
the specific mechanism proposed here for radiative mag-
nification.
Double beta and tritium beta decays: Our RG so-
lutions permit radiative magnification consistent with ex-
perimental data on ∆m2

21, ∆m2
32 and the mixing angles,

if the input mass eigenvalues for MR = 1011 − 2 × 1018

GeV are in the range 0.35 eV - 1.0 eV. This corresponds
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to the low energy limits 0.16 eV < mi(MZ) < 0.65 eV .
Then,our choice of phases leads to the prediction

| < Mee > | = |σimiU
2

ei| = 0.16 eV − 0.65 eV. (10)

Recent searches for neutrinoless double beta decay have
obtained the upper limit: | < Mee > | < (0.33 − 1.35)
eV [20]. The range in Eq (8) overlaps the one reported in
[21], or the ones that will be covered in [22]. Thus a clear
and testable prediction of the bi-large radiative magnifi-
cation mechanism is that neutrinoless double beta decay
should be observed in the next round of experiments.

Further, our low-energy limit on the quasi-degenerate
mi(MZ) can be directly measured in Tritium beta decay
experiment. Although the present experimental bound
on the mass is < 2.2 eV, mass value as low as 0.35 eV
can be reached by KATRIN experiment [23].
Prediction for Ue3: Starting from the allowed range of
high-scale input values of the CKM mixing angle with
Vub ≃ U0

e3 ≃ 0.0025 − 0.004, the RG-evolutions predict
enhancement of sin θ13 at low energies

Ue3 = sin θ13 = 0.08 − 0.10. (11)

Although this prediction is well below the present ex-
perimental upper bound [6], it is accessible to several
planned long-baseline neutrino experiments in future
such as NUMI-Off-Axis or JHF proposals.
WMAP constraints on neutrino masses: Recently
the Wilkinson Microwave Anisotropy Probe (WMAP)
observations have provided very interesting constraints
on the sum of neutrino masses [24, 25]. The analysis
depends on a number of cosmological parameters such
as H0, the bias parameter b(k), Ωm from SN-Ia obser-
vations etc. Depending on what values one chooses for
the “priors”, the constraint on the the sum all neutrino
masses varies from 2.1 eV to 0.7 eV. Since we are propos-
ing that the neutrino masses are degenerate, each indi-
vidual mass will have an upper limit of 0.23 eV to 0.7
eV. Thus the radiative magnification hypothesis is con-
sistent with WMAP observations [24] and also with the
combined analysis of WMAP+2dF GRS data [25].

We have found that with tanβ = 55 and due to RG-
effects alone the lowest allowed value of the neutrino-
mass eigen value at MZ decreses slowly with increase in
the see-saw scale . We obtain the lower bound to be 0.27
eV - 0.16 eV for MR = 1011 − 2 × 1018 GeV.

V. DEGENERATE NEUTRINOS FROM TYPE II

SEESAW AND A MODEL FOR APPROXIMATE

MIXING UNIFICATION

In this section, we address the question of how a quasi-
degenerate neutrino spectrum can arise within a gauge
model that employs the seesaw mechanism for under-
standing neutrino masses [26].

To begin the discussion, let us present the different
forms of the seesaw mechanism that provide a natural
way to understand the small neutrino masses. Following
literature, we will call the two types of seesaw mechanism
as type I and type II. In the type I seesaw mechanism the
neutrino mass matrix is given by the formula,

Mν = −MD(fvR)−1MT
D (12)

where f is the Majorana Yukawa coupling of the RH
neutrinos, vR is the B−L symmetry breaking scale, and
MD is the Dirac neutrino-mass matrix. In models where
information about the B-L symmetry is not given ex-
plicitly, fvR is replaced by the mass matrix of the right
handed (RH) neutrinos MN = fvR. Since one expects
the pattern of MD to be similar to the quark and lep-
ton mass matrices, one expects the eigenvalues of MN

to be hierarchical and mixing angles to be small. The
Eq.(12) then tells us that the neutrino masses are hierar-
chical. Clearly in such models the radiative magnification
of mixing angles does not occur via the renormalization
group evolution as is clear from Eqs.(3)-(5) in the previ-
ous section.

The type I seesaw formula is generic to models which
do not have any connection between the left and right
handed fermions such as in models where one extends
the standard model by adding a right handed neutrino
and mass terms for the RH neutrinos. Things however
undergo a drastic change in models that have asymp-
totic parity invariance. In such models there are always
Higgs fields that are parity partners of the RH Higgs
fields which give mass to the RH neutrinos. Thus there
are operators which give direct mass to the left handed
neutrinos at the same time that the right handed neutri-
nos get mass. It turns out also that the direct neutrino
mass term is seesaw suppressed i.e. as the vR scale goes
to infinity, this contribution, like the right handed neu-
trino contribution, vanishes. This direct mass contribu-
tion leads to a modification of the seesaw formula to the
following form (type II seesaw formula [27])

M = fvL −MD(fvR)−1MT
D (13)

Examples of models where type II seesaw formula arises
are left-right symmetric models or SO(10) models with
either B − L = 2 triplet Higgs fields or B − L = 1
doublet Higgs fields breaking the B-L symmetry. Below
we give an example of a model with triplet Higgs fields.
It is important to note that the renormalization group
equations hold for both the type I as well type II seesaw
formula.

The Yukawa coupling matrix f in Eq.(11) that con-
tributes to the first term in the seesaw formula as well as
the right handed neutrino mass matrix depends on high
scale physics and is therefore unconstrained by by stan-
dard model results. We could therefore choose f to be
close to the unit matrix. In this case, quark-lepton uni-
fication requires that the lepton mixing angles be very
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close to the quark mixing angles but the neutrino mass
spectrum dominated by the first term in Eq.(11) in com-
bination with second term can easily lead to a quasi-
degenerate spectrum of Majorana neutrinos as well as
approximate mixing unification. In such schemes, radia-
tive magnification works to provide an understanding of
the large neutrino mixings. The question is whether there
is some underlying symmetry of the theory for which one
can write down a natural gauge model where f = 1f0 as
well as the near unification of quark and lepton mixings.
Below we provide an example of this kind of model. An
important point is that the renormalization group equa-
tions hold for this type II seesaw formula as long as we
assume that the SU(2)L triplet Higgs whose vev responsi-
ble for the first term in Eq.(11) is heavier than the seesaw
scale. This is true in models realizing the type II seesaw.

We consider a nonsupersymmetric SU(2)L×SU(2)R×
SU(4)PS gauge model with an S4 global symmetry [28].
Before describing the model, a few words about S4 sym-
metry may be helpful. This is a nonabelian discrete sym-
metry group with 24 elements and has the irreducible
representations 3,3′,2,1′,1. We will assign fundamen-
tal fermions to the 3 dimensional representation of S4

and the Higgs fields φa and B-L=2 triplet fields to rep-
resentations of S4 as follows:

Fields S4 rep.
ΨL,R(2, 1, 4) + (1, 2, 4̄) 3

φ0(2, 2, 1) 1

φ1,2(2, 2, 1) 2

φ′1,2,3(2, 2, 1) 3

∆L,R(3, 1, 10) + (1, 3, 1̄0) 1

Ψ =

(

u1 u2 u3 ν
d1 d2 d3 e

)

.

Let us now write down the S4 invariant Yukawa cou-
plings:

LY = f0(
∑

a

ψT
L,aΨL,a∆L + L↔ R)

+h0φ0(
∑

a

ψ̄L,aΨR,a) + h2[(ψ̄L,3ΨR,2

+ψ̄L,2ΨR,3)φ1 + (ψ̄L,3ΨR,3 + ψ̄L,2ΨR,2

−2ψ̄L,1ΨR,1)φ2] + h3[(ψ̄L,1ΨR,3 + ψ̄L,3ΨR,1φ
′
1

+(ψ̄L,2ΨR,1 + ψ̄L,1ΨR,2)φ
′
2 + (ψ̄L,3ΨR,3

−ψ̄L,2ΨR,2)φ
′
3] + h.c. (14)

To get the desired form of the seesaw formula, first note
that < ∆0

L >= vL ≡ v2

wk/vR, ∆0

R = vR, the bidoublet
vevs are of the form

< φi >=

(

κi 0
0 κ′i

)

,

and that f0 is the identity matrix.

One can break the S4 symmetry softly so that all the
the φ’s have different vevs. Also note that hi’s can be
complex. Thus six φ’s with independent vevs give us 12
parameters which is enough to fit the quark mixings and
will predict all lepton mixings equal to quark mixings at
the GUT scale. At the GUT scale, this would predict
mb = mτ and ms = mµ. For the b-quark, this is the
well known b − τ unification. Using the PDG values for
mb,s, we can run it upto the GUT scale to get mb(MR) ≃
0.98−1.10 GeV whereas the corresponding value of mτ ∼
1.18. However we have for ms(MR) ≃ 0.03 GeV if we use
the PDG values. This is about 3 times smaller than the
muon mass at the seesaw scale [18]. So we have to add
some terms that break quark lepton symmetry.

To cure the ms−mµ problem, we invoke higher dimen-
sional terms and add a new Higgs multiplet Σ(1, 1, 15)
that transforms as (1,1,15) under G224. Also let us as-
sume that Σ(1, 1, 15) transforms like a 3 dimensional
representation of S4 with only < Σ3 > 6= 0.The higher
dimensional operators that involve Σ have the form
φ0

M
[(ψ̄L,1ΨR,3 + ψ̄L,3ΨR,1Σ1 +(ψ̄L,2ΨR,1 + ψ̄L,1ΨR,2)Σ2 +

(ψ̄L,3ΨR,3 − ψ̄L,2ΨR,2)Σ3]. Since Σ(1, 1, 15) has a vev
that breaks only SU(4)c symmetry, it gives different
masses to quarks and leptons. For < Σ3 > /M ≃ 10−3,
this has the right order of magnitude to lead to the differ-
ence between ms and mµ and not effect the off diagonal
elements that are responsible for mixings. Since the mix-
ing angles go roughly like M23

M33−M22

, they do not deviate
too much from the symmetric values (since M22 ≪M33).

As far as the me and md goes, we can again add non-
renormalizable Yukawa couplings such as Ψ̄LΨR∆†

R∆Rφ
type terms which will only modify the first generation
masses since their magnitude is of order v2

R/M
2

Pℓ down
compared to the renormalizable terms. Again this contri-
bution being a purely diagonal contribution will change
the mixing angles only slightly. Therefore, we can get a
a model of the type we are considering with degenerate
neutrinos and with quark and neutrino mixing angles ap-
proximately equal at the seesaw scale. This model can
easily be supersymmetrized and all our conclusions go
through.

Coming to the neutrino sector, we will first show how
type II seesaw emerges in this model. The complete Higgs
content of this model for the supersymmetric case is:
Ψ(2, 1, 4); Ψc(1, 2, 4̄), φ0(2, 2, 1), φ1,2(2, 2, 1), φ′1,2,3(2, 2, 1),

∆(3, 1, 10) ⊕ ∆̄(3, 1, 1̄0) and ∆c(1, 3, 1̄0) ⊕ ∆
c
(1, 3, 10)

as shown in Table in this section. In addition we add a
Higgs field transforming as Ω(3, 3, 1). The Higgs part of
the superpotential can be written as

W ′ = λΩ(∆∆c + ∆∆c + Trφ2

0 + · · ·) (15)

where · · · denote the S4 singlet bilinears involving the
other φ fields. Clearly, when we set FΩ = 0 to maintain
supersymmetry down to the weak scale, we find that <
∆0 > 6= 0. This leads to the type II seesaw which is the
cornerstone of our discussion.
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The gauge group SU(2)L×SU(2)R×SU(4)C(= G224)
is a subgroup of a numbetr of GUTs like SO(10), SO(18),
and E6 etc. It also contains the subgroups like SU(2)L×
SU(2)R×U(1)B−L×SU(3)C(= G2213) and the standard
model. Thus the model worked out with S4 × G224 is
equivalent to a number of underlying high-scale models
such as S4 × SO(10), S4 × SO(18), S4 × E6 etc. It
also suggests the possibility of having S4 × G2213 as an
approximate symmetry for quasi-degeneracy.

In the absence of such symmetries as dicussed in this
section where a non-abelian discrete symmetry S4 occurs
along with the gauge symmetry G224, high-scale unifica-
tion of quark and neutrino mixings with quasi-degenerate
neutrinos but with hierachial quark masses would have
been accidental. But the type II seesaw mechanism in
the presence of S4 × G224 and its spontaneous breaking
guarantees quasi-degenerate neutrinos with almost equal
mixings in the quark and lepton sectors at the high scale
while the model fits all the masses and mixings at low
energies.

VI. CONCLUSION

In summary, we have shown that in the MSSM, the
hypothesis of quark- lepton mixing unification at the see-
saw scale seems to generate the correct observed mixing
pattern for neutrinos i.e. two large mixings needed for
νe − νµ and νµ − ντ and small mixing for Ue3 at low en-
ergies. Quasi-degenerate neutrino spectrum with a com-
mon mass for neutrinos ≥ 0.1 eV is a testable prediction
of the model. Important new result of our analysis is that
although magnification occurs for the Ue3 parameter, it
remains small due to the fact that Vub is very small. The
prediction for Ue3 also provides another test of the model.

Througout this paper we have treated all
phases(Majorana and Dirac) to be vanishingly small in
the MNS matrix. It would be interesting to investigate
the effect of phases [29] on the implications of our mixing
unification hypothesis.
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