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Abstract

We consider SU(3)C × SU(2)AL × SU(2)BL × U(1)Y as the low-energy subgroup

of supersymmetric SU(3)6 unification. This may imply small deviations from quark-

lepton universality at the TeV scale, as allowed by neutron-decay data. New particles

are predicted with specific properties. We discuss in particular the new heavy gauge

bosons corresponding to SU(2)AL × SU(2)BL → SU(2)L.
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1 Hexagonal SU(3) Model

The extension from SU(3)C ×SU(3)L ×SU(3)R trinification [1] to SU(3)6 unification [2] al-

lows for the natural anomaly-free implementation of chiral color [3] and quark-lepton nonuni-

versality [4, 5] at the TeV scale. In view of the fact that there is an experimental hint [6]

of the latter, but not the former, we explore the possibility that the low-energy reduction

of hexagonal SU(3) unification is actually SU(3)C × SU(2)AL × SU(2)BL × U(1)Y at the

TeV scale, where quarks couple to SU(2)AL, but leptons may choose either SU(2)AL or

SU(2)BL or both, and the SU(2)L of the Standard Model (SM) is the diagonal subgroup of

SU(2)AL ×SU(2)BL [7]. We show how supersymmetric unification at around 1016 GeV may

be maintained with a suitable choice of new particle content at the TeV scale and discuss

their phenomenological consequences.
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qc

SU(3)CR

λ1
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λ3

SU(3)AR

λ2
SU(3)BL

η

SU(3)BR

Figure 1: Moose diagram of quarks and leptons in [SU(3)]6.

We start with the supersymmetric SU(3)6 model of Ref. [2]. Under the gauge group

SU(3)CL × SU(3)AL × SU(3)BL × SU(3)BR × SU(3)AR × SU(3)CR, the six links of the
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“moose” chain [8] are given by

q ∼ (3, 3∗, 1, 1, 1, 1), (1)

λ1 ∼ (1, 3, 3∗, 1, 1, 1), (2)

λ2 ∼ (1, 1, 3, 3∗, 1, 1), (3)

λ3 ∼ (1, 1, 1, 3, 3∗, 1), (4)

qc ∼ (1, 1, 1, 1, 3, 3∗), (5)

η ∼ (3∗, 1, 1, 1, 1, 3), (6)

as shown in Fig. 1. The electric charge is embedded into SU(3)6 according to

Q = (I3)AL + (I3)AR − 1

2
YAL − 1

2
YAR + (I3)BL + (I3)BR − 1

2
YBL − 1

2
YBR. (7)

Using the notation where the rows denote (I3, Y ) = (1/2, 1/3), (−1/2, 1/3), (0,−2/3) and

the columns denote (I3, Y ) = (−1/2,−1/3), (1/2,−1/3), (0, 2/3), the particle content of this

model is given in matrix form as

q =







d u h

d u h

d u h






, qc =







dc dc dc

uc uc uc

hc hc hc






, λi =







Ni Ec
i νi

Ei N c
i ei

νc
i ec

i Si






, (8)

and all the components of η are neutral. As shown in Ref. [2], this embedding of electric

charge yields the canonical value of 3/8 for sin2 θW at the unification scale MU .

Whereas the quarks are unambiguously assigned in Eq. (8), the leptons are not. The

left-handed doublets may be any linear combination of (ν1, e1) and (ν2, e2), while the right-

handed doublets may be any linear combination of (νc
2, e

c
2) and (νc

3, e
c
3). We will see later

exactly how this works. Note that if SU(3)6 collapses to SU(3)3 already at MU , the leptons

would then be unambigously assigned to λ2.

3



2 Gauge Coupling Unification

Above MU , the six gauge couplings are assumed equal, maintained for example with a discrete

Z6 symmetry. At MU , SU(3)6 is assumed broken down to

SU(3)C × SU(2)AL × SU(2)BL × U(1)Y

with the boundary conditions

1

αC(MU)
=

1

αCL(MU )
+

1

αCR(MU )
=

2

αU
, (9)

1

αAL(MU)
=

1

αBL(MU)
=

1

αU
, (10)

3

5αY (MU)
=

2

αU
. (11)

At MS, supersymmetry is assumed broken, together with the breaking of SU(2)AL×SU(2)BL

to SU(2)L with the boundary condition

1

αL(MS)
=

1

αAL(MS)
+

1

αBL(MS)
. (12)

Consider now the one-loop renormalization-group equations governing the evolution of

the gauge couplings with mass scale:

1

αi(M1)
− 1

αi(M2)
=

bi

2π
ln

M2

M1

, (13)

where αi = g2
i /4π and the numbers bi are determined by the particle content of the model

between M1 and M2. Below MS, we assume the particle content of the SM, but with two

Higgs doublets, i.e.

SU(3)C : bC = −11 + (4/3)Nf = −7, (14)

SU(2)L : bL = −22/3 + (4/3)Nf + 1/3 = −3, (15)

U(1)Y : bY = (20/9)Nf + 1/3 = 7, (16)
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where Nf = 3 is the number of families. Above MS, the gauge group becomes SU(3)C ×

SU(2)AL × SU(2)BL × U(1)Y with the following minimum particle content for each family:

(u, d) ∼ (3, 2, 1, 1/6), uc ∼ (3∗, 1, 1,−2/3), dc ∼ (3∗, 1, 1, 1/3), (17)

(ν1, e1) ∼ (1, 2, 1,−1/2), (ec
1, ν

c
1) ∼ (1, 1, 2, 1/2), (18)

(ν2, e2) ∼ (1, 1, 2,−1/2), ec ∼ (1, 1, 1, 1). (19)

The SU(2)AL anomalies are canceled between (u, d) and (ν1, e1), whereas the SU(2)BL

anomalies are canceled between (ν2, e2) and (ec
1, ν

c
1). In addition, we assume the appear-

ance of one copy of η ∼ (8, 1, 1, 0), two copies of (N1, E1; E
c
1, N

c
1) ∼ (1, 2, 2, 0), one copy of

(N2, E2; E
c
2, N

c
2) ∼ (1, 1, 2,∓1/2), one copy of (N4, E4; E

c
4, N

c
4) ∼ (1, 2, 1,∓1/2), and one copy

of (Ec
5, N5; N

c
5 , E5) ∼ (1, 2, 1,±1/2), where λ4 ∼ (1, 3, 1, 1, 3∗, 1) and λ5 ∼ (1, 3∗, 1, 1, 3, 1) are

extra supermultiplets to be discussed later.

The corresponding bi’s are then given by

SU(3)C : bC = −9 + 2Nf + 3 = 0, (20)

SU(2)AL : bAL = −6 + 2Nf + 4 = 4, (21)

SU(2)BL : bBL = −6 + Nf + 3 = 0, (22)

U(1)Y : bY = (13/3)Nf + 3 = 16, (23)

Using Eqs. (9) to (16), these imply the following two constraints [2]:

1

αC(MZ)
=

3

7

[

4

αL(MZ)
− 1

αY (MZ)

]

+
4

7π
ln

MS

MZ

, (24)

ln
MU

MZ
=

π

14

[

3

αY (MZ)
− 5

αL(MZ)

]

+
2

7
ln

MS

MZ
. (25)

Using the input [9]

αL(MZ) = (
√

2/π)GFM2
W = 0.0340, (26)

αY (MZ) = αL(MZ) tan2 θW = 0.0102, (27)
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and

0.115 < αC(MZ) < 0.119, (28)

we find

450 GeV > MS > MZ , (29)

and

1.2 × 1016 GeV < MU < 2.0 × 1016 GeV. (30)

These are certainly acceptable values for new particles below the TeV scale and the proper

suppression of proton decay.

3 Quarks, Leptons, and Other Particles

Quark masses come from the Yukawa couplings uc(uN c
4 − dEc

4) and dc(uE4 − dN4) which

originate from the invariant dimension-four term qcηqλ4 term in the SU(3)6 superpotential.

One of the η supermultiplets is assumed to have superheavy vacuum expectation values

〈η11〉 = 〈η22〉 = 〈η33〉 which break SU(3)CL × SU(3)CR to SU(3)C at MU . Thus q and qc

become triplets and antitriplets respectively under SU(3)C , and an effective qcqλ4 term is

generated.

To preserve the discrete Z6 symmetry, λ4 ∼ (1, 3, 1, 1, 3∗, 1) should be accompanied by

Qc ∼ (1, 1, 3, 1, 1, 3∗), Q̄ ∼ (3∗, 1, , 1, 3, 1, 1), λ5 ∼ (1, 3∗, 1, 1, 3, 1), Q̄c ∼ (1, 1, 3∗, 1, 1, 3), and

Q ∼ (3, 1, 1, 3∗, 1, 1). It is clear that QQ̄ and QcQ̄c, as well as λ4λ5 are invariants so that all

these particles are naturally superheavy. However, λ3
4 and λ3

5 are also invariants, so some of

the components of λ4 and λ5 may be fine-tuned to be light.

At MS, one of the (1, 2, 2, 0) bidoublets is assumed to have vacuum expectation values

〈N1〉 = 〈N c
1〉 which break SU(2)AL × SU(2)BL to SU(2)L. From the invariant λ3

1 term,

(ν1, e1) will then pair with (ec
1, ν

c
1) to form a vector doublet under SU(2)L, and from the
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invariant λ3
2 term, (ν2, e2) will couple to ec

2 through (N2, E2) to become the SM leptons, as

in SU(3)3 trinification. This is also the canonical case of quark-lepton nonuniversality [5]

because quarks couple to SU(2)AL and leptons couple to SU(2)BL.

However, there is also the λ1λ2λ3λ5 term in the SU(3)6 superpotential. One of the λ3

supermultiplets is assumed to have superheavy vacuum expectation values 〈N3〉 = 〈N c
3〉 =

〈S3〉 which break SU(3)AR × SU(3)BR to SU(3)R at MU . Thus (ν1, e1) may couple to ec
2

through (N c
5 , E5). At the same time, one of the λ1 supermultiplets is assumed to have a

superheavy vacuum expectation value 〈S1〉 which breaks SU(3)AL ×SU(3)BL to SU(2)AL ×

SU(2)BL × U(1)Y L at MU . Thus (ν2, e2) may also couple to ec
3 through (N c

5 , E5). In either

case, the lepton doublet and the antilepton singlet would be in different (3, 3∗) reprsentations,

as in two previously proposed models [10, 11]. To break SU(3)R × U(1)Y L to U(1)Y , we

assume superheavy vacuum expectation values 〈ν3〉 and 〈S2〉 as well. As shown in Ref. [11],

having (ν, e) and (ec, νc) in separate (3, 3∗) representations allows νc to acquire a large

Majorana mass, thereby realizing the canonical seesaw mechanism for very small Majorana

neutrino masses. This argues for the scenario where the SM leptons are not exclusively from

λ2 as in the original SU(3)6 model [2].

The new particles at MS all have SU(2)L×U(1)Y invariant masses and do not contribute

significantly to the S, T, U oblique parameters, thereby preserving the excellent agreement

of the SM with current precision electroweak measurements [9]. The SU(3)C octet η decays

in one loop to two gluons, and should be detected at the Large Hadron Collider (LHC). The

SU(3)C singlets interact with one another through the terms λ1λ2λ5 and λ4λ5, which allow

them to decay into SM particles, such as leptons and quarks as well as W and Z bosons.

In the Minimal Supersymmetric Standard Model, the leptonic doublet has to be dis-

tinguished from the Higgs doublet of the same hypercharge by R-parity to guarantee the

existence of a stable particle, the Lightest Supersymmetric Particle (LSP), as a candidate
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for dark matter. Here the Higgs superfields are all bidoublets and leptons doublets, so they

are already distinguished by the structure of the theory and an effective R-parity exists

automatically.

4 New Gauge Bosons at the TeV Scale

The salient feature of this model is of course the appearance of a second set of weak gauge

bosons corresponding to the breaking of SU(2)AL × SU(2)BL to the SU(2)L of the SM. As

a result, the left-handed quark doublet (u, d) couples to

gLW +
g2

A
√

g2
A + g2

B

W ′,

and the left-handed lepton doublet (ν, e) couples to

gLW +
g2

A cos2 θ − g2
B sin2 θ

√

g2
A + g2

B

W ′,

where g−2
L = g−2

A + g−2
B and the SM set of SU(2)L gauge bosons W and their orthogonal

combinations W ′ are given by

W =
gBWA + gAWB
√

g2
A + g2

B

, W ′ =
gAWA − gBWB
√

g2
A + g2

B

, (31)

with
(

ν

e

)

= cos θ

(

ν1

e1

)

+ sin θ

(

ν2

e2

)

. (32)

If θ = 0, then quarks and leptons interact identically with W ′ as well as W . If θ = π/2, then

we have the canonical case of quark-lepton nonuniversality [5].

4.1 W ′ coupling

In general, W can mix with W ′. For illustration, let us consider the simpler case of no mixing

in which the coupling of q-W ′-q′ is

igLγµPLgW ′qq,
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and the coupling of ℓ-W ′-ℓ′ is

igLγµPLgW ′ℓℓ.

Here, gL is the SM SU(2)L coupling, PL = (1 − γ5)/2, and the coefficients gW ′qq and gW ′ℓℓ

are defined as follows:

gW ′qq =
gA

gB
,

gW ′ℓℓ =
gA

gB

cos2 θ − gB

gA

sin2 θ. (33)

The effective Fermi constant GF /
√

2 in nuclear beta decay is then given by

(

GF√
2

)

qℓ

=
g2

L(MZ)

8M2
W

+
g2

L(MS)

8M2
W ′

gW ′qqgW ′ℓℓ

=
g2

L(MZ)

8M2
W

[

1 +
αL(MS)M2

W

αL(MZ)M2
W ′

gA

gB

(

gA

gB

cos2 θ − gB

gA

sin2 θ

)]

, (34)

whereas that in pure leptonic decay is

(

GF√
2

)

ℓℓ

=
g2

L(MZ)

8M2
W

+
g2

L(MS)

8M2
W ′

gW ′ℓℓgW ′ℓℓ

=
g2

L(MZ)

8M2
W

[

1 +
αL(MS)M2

W

αL(MZ)M2
W ′

(

gA

gB

cos2 θ − gB

gA

sin2 θ

)2
]

. (35)

Therefore, if tan2 θ > g2
A/g2

B, then (GF )qℓ < (GF )ℓℓ and the neutron-decay result can be

understood [5]. Furthermore, if |gW ′ℓℓ| << |gW ′qq|, then (GF )ℓℓ is very close to GSM
F , and

(GF )qℓ will be less than it by a small amount.

In general, MW ′ and sin θ are independent parameters. But in order to explain the

neutron-decay result [6], we should have

1 − (GF )qℓ

(GF )ℓℓ

≃ αL(MS)M2
W

αL(MZ)M2
W ′

gW ′ℓℓ (gW ′ℓℓ − gW ′qq) ≃ 0.0023 ± 0.0014. (36)

Here we have used the latest value of |Vus| = 0.2262(23) [12] instead of the 2004 PDG value

of 0.2200(26). This reduces significantly the possible descrepancy of the neutron-decay result

from universality. Using Eqs. (21) and (22) as well as MS/MZ = 2.2 and MU/MZ = 1.7×1014
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lower limit
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sin
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(×10−3)
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(b)

Figure 2: (a) MW ′/MW as a function of sin2 θ, cf. Eq. (37). (b) The corresponding deviations

of (GF )ql and (GF )ll from GSM
F as functions of sin2 θ, cf. Eqs. (34) and (35). The solid curve

is obtained from the mean value while the dotted and dashed curves are obtained from the

upper and lower values respectively.

from αC(MZ) = 0.117, we find αA(MS) = 0.040 and αB(MS) = 0.212. Hence we obtain the

following relation between MW ′ and sin θ:

M2
W

M2
W ′

sin2 θ(sin2 θ − 0.1587) ≃ 3.11 ± 1.89 × 10−4. (37)

For illustration, we show MW ′/MW as a function of sin2 θ in Fig. 2(a). The solid curve

is obtained from the central value of the right-hand side of Eq. (36) while the dotted and

dashed curves are obtained from the upper and lower values respectively. For a given value
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Figure 3: The coupling strengths gW ′qq and gW ′ℓℓ as a function of MW ′/MW .

of sin2 θ, MW ′ lies within a range of values as shown. Correspondingly, the deviations of

(GF )qℓ and (GF )ℓℓ from GSM
F are also correlated with sin2 θ. We present these deviations

as functions of sin2 θ in Fig. 2(b). Since (GF )ℓℓ has been measured very preicsely, smaller

values of sin2 θ are preferred.

In the following, we will choose the mass of the W ′ boson as an input parameter rather

than the mixing angle θ. Since the effective coupling strength gW ′ℓℓ is a function of sin2 θ,

cf. Eq. (33), it is also a function of MW ′. Of course this dependence is not intrinsic to the

model; it is simply due to the empirical constraint of Eq. (37). For illustration, the effective

coupling strengths gW ′qq and gW ′ℓℓ, as functions of MW ′, are shown in Fig. 3. Again, the

dotted curve is obtained from the upper limit and the dashed curve from the lower limit. We

note that both couplings are suppressed compared to a SM-like coupling for which gW ′qq = 1

and gW ′ℓℓ = 1. Furthermore, the magnitude of gW ′ℓℓ is highly suppressed for a light W ′ boson

and grows graduately with increasing MW ′. The difference between gW ′qq and gW ′ℓℓ has a

very important impact on the phenomenology of W ′ which will be addressed below.
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4.2 Decay of W ′ boson

Similar to the W boson decay in the Standard Model, the W ′ boson of this model can decay

also into lepton pairs and quark pairs. [Its decay into SM gauge bosons is negligible in the

absence of mixing.] Taking into account the masses of the decay products, the W ′ partial

decay width is given by

Γ
(

W ′ → f f̄ ′

)

= NC
g2MW ′

48π
g2

W ′ffλ
1/2 (1, γf , γf ′)

×
[

1 − 1

2
γf −

1

2
γf ′ − 1

2
(γf − γf ′)2

]

, (38)

where γf = m2
f/M

2
W ′, γf ′ = m2

f ′/M2
W ′ and λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. Here,

NC is the color factor of the fermion and gW ′ff denotes either gW ′qq or gW ′ℓℓ, as defined in

Eq. (33). Of the hadronic modes, we need to consider only the decays W ′ → ud̄, W ′ → cs̄,

and W ′ → tb̄ because

|Vud| ≈ |Vcs| ≈ |Vtb| ≈ 1

and all other CKM matrix elements are small. Since the W ′ boson is very heavy, we can

treat all its decay products as massless particles except for the top quark. The leptonic decay

width of W ′ boson can now be simplified as

Γ
(

W ′ → ℓℓ̄′
)

=
g2

L

48π
MW ′g2

W ′ℓℓ, (39)

where ℓℓ′ = eνe, µνµ, τνν . If MW ′ < mt, the W ′ boson can only decay into light quark pairs,

Γ (W ′ → qq̄′) = NC
g2

L

48π
MW ′g2

W ′qq, (40)

where qq′ = ud, cs. If MW ′ > mt, the tb decay channel opens up and the partial decay width

becomes

Γ
(

W ′ → tb̄
)

= NC
g2

L

48π
MW ′g2

W ′qq

(

1 − 3

2
γt +

1

2
γ3

t

)

. (41)
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Figure 4: (a) The total decay width and (b) the decay branching ratios of the W ′ boson as

functions of its mass MW ′.

Therefore, the total decay width of W ′ is

Γtot
W ′ (MW ′ < mt) =

g2
L

48π
MW ′

(

3g2
W ′ℓℓ + 6g2

W ′qq

)

, (42)

Γtot
W ′ (MW ′ > mt) =

g2
L

48π
MW ′

[

3g2
W ′ℓℓ + 9g2

W ′qq

(

1 − 1

2
γt +

1

6
γ3

t

)]

. (43)

In Fig. 4 we present the total decay width of the W ′ boson and its decay branching ratios

(BR) as functions of MW ′. Here, we have separated the light quark decay modes (dashed-

line) from the heavy quark (tb) mode (dotted-line). It clearly shows that in the region of

small MW ′ (1.5 MW < MW ′ < 2.5 MW ) the light quark decay mode dominates over the other

modes. This is due to the suppression of the gW ′ℓℓ, cf. Fig. 3. As a result, the detection of

W ′ through its leptonic decay in the small MW ′ region is more difficult to achieve and the
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current experimental data cannot rule out the existence of this W ′. In the medium mass

region, the heavy quark decay channel opens. As a result, the decay branching ratio of the

light quark mode decreases but is still larger than the heavy quark mode. Both hadronic

decay modes become comparable with increasing MW ′. Again, the leptonic decay mode is

negligible due to the suppression of gW ′ℓℓ. In the region of very heavy W ′, say MW ′ > 10 MW ,

the leptonic decay branching ratio becomes larger because gW ′qq and gW ′ℓℓ are of the same

order.

4.3 Discovery potential in hadron collision

In this study, we will examine the discovery potential of the W ′ boson of this model at the

Fermilab Tevatron and CERN Large Hadron Collider (LHC). Many direct searches for a W ′

boson in its various decay modes have been performed at the Tevatron and produced lower

limits on its mass. The leptonic decay mode is the best choice for disentangling the W ′

event from the copious QCD background. Searches using the decay mode W ′ → eν exclude

a W ′ boson with mass < 754 GeV at 95% C.L. [13, 14], while similar searches considering

the decay mode W ′ → µν have excluded a W ′ boson with mass < 660 GeV at 95% C.L. [15].

Combining both leptonic channels, the most stringent limit was obtained, excluding a W ′

boson with mass < 768 GeV at 95% C.L. [14]. These mass limits all assume that the new

vector boson’s couplings to leptonic final states are as given by the Standard Model, which

predicts that the total width of the boson increases linearly with its mass. In addition to the

leptonic mode, a search using the light quark decay mode W ′ → qq̄′ excludes a W ′ boson

in the range 300 < MW ′ < 420 GeV at 95% C.L. [16], while a search using the decay mode

W ′ → tb̄ excludes a W ′ boson in the range 225 < MW ′ < 536 GeV for MW ′ ≫ mνR
and

225 < MW ′ < 566 GeV for MW ′ < mνR
[17].

At a hadron collider the W ′ bosons are predominantly produced through the charge-
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current Drell-Yan process:

qq̄′ → W ′+ → f f̄ ′,

where q and q′ denote the light up-type quarks (q = u, c) and down-type quarks (q′ = d, s)

respectively. The total cross section for this process at a hadron collider is

σ
(

P1P2 → f f̄ ′

)

=
∑

q,q̄′

∫

dx1dx2

[

fq/P1
(x1, µ) fq̄′/P2

(x2, µ) σ̂
(

qq̄′ → f f̄ ′

)

+ (x1 ↔ x2)
]

,

(44)

where P1, P2 represent the hadronic initial state, fq/P (x, µ) is the parton distribution function

(PDF). We take the factorization scale (µ) to be the invariant mass of the constituent process

in our numerical calculation. The parton-level cross section σ̂ is given by

σ̂ =
1

2ŝ

∫

dΠ2

∑

spin
color

∣

∣M
(

qq̄′ → f f̄ ′

)∣

∣

2
, (45)

where the bar over the |M|2 denotes averaging over the initial-state spin and color, dΠ2

represents 2-body final-state phase space, and the squared matrix element reads

|M|2 =
N f

C

12

g4
L |Vud|2
64π2ŝ

û2

(ŝ − M2
W ′)

2
+ (MW ′ΓW ′)2

g2
W ′qqg

2
W ′ℓℓ, (46)

where the explicit factor 1/12 results from the average over the quark spins and colors, and

N f
C is the number of color state of decay products:

N f
C =

{

1 f = ℓ,

3 f = q.
(47)

Here, the Mandelstam variables are defined by

ŝ = (pu + pd)
2 , t̂ = (pd − pℓ)

2 , û = (pu − pℓ)
2 , (48)

where pi denotes the momentum of particle i.

In Fig. 5 we present the inclusive cross sections of W ′ production and decay through the

process ud̄ → W ′ → f f̄ ′ at the Tevatron and the LHC. For comparison, we also present the
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Figure 5: Inclusive cross sections of W ′ production and decay through qq̄′ → W ′ → f f̄ ′ as

functions of MW ′ at the Tevatron and the LHC.

inclusive cross sections of the same process with the assumption that all the couplings are

as in the Standard Model. For our numerical calculation, we use the leading-order parton

distribution function set CTEQ6L [18]. The value of the relevant electroweak parameters

are α = 1/137.0459895, Gµ = 1.16637 × 10−5 GeV−2, mt = 178 GeV, MW = 80.33 GeV,

MZ = 91.1867 GeV, and sin2 θW = 0.231. Thus, the square of the weak gauge coupling is

g2 = 4
√

2M2
WGµ. Here, we focus our attention on the positively charged W ′ boson only.

Due to the suppression of the effective couplings (gW ′qq and gW ′ℓℓ) compared to those of

the Standard Model, the inclusive cross section predicted by this model is much smaller than

that of the SM, thereby shifting the limits of MW ′ to lower values. For example, W ′ couples

to quarks with a suppression factor of gW ′qq = gA/gB ≃ 0.43, hence its production cross
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section will be a factor of 5 smaller than expected for a corresponding gauge boson of the

same mass in the SM. After using the kinematics cuts listed in Ref. [16] for the light-quark

mode, we compare the W ′ cross section of our model with present data and conclude that

MW ′ should be larger than 310 GeV. The leptonic mode is suppressed so much in our model

that the W ′ boson satifies all the current experimental constraints, but it also means that

one cannot detect this extra vector boson in this mode in the future. At the LHC, as shown

in Fig. 5, the production of W ′ boson with its subsequent decay can be observed by studying

events with two hard jets. Again, the leptonic decay mode is not very competitive. Detailed

ananlysis of these two modes together with various backgrounds will be presented elsewhere.

We note also that the hadronic decay channel exhibits a completely different behavior from

the leptonic decay channel, especially for a light W ′ boson. This is a consequence of the

difference between the effective coupling strengths (cf. Fig. 3), and can be explained as

follows. Since the width of the W ′ boson is very small compared to its mass, we can write

the parton-level cross section σ̂ in Eq. (45) as

σ̂
(

qq̄′ → f f̄ ′

)

= σ̂
(

qq̄′ → W ′+
)

× Br
(

W ′+ → f f̄ ′

)

(49)

under the narrow-width approximation. As an s-channel process, the cross section σ̂(qq̄′ →

W ′+) drops off rapidly with increasing ŝ as σ̂ ∝ 1/ŝ. On the other hand, due to the large

suppression of gW ′ℓℓ, the decay branching ratio of W ′ → ℓℓ̄′ is very tiny when MW ′/MW ≤ 5

and increases with increasing MW ′ . These two effects compete with each other and leave the

bump in the inclusive cross section (cf. bold dashed curve in Fig. 5).

Since (W ′+, Z ′, W ′−) is a triplet under SU(2)L, Z ′ has the same mass as W ′ and the same

couplings to quarks and leptons, assuming no mixing with the SM gauge bosons. As usual,

one can use the leptonic decay mode to distinguish W ′ from Z ′. The W ′ boson decays into

one charged lepton and one neutrino which has the collider signature of a charged lepton plus

missing energy, while the Z ′ boson decays into two detectable charged leptons. In our model,
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however, we have to use the hadronic decay mode to detect these extra vector bosons, due

to the suppresssion of the leptonic decay mode discussed above. As far as the light-quark

mode is concerned, both W ′ and Z ′ will have the collider signature of two hard jets. Since

both W ′ and Z ′ couple to quarks via the left-handed gauge interaction, the two hard jets in

the final state will have exactly the same kinematics distributions, it is thus impossible to

distinguish one from the other. On the other hand, one can easily separate them by using the

heavy-quark mode. For example, the W ′ boson will decay into a tb̄ pair with the top quark

subsequently decaying into ℓbν while the Z ′ will decay into a tt̄ pair with the top-quark pair

subsequently decaying into ℓℓ̄bb̄νν̄.

5 Conclusion

In this paper we have proposed a supersymmetric gauge extension of the Standard Model,

where SU(2)L is enlarged to SU(2)AL×SU(2)BL at the TeV scale. This model is motivated by

(1) the possibility of SU(3)6 hexagonal unification and (2) the possibility of small deviations

from quark-lepton universality as allowed by neutron decay.

The distinguishing feature of our model is that quarks couple to SU(2)AL while leptons

couple to a linear combination of SU(2)AL and SU(2)BL with mixing angle θ. The gauge

couplings gA and gB are fixed from SU(3)6 unification, and the mass of the (W ′+, Z ′, W ′−)

SU(2)L triplet is related to the angle θ from neutron decay. We have discussed in this paper

the possible production and decay of this new W ′ boson. Using present Tevatron data, we

set the lower limit of 310 GeV on MW ′ through its possible decay into quarks. [The leptonic

mode turns out to be very much suppressed.] Since MW ′ is expected to be no more than

a few times MW in this particular theoretical context, it should become observable at the

LHC.
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