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Generation of gluons from quark confinement
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Abstract, We study a model of quark confinement defined by the vanishing of colour
currents. The model is shown to be equivalent to quantum chromodynamics and
this equivalence is interpreted as due to the compositeness of the colour gluons. The
Green’s functions of the theory are found to contain nontrivial structure only for
colour singlet composites which can be identified with hadrons.
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1. Introduction

Ever since the idea of quarks as constituents of hadrons was proposed (Gell-Mann
1964, Zweig 1964), it has steadily gained strength as a working hypothesis. The
recent discovery of asymptotically free nonabelian gauge theory (Gross and Wilczek
1973a, Politzer 1973, t’ Hooft 1972) led to the construction of the field theory of quarks.
Asymptotic freedom provided a natural explanation for the experimentally observed
nearly free point-like behaviour of the constituents of the nucleon.

The nonabelian gauge group was taken to be the so-called colour SU(3) which acts
on the colour index of the quark and the octet of gauge bosons are called gluons.
This colour gauge theory of quarks and gluons named as quantum chromodynamics
(QCD) has emerged as an attractive candidate for a field theory of strong interactions
(Weinberg 1973, Fritzsch et al 1973). |

But then, why are the quarks not observed**? This is the first problem faced by
QCD. One possibility which is widely favoured is that quarks are permanently
confined within the hadrons and can never be isolated. Considerable amount of
theoretical effort has been already expended in aiming to prove confinement (see for
instance Wilson 1974, Kogut and Susskind 1974, Cornwall and Tiktopoulos 1976
and Polyakov 1976) it is only fair to say that quark confinement still remains a
hypothesis.

Our plan is to invert the problem and study the consequences. That is.to say,
instead of starting from QCD and trying to derive quark confinement which has
proved very difficult, we accept quark confinement as a starting point and attempt to
see how close we can approach QCD.. It will be shown that QCD can in fact be
derived from this statting point. = =~ T T ‘

*LaRue et al (1977) have recently reported to have observed fractional charges. However, this
is yet to be confirmed by independent experiments. ) o ‘
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This idea of starting with quark confinement is not a new one. Amati and Testa
(1974) had proposed such an idea earlier, but there is a crucial difference between
their approach and ours as will be indicated later.

The model of quark confinement is formulated in section 2 and its equivalence to
QCD is shown in section 3.  Section 4 discusses the same equivalence from the point
of view of composite gluons. The structure of the Green’s functions of the quark
confinement model is analysed in section 5. In section 6, a comparison with other
related works as well as a summary are presented,

2. The model of quark confinement

The model is defined by the Lagrangian*

glr—@ (v 0—m)y ‘ )

coupled with the constraint equations:
P L .
Jy E‘l,ypacﬁ:O, i=1..8. )

Here, 4 denotes the quark field which is taken to be a triplet under colour SU(3)
and A'f2 are the SU(3) generators in the triplet representation. The requirement of

the vanishing of the colour octet currents (eq. 2) guarantees the absence of coloured
states, and hence quark confinement. Since the Lagrangian %, does not contain any

explicit interaction terms, all the strong interactions of the hadrons are supposed to
arise purely from the constraint eq. 2).

Under the infinitesimal gauge transformation

bogi= (141w N) - -
we have

b1 D= S —jpt el | @
However, in view of the constraint eq. (2), we see that

Ly = &y | S)]
Thus, thé mbdel defined by (1) and (2) is gauge-invariant, Here we havé the remark-
able case of local gauge invariance being satisfied even without the presence of gauge
fields, S B

It is important to note that such a model defined by the vanishing of the currents
correspond to a nonabelian group symmetry. If we demand the vanishing of the

*Our metric, gamma matrices, etc. are the same as in ledrken and 'D-rell-(19.65).
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abelian curfent §y, this requires y/"y=0 for which the only solution is p=0. The

situation is quite different for nonabelian currents. Let us first consider the case of
SU(2) for which the constraint equations can be written in the explicit form:

D 7 =0,

iyj,a
D T (0P )es =0, ()
Lj,a, B

Here, 7 denotes the Pauli matrices acting on the SU(2) doublet 4 and the two indices
fand a on 4 refer to SU(2) and Dirac space respectively. It can be verified that the
solution: :

ht=i2=¢; fs,*=0 for others; 7

satisfies the conditions (6) and thus provides a nonvanishing 4.  Clearly, such a
nonvanishing i exists for the physically relevant colour SU(3) also; in particular,
since SU(2) is a subgroup of SU(3), the solution (7) itself provides an example. Thus,
for the very existence of the model, the nonabelian symmetry group is essential,

The model can also be defined by the generating functional obtained by functional
integration:

Wi, W =[ D2} 8(jn") exp if { L3+ b+ }dtx )

where » and  are the source functions for ¢ and . The 8-function takes care of the
constraint (2) and it actually stands for

o 50" (x).

I py X

3. Generation of gluons

In this section, we shall show that the model of quark confinement formulated in the
last section is equivalent to the gauge-invariant theory of quarks interacting through
nonabelian colour gauge gluons-namely quantum chromodynamics (QCD).

We first replace #; and the constraint (2) by the equivalent Lagrangian %,.

- S )

ZLo =4 (i V-a—m)*/‘—tﬁfz—!ﬂ 4, ®
where we have introduced the vector field 4, belonging to the octet representation
of colour SU(3). The Euler-Lagrange variational equation for 4 LS

g |
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which is seen to be identical to the constraint equation (2) and when this is sul?fsti'-
tuted- into (9) we get back (1). An alternate way of seeing the same result is to consider
the generating functional corresponding to .#,:

Wln, 1) = [ D4 9% 9 Ay exp i [ {2y + T + 7} d'x. (1)

Since the exponential is linear in 4,%, the integration over 4,° would produce the
é-function of the current and hence W, is the same as W, defined in (8). Thus the
model of quark confinement can also be described by the Lagrangiar .%,. However,
the Lagrangian %, does not yet correspond to that of QCD, since 4,' is not
equipped with kinetic energy nor with the characteristic self-interaction terms.

We shall now show that the kinetic energy as well as the self-interaction terms can
be generated by divergent radiative corrections. The technique is that used earlier
(Kugo 1976, Kikkawa 1976, Eguchi 1976, Rajasekaran and Srinivasan 1977) in
showing the equivalence of certain non-renormalizable interactions to renormalizable
theories. We start with W, defined in (11) and perform the integration over rand i
This can be done by a shift of variables: ‘

W=y¢+ Dty | (12)

whete

i -1
Dp1= (I-SF - A,t) S,

S = (i y.o—m)-L,

Ignoring an inessential constant factor, the result can be written as
. A .
Wy={ 2 4," det (1-—SF p* TZA,“) exp {—i [ déx 7 D1 7} (13)

where the determinant occurs in the numerator rather than in the denominator
because the integration variable was a Fermi field.
. We expand the determinant in a serjes:

. - ,A" A ‘ o i
det (I—SFy 3 A,’) = exp g'Tr In(]—SF y“%A,ﬂ)}

B B0 ) 0 R

RERT / JR




Generation of gluons from quark confinement 37
Before we proceed to the actual calculation of the divergent parts, we should note

that the Lagrangian &, on which the calculation is based, is invariant under the
infinitesimal gauge transformation :

SRR (b
by ={1+iamily

Ayt~ AV = Ayf — fUE oI (X) Ak — 0, of (%) (13)
where f % are the structure constants of SU(3). Hence, one should choose a
gauge-invariant regularization such as dimensional regularization (t'Hooft and Velt-
man 1972) in computing the divergent integrals. When this is done, one can verify
that the apparent quadratic divergence of the n=2 term represented by the first
diagram in figure 1 does not materialize. Or, stated in the language of dimensional
regularization, the pole at dimension /=2 cancels. One can further verify that the

divergent parts of the n==2, 3 and 4 terms have to appear in the following gauge-
invariant combination: -

——igf’ f dix G, GE” (16)
where
Glup = B Ay — 8, A — [ A,) A, an

and the constant 1 is logarithmically divergent (or pole at / =4). Isolating the pole
at dimension /=4, we get

fy=— —. | (18)
Combining (13), (14), and (16) we may write

7

] RS N
_,y,,,,)<1_ngu7_A,;) SF.17+F(A#’)%. ‘ (19)

o @+ﬁm W

Figure 1. Closed loop diagrams corresponding to the series in eq. (14). Wavy lines
and ordinary lines denote the gluons and quarks respectively. e
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Here F(A,") is the finite part of the trace in (14) and denotes the finite contribution to
the effective Lagrangian of the vector fields arising from closed fermion loops. We
have thus generated the kinetic cum self-interaction term of the gauge field: wa Gt
in the effective Lagrangian.

For comparison, let us now consider the Lagrangian of QCD:

. 1, N |
Fo=pliy.o—mi— 2 G, G —gpyr 5 yd, | (20)
where
G:;uzauAi—-apAi—-gf"kaiA’: - : @y

and perform the same one loop ihtegrations as before. The result would be

Woln. m) = [ 242994;, expi [ { @y+Tip+im )b

o 1/, 4 :
= | @A; expi [ dx {-—Z(l+~3~g2 Io> GLDG?" 22)

- A -1 :
*W(I—SFg'yl‘EAL) SF'q—}*F(gAL)}

where F (g A;;) is the same finite functional as in (19).

- The generating functional W, and W, are seen to be identical in form and the main
difference is in the infinite coefficients of the gauge field term wa G, 1In the case of
W, this infinite coefficient is absorbed by renormalization:

Q-4 4, =4, | (23)
g+ 582 )t =3¢

and so a similar procedure can be adopted for W,.
$ 1 4, =

F L) =g. (24)
“As a result of these scaling conditions (23) and (24), W, and W, become completely
identical. Thus, &, is equivalent to &5 and hence we have shown the equivalence
between QCD and the quark confinement model of section 2.

In contrast to QCD which involves the fields, 4, § and 4,’, the model of quark
confinement was formulated in terms of i and i alone. So, the above equivalence
suggests that 4,"is a composite of ¢ and ¢ in which case A4, could be eliminated
from the theory. In the next section, we shall discuss this point of view,
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4. Gluons as composite bosons

Field theoretically, compositeness is connected with the vanishing of the renormaliza-
tion constants (see for instance Lurie 1968). However, renormalization constants
are generally dependent on the ultraviolet cut-off A and so much of the earlier work
on the compositeness conditions was plagued by our ignorance of this cut-off
dependence. . ' :

This difficulty may be overcome by using the technique of renormalization group.
The wavefunction renormalization constant Z of any field satisfies a renormalization
group equation of the type: ' ‘

o ﬁ n _ ‘
(Aa”& e 2 +2y(g))z 0 (25)

where f(g) is the Callan—-Symanzik function and y(g) is the anomalous dimension of
the field. The solution of this equation is

t
Z(t, ©)=Z(0, 2(g, 1)) exp {—2 Of (&(g, t))dt"} (26)

where ¢ = In (A/M), M is the renormalization point and g(g, ) is the effective
coupling constant defined by

Z—f & 1)=B&(z, 1)); &(e, O)—. @7

In a theory with positive metric (which is not guaranteed for gauge theory) the
positivity of the spectral density function of the propagator leads to positivity of y(g).
This implies that the limit of Z as A— oo is either finite or zero, depending on whether
the integral in (26) is finite or infinite.

To go further, one has to assume: that the theory has an ultraviolet-stable fixed
point at g=g, ; 1.6,

p _ _
A&, )=0; i < 0. (28)
dglg.,
It then follows that
.g-(ga t) —_ 8o l
[0
and 29

Y&g, 1) —> y(zg,.). J

f—

It is clear from (26) that the behaviour of Z on A for A—co is now controlled by
this fixed point. In particular, ‘

if (g, ) #0, then Z — 0, | : | (30)

A




40 G Rajasekaran and V Srinivasan

whereas if y(g(g, ¢)) vanishes sufficiently rapidly for /oo, then Z tends to a non-
vanishing limit. However, for most of the field theoreis, the existence of an ultra-
violet-stable fixed point is a pure hypothesis and so the high- A behaviour of Z does
not yet become computable.*

In contrast, for a nonabelian gauge theory, the origin g=0 is known to be an
ultraviolet—stable fixed point (i.e. the theory is asymptotically free) as long as the
number of fermion triplets is less than 16 (Gross and Wilczek 1973a, Politzer 1973).
Further, 9(g(g, ¢)) for large 7 can be computed by perturbation theory and hence the
high-A behaviour of Z in nonabelian gauge theory can be worked out. This has
been done by Ng Wing-Chiu and Young (1974) and let us now. recapitulate their
results (see also Cheng ez al 1974),

For the Lagrangian of QCD given by

~ o — AL
b(/’s:l/l(l"}/.a—nl)lll—-i(ﬁﬁfl,,i—a,,A,i—-gf l'ikAnJAuk)z"_gtleP _2-¢(Apl (31)

the renormalization constances can be introduced through the following equations
(ignoring the ghosts):

¢’ :ZEES&R s

; 1,7
A =Z34, | (32)

g=Z,2,"%g,.

Here, the suffix R refers to the renormalized quantity, Z, is the vertex renormalization
constant and Z, and Z, are the wave-function renormalization constants of the
quark and gluon fields respectively. Actually, for gauge theory, there is an additional
term in the renormalization group eq. (25) which describes the gauge dependence of
the Z’s, However, Ng Wing-Chiu and Young (1974) have shown that the zero of
the gauge parameter also is an ultraviolet stable fixed point, provided the number of
fermion triplets is greater than 10. In this case the renormalization constants be-
come asymptotically gauge-independent. When the perturbatively computed formulae
for 4(g(g 1)) are then substituted into (26), the results turn out to be

A)—GL . :
Z, — In = ; =123
fA_::O( s 1 (33)
where
8 >0; & >0; § =0, (34

In other words, in the limit of infinite cut-off,

Z =27, =0 | | (35)

*Eguchi (1977) conjectures an ultraviolet-stable fixed point &0 #0 for a Yukawa type theory and
then argues that since y(g,, ) is not expected to be zero, the renormalization constants Z; and Z,
vanish, thus making the scalar bosons composite. Actually, the logical conclusion of this argument
is that all the renormalization constants vanish. This follows from (30). In other words, we have
the theorem valid for Yukawa and ¢* theories: either there is no ultraviolet-stable fixed point, or
all the renormalization constants vanish, '
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which are just the compositeness conditions for the gluons. Thus, the compositeness
conditions for the gluons are shown to be satisfied at least for a class of gauge models
—namely for those with the number of quark triplets lying between 10 and 16.

Since 4, ' becomes a composite of yr and o, it can be eliminated and the theory can
be formulated equivalently in terms of th and y as we have done in section 2.

It should be pointed out here that although A4.! is a composite field, it does not
manifest itself as a particle in the spectrum of asymptotic states, for as we shall see
in the next section, along with the quark, the gluon also will be confined.

5. Green’s functions

Having discussed the equivalence of QCD to the quark-confinement model, we now
return to this original model. We shall study the general structure of the Green’s
functions of the quark-confinement model. In particular, we shall exhibit the form
of the quark-propagator. One expects quark-confinement to be manifested as the
absence of a pole in the quark-propagator and we shall verify this expectation.

The Green’s functions of the quark-confinement model can be defined in terms of
functional integration:

Gx=N=d@)FO»))
= N[ SO M e [ iz (Fivo—mg) (3
where |
N = [ 292§ 8. expi [ d% {y (fy.0—myp}. \ 37
As already noted in section 2, this theory is invariant under local gauge transforma-
tions. We shall first derive a Ward-Takahashi identity following from this inva-

riance. For this purpose, let us make the following change of variable in the
functional integration:

() > ' (x) = R(x)p(x) (38)

where R(x) is a local gauge transformation :
« iAd
R(x) = exp (-5. al (x)). , L (39)

Under this change of variable, the right side of (36) becomes
N7 [ 2424 SGHREHEFOIR™ () exp i [ d*z {§ (iy.o—m)g}.
Hence we get the Ward-Takahashi identity:

G (x—») = R(x) Gx—y) R (y).- (40)
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The solution of this equation is
G2 (x—y) = 8y AF 8 (x—) @)

where a, b refer to colour SU(3) indices and a, B refer to Dirac indices. The constant
A%?, is not determined by the Ward—-Takahashi identity.

The fourier transform of (41) is a constant and so it does not have the quark pole.
It is remarkable that the constraint of quark-confinement has not only removed the
pole in the quark-momentum variable, but banished any dependence on this variable.
Stated in terms of space-time variable one sees from (41) that the quark simply does
not propagate!

Let us next consider the four-point function

<11[’aa (xl) !/lbﬂ (xz) ‘,_bla (y 1) Z’mﬁ (J)2)>

given by an expression similar to (36). By the same procedure as before, we can
derive the Ward-Takahashi identity:

a6 o® (o) g () " (0D

=R R 2 Ry DR 0) b G o 00, (0. (42)
The general solution of this is
(e (D) o (%0) o () To” ()
=38, 8y 84(x1—~y1)84(x2-; Yo [P (xy—xp) + exchange term. (43)

We have used translational invariance in writing this solution and the exchange term
is obtained by permuting the fermion labels. Although the single quark-propagation
is again restricted to a 8-function, a non-trivial propagation for the colour singlet
composite field operator 2‘:‘ YD) | x,=y, is allowed by this solution. In

particular this allows colour singlet bound states (mesons) manifesting as poles in the
Fourier transform of the function f (*;—x,). (However note that the colour octet

combination has no non-trivial propagation and so the composite gluon also is
confined).

The structure of the Ward—Takahashi identity for any higher Green’s function is

clear from (42). As a final exmaple, let us write down the solution for the six-point
function;

<¢’ac(x1)$bbﬂ(x2)§[’cy(x3)$l A(J’l)@m’(yzﬁm ’ (V3)>
={ 841 Sy . 84(x, —y)¥4(x 2 Pa)84(x3—y,)g " 74 ”(xi"“xz ; x2¥—x3)
+exchange terms}

+ €be €1 84(x1——x2)84(x 2—x3)84(y1-—y 2)84(}’2“)’3)/ 17ATAY v(x1_‘y1) (44)
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where 4*#”**" is symmetric in the Dirac indices «8y and Apv.  The last term con-
taining 4"#7**" (x; — y;) is allowed by the Ward-Takahashi identity for the six-
point function because of the invariance of the antisymmetric tensor e, :

Rii(%) Ryy(%) Rop(%) €156 = € (@5)

It is clear that g(x; — xp; X, — x,) describes the non-trivial three-point function for
colour singlet mesons while 4(x; — ;) describes the non-trivial propagator for the
colour singlet baryons.

Thus, the general structure of the Green’s functions allows non-trivial propagation
as well as non-trivial interaction among colour singlet composite field operators
retaining é-function propagation for coloured -objects.

As a result of colour confinement, there is a considerable simplification in the
space and colour dependence of the Green’s functions. For instance, instead of the
usual dependence on the three spatial coordinate—differences expected of a four-
point function, we need consider only a function of a single coordinate difference

J(x1—xy) defined in (43). It may be possible to exploit the simplification achieved
here in further investigations of this problem.

6. Discussion and summary

We shall first compare our results with those of other connected investigations. As
already mentioned, Amati and Testa (1973) also started with the model of quark
confinement, but argued that this model is the strong coupling limit (g o0) of QCD.
If this were true, this would have the disadvantage that asymptotic freedom of the
theory may be lost. For, asymptotic freedom exists only if the gauge coupling
constant g lies in the domain of attraction of the ultraviolét stable fixed point g=0.
Since the behaviour of B(g) for large g is unknown, we do not know whether the
strong coupling limit g—oo lies in this domain. In contrast, our claim is that the
model of quark confinement is equivalent to QCD at a finite g so that asymptotic
freedom and quark confinement can be simultaneously preserved.

Next let us consider the work of Kikkawa (1976), Eguchi (1976), Terazawa et 4l

(1976) and Saito and Shigemoto (1976). These authors start with the four-fermion
coupling .

_ pY. 2
o (3n54)
which is rewritten in the equivalent form
- X 1
b Ve 5 h A, — 1G (4,"?

in the Lagrangian. Divergent radiative corrections involving closed fermion loops
are then used to generate the kinetic and self-interaction terms for the gauge field.
Thus, the four-fermion coupling is argued to be equivalent to the nonabelian gauge
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theory. However, this procedure suffers from the criticism that it is not gauge inva-
riant (Shizuya 1977). In order to cancel the bare mass term (4G)7 (4u")? of the
gauge field, the closed fermion loop has to generate a quadratically divergent mass
term for the gauge field and this requires the employment of a gauge-noninvariant
regularization. On the other hand, we have seen in section 3 that a completely
gauge invariant procedure leads to the equivalence of the nonabelian gauge theory
to the delta-function model of quark confinement rather than to the fermi coupling.
Since the troublesome term (4G) (Ay")? vanishes for G->co, one can say that the
correct gauge-invariant model is obtained only in this limit; in fact,

e}

It was conjectured (Rajasekaran 1971) that the violent infrared disease of the
nonabelian gauge theory might prevent the materialization of the massless gauge
quantum as a physical particle. The same infrared problem was later invoked in
the context of quark-gluon theory to prevent the materialization of quarks as well
(Weinberg 1973, Gross and Wilczek 1973b). As a result of the recent work by
Appelquist et al (1976) as well as Yao (1976), it seems that in perturbation theory the
infrared behaviour is well controlled for colour-averaged objects and hence cannot
be invoked for quark confinement. However, nonperturbative calculations such as
those by Cornwall and Tiktopoulos (1976) do suggest quark confinement. Pagels
(1976) has examined the consistency of quark confinement in a nonperturbative
treatment of QCD using the infrared singularity of the gluon propagator. In the
present approach, we bypass the infrared problem by eliminating the gauge field
altogether and showing that the resulting theory leads to perfect quark confinement.

To sum up, we have formulated a model for strong interactions which has all the
following features:

(a) Tt corresponds to a nonabelian colour gauge theory which is asymptotically free.

(b) The colour gluons are composites of quarks with Z, =0 and Z, = 0 so that

they can be eliminated from the theory.

() Quark confinement is simply expressed by the constraint j,* = 0.

(d) The Green’s functions of the theory contain nontrivial structure only for colour

singlet composites which can be interpreted as hadrons. _

We should also add a few remarks concerning questions which need further investi-
gation. Our argument for the equivalence of QCD with the quark-confinement model
which is based on functional methods is rather formal and it is worthwhile to check
the results by explicit calculations. This can perhaps be done along the lines of the
recent work by Bender et al (1977) on the equivalence between ¢* and o¢? theories.
Such a calculation may also clarify whether the restriction placed on thé number of
triplets to lie between 10 and 16 is essential. Further, although we argued that the
composite gluon field can be eliminated, the precise relationship between the com-
posite gluon field and the elementary fermion field is yet to be determined. The
relation between the Green’s function given in (41) and the free-field behaviour
expected for (x—y)2>0 in asymptotic free theory also has to be elucidated.

2

It exp %:ind‘*x ({[,'y,, %-l-!/l)

G0
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