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Abstract. By using Kikkawa’s method the equivalence of the nonrenormalizable pair

interaction gl? $¢* to a renormalizable theory is proved. Equivalence relationships
between a few other nonrenormalizable and renormalizable interactions are also indi-
cated.
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1. Introduction

It is well-known that although an infinite variety of interacting field theoties can be
constructed at the classical level, the class of quantum field theories of practical
utility is severely limited by the requirement of renormalizability. Of course the
recent discovery of renormalizable gauge theories has enlarged this class to cover
physically interesting interactions such as the weak interactions of particles. Never-
theless, there still remain very many theories which are apparently nonrenormalizable
and hence not usable in practice. It would be desirable to bring more and more
theories of this type into the more respectable class of usable quantum field theories.

A recent development which has its origins in the theory of superconductivity
appears to be an important step in this direction. This is the work of Kikkawa (1976)
and Eguchi (1976) which is based on the earlier ideas of Eguchi and Sugawara (1975),
Chakrabarti and Hu (1975), and Bjorken (1963). Kikkawa as well as Bguchi consider-
ed the nonlinear spinor theory involving nonrenormalizable four-fermi couplings of

the type (f )%. By introducing a suitable bose field ¢ representating a fermion-anti-
fermion composite they showed that the above coupling isequivalent to the renormaliz-
able Yukawa interaction y-[;v,ll ¢. Similar equivalence holds between (1,5 v, ) and
iy, b A, where A, is a vector field that can be chosen to be massless. Oné may
say that the formation of the composite particle partly exhausts the strength of the
original nonrenormalizable coupling so that the residual interaction is renormalizable.
Terazawa et al (1976) and Saito and Shigemoto (1976) have gone further and
constructed suitable four-fermi interactions which are equivalent to the renorma-
lizable unified gauge theories of weak, electromagnetic and strong interactions. (For
a brief review of these developments, the reader is referred to Rajasekaran 1977).
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In this paper we report on the equivalence of some more nonrenormalizable theories

to renormalizable ones. First we treat the nonrenormalizable pair interaction b 42
(where i is a fermi field and ¢ is a bose field) and by an explicit calculation show its
equivalence to the renormalizable Yukawa interaction. Whereas the composite

field occurring for the four-fermi coupling was bosonic, in the present case of iph?
coupling, the composite field is fermionic. We then consider a few more nonre-
normalizable interactions and give arguments to show their equivalence to correspond-
ing renormalizable theories. Thus it is clear that this type of equivalence relationship
is not a special property of the nonlinear spinor theory or of the fermion-antifermion
system, but is rather a general feature of quantum field theories.

2. Equivalence of the pair and Yukawa interactions

We start with the Lagrangian of a fermi field iy and a bose field ¢ with a pair inter-
action:

- Ly=thy (iy.0—m1) Y +3 (0,8)° — 3122+ Gifyy 2. (1)

It is easy to show this Lagrangian is equivalent to
- 1 - - -
Ly=ty Gy . 0—my) h1+3 (0.4)*—Fu2p2— Glabet Wi +dub) 6. ()

For, the Euler-Lagrange variational equations for i, and zzz obtained from L, are

Yo =Gilu; hy=Gilud (3)

and these substituted in (2) give (1). Of course, the auxiliary fermi field i, introduced
in (2) is not equipped with a kinetic energy term.

The important step is to show that the kinetic energy term 7,172 Iy . &y is generated
py divergent radiative corrections. For this purpose, let us use the generating funct-
lonal obtained by functional integration (Kikkawa 1976):

Woe=[ D D1 D% ex0 i d (Lot s +un-+xd}] @

where 7 and X are the source functions for Yy and ¢ respectively. We change the
integration variables from i, Py, to

¢’1=¢1+S o (”7+S[‘2¢)

V1=t GHiad) Sp 5)

where
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and carry out the integration over ¢’; and ¢T'1. We get
. 1
Wa=[ 9% exp [if d*x {4 (0,8 —hud*+xd— = i

—(1+1a9) Sp (n+ad) }] (6)

where we have i gnored a normalization constant. The ¢ integration is then performed
after another change of variable

$'=p-+(ISmhat-PaSpn+x) M AL ()

where
A~@QFp)T
and M denotes another integral operator with the following kernel:
M, )=8x—p)+[diz A FO—2a@) Sz =)+, ©®)

The result is (apart from a normalization constant)
Wy=(Det M) 'exp if d*x{ —1Spy— G Yot

‘{"%(ﬁsp‘y[‘z‘f‘ $2SFU + X)M_l AF(ESF'ﬁz'%’JZSFW + X)} ‘ (9)
We reexpress the determinantal factor as follows:

(Det M)y1=exp{ —Tr In M}

exp § T z( b A S| (10)

n

where Det and Tr refer respectively to the determinant and trace operations on the
space-time point x. . Pictorially, the trace expression in (10) corresponds to the series
depicted in figure 1, namely, diagrams with one closed loop involving i, and ¢ propa-
gators and arbitrary number z of pairs of external i}, lines. These are divergent for
n=1 and convergent for n>>2. The divergent part of the n=1 term is calculated to be
(see appendix)

if d4x{m11117;;¢2 +Loiy. oo} 1L

where

Il_(2w)4f f -—(m1 —pz— P

1

(1—2)
b= (2w>4f | O oy (12
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(2)

(3)

Figure 1. Closed loops for the pair interaction. Double lines, single lines and dotted
lines denote #,, #, and ¢ respectively.

Figure 2. Closed loops for the ¢* interaction. Full lines and dotted lines represent
dand o respectively.

Figure 3. Closed loop for the ¢* interaction. Full lines and dotted lines denote ¢ and
o respectively,

Hence, (9) becomes
) — 1 —_— -
W2=6XP[ L f dix {Igl/lzi'y-al,lfz‘_( ‘é—mﬂl) Yatfa—71.Sp

+%ﬁsp¢2+ 'ZzSFU +X)M—1AF(;’SFS&2 + ‘[2‘5}4‘77 + X)} “I’F(Sl'zs ‘;;)] (13)

where F(ifs,, @) is the finite part of the trace expression in ( 10). We have thus generated
the kinetic energy for iy

Alternatively, let us now consider the Lagrangian with a Yukawa interaction:

La=da 0.0 - HOu) — 34 iy )

e+ o). (14)




Renormalizable theories from nonrenormalizable interactions 243

With this Lagrangian, the same one-loop integrations as before yield
Wy=explif d4x{(1 +&%, 2)—‘/-’;1'%5‘/’2"(”12 —g 2”"1]1);5—25[’2_5*9}?"?
+3(ESpiba+8aSpm + ) M1 A &S o +edaSpn+ 10}

+F (g &) (15)

where
M(x,y) =8(x—)+82[ d'z A p(oe—2){o(2) SFG—3)a()+ (2433}
Note that the finite functional F has precisely the same form as before.
One can see that both the generating functionals in (13) and (15) are the same apart

from certain infinite coefficients. But these infinite coefficients in the case of L, are
absorbed by the usual renormalization or rescaling conditions:

(1+g2L) ="

(my—g®m, L)(1 —ngfz)-1=n12R

g(1+g%L) Y=gy, - (16)
And the same thing can be done for L, also:

12112¢2=¢2R

1 R
(a_mlll)]2—1=m2 (17)
=g,

Once the rescaling conditions (16) and (17) are implemented, W, and W, become
identical. Thus, L, is equivalent to L, and hence L, is equivalent to L,; in other
words, we have converted the nonrenormalizable pair interaction into an equivalent
renormalizable Yukawa interaction. '

For the sake of completeness, we should include the A$4 term in Lg, for this is
needed for renormalizability. Correspondingly, let us introduce the At term in L,
and hence in L,. It is however not necessary to include this A¢? in the ¢ integration;
instead we may use the identity;

[ @ expi[ dix {L,—2ps+ x4}

— exp §—~i/\ [ d4x(—isx_zc_)>4§ [ D¢ expi [ dix {L-+yg). (18)

It is clear that this modification does not affect the proof of equivalence.
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‘In closing, we may draw attention to the following point in connection with

eqs (17). The Yukawa coupling constant &g 18 essentially determined by the ultra-

violet cut-off occurring in I,; in particular it is independent of the strength of the
original pair coupling constant G.

3. Further equivalence relationships

We shall now briefly consider a few ore nonrenormalizable interactions and indicate
corresponding renormalizable theories. . '

3.1. Four-fermi cum boson-pair interaction
~ Consider the Lagrangian containing both the four-fermj and boson pair couplings
L= Gy.0—m) y+-§ (e} 224G, () —Goj . (19)

This is equivalent to

L= (i7-0-m) ot (Pt pigp— L ooy,
4G,

Gy I 20
+2G1¢0 4—G:-l95 ()

in view of the following Euler-Lagrange eq. for the auxiliary field o:

0=2 Gyp + Gyp?. 21

The couplings in L, are all renormalizable, Again, the kinetic and potential terms

(0x0)? and of can be generated by radiative corrections and thus, the Lagrangian given
by (19) is equivalent to g renormalizable theory. Equation (21) suggests that o is
partly a fermion-antifermion composite and partly a di-boson composite. For G,=0,
this theory reduces to the four-fermi theory considered by Kikkawa and others.

3.2, ¢8 Coupling
The Lagrangian of 3 bose field ¢ with a 8 self-interaction is
L1 =14 (3,40} p2ge—ays 22)

where a is a constant. Again this Lagrangian can be replaced by

L=} 0P —4 p2gs 41_ 0P —g? 23)
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where o is an auxiliary field with the following variational equation:
o =2 ad®. (24

The Lagrangian L, contains only renormalizable couplings in contrast to L;. The
kinetic term (9,0)? as well as the renormalizable couplings such as o’¢?, 0% and ot
can be generated by radiative corrections involving internal ¢ lines. Some of the
closed loop diagrams contributing to these terms are shown in figure 2. The explicit
calculation of all these radiatively generated terms is quite involved in this case and
will be reported in a subsequent publication.

Finally, we may also note that the renormalizable ¢ theory given by

Ly=% (0us$)*—4 p¢*— ,\(/,4 25)

is equivalent to
Ly=} (0,9)*—% n¢*+ n° P—od?; o=2)¢" | (26)

which contains only the super renormalizable coupling o$?. However, it is not possible
to generate the kinetic term (9,0)? the same way as before, for, the one-loop diagram
shown in figure 3 gives a finite contribution to (9,0)2.

4, Discussion

Kikkawa and Eguchi showed the equivalence of nonlinear spinor models with cor-
responding renormalizable theories. By following the same approach we have
brought the nonrenormalizable pair interaction as well as the ¢¢ coupling into the
fold of renormalizable theories.
_ Aswasalready mentioned in the introduction, the theory of superconductivity exert-
~ ed a great influence on the formulation of these equivalence relationships. We now
wish to draw attention to the remarkable fact that this outcome of the superconductiv-
ity approach has in fact a close connection to the results conjectured many years ago
on the nature of composite particles in quantum field theory, namely, the vanishing of
the wavefunction renormalization constant Z of the composite particle (see for instance
Lurie 1968). In particular, the equivalence relationship proved by Kikkawa and
Eguchi is connected to the discussion in Lurie’s book; the equivalence between the
pair and Yukawa interactions shown in the present paper is related to a similar
equivalence among static solvable models discussed by Vaughn et al (1960).
However, in earlier works, the emphasis was on the Z==0 condition itself whereas
we now focus our attention on the generation of equivalent renormalizable Lagran-
gians. Further the present approach appears to be superior to the earlier work on
composite particles in a number of ways: 1. The earlier work was either based on
approximation schemes such as chain approximation or on solvable models. In
contrast, in the present approach, we deal with fully relativistic quantum field theories
and we do not restrict ourselves to any approximation. 2. In the earlier work, not
all the couplings of the composite particle (as for instance, the ¢¢ coupling of the
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the complete theory. In short one may say the present procedure completes the
earlier programme and puts it on a firmer footing.

As a final remark, we may mention, that the connecting equations (17) are meaning-
ful only if the ultraviolet cut-off ig regarded as finite, which presumably implies a
nonlocal field theory. Thus in establishing such equivalence relationships one
may be going beyond the realm of local field theory. However, even in conventional
renormalizable field theory, it is questionable whether the cut-off can really be
taken to be infinjte without affecting the consistency of the theory. In any case,
even though we may be going beyond the framework of local field theory, the
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Appendix

Separation of the divergent part of the closed loop

The n=1 term of the €xponent in eq. (10) is
~Tr {27z by Sp )

==2[[ dx d% AL (y—x) ) Sp (*—3) ()

=2i [ dx () [ aty {;2—;)4 [ atp etrom 2(p>§ WO) (A

where Z(p) is the lowest-order fermion-self-energy operator given by

1

() =_—F die .
®) (27r)4f {V-(p~k)~m1} (K2—p2) " @23

R R,
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Introduction of the Feynman parameter z and the usual manipulations lead to

1

—i v.p (1—2)+m, :

5 :.___ded‘lk A3
®) (2m) : : [k24-p? z (1—2)—(m 2 —p?) z—p2] (A3
=% my I+ y.p L,--convergent parts (A4

where I; and I, are the divergent integrals defined in eq. (12). Substitution of (A4
into (A.1) gives (11).
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