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Abstract. We show how the position and residue of the S matrix pole can remain stable
under changes in the form of the parametrization of the § matrix elements. We also derive
arelation among the shifts in the Breit—Wigner resonance parameters under the same changes
and verify the relation numerically for the case of A(1232). Despite its stability, the pole does
not provide a unique definition of the resonance because of the existence of shadow poles.
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1. Introduction

The problem of characterizing the properties of a resonance or an unstable particle
has attracted much attention in the past. This problem is particularly relevant for
hadrons many of which are very short-lived and so occur as resonances with large
widths. A question of practical importance is how to define the mass of the resonance
and its width. There is no unique set of values for the resonance mass and width.
Depending on the resonance formula used to fit the scattering amplitude, one gets
different values for these parameters. Thus, for instance, in the case of A(1232), the
best known hadronic resonance, the mass and width are found to shift by as much
as 10MeV and 40 MeV respectively, when different parametrizations or different
formulae are used to describe the resonant amplitude.

Some time ago it was pointed out by Ball et al (1972, 1973) that the position of the
pole of the scattering amplitude in the second sheet of the complex energy plane is
much less dependent on the resonance formula used. To a certain extent this was
found to be true for the residue at the pole also. In the example of A(1232), the real
and imaginary parts of the pole position were in fact found to change by less than
1 MeV. This stability property of the pole is now well-known and the Particle Data
Groups (Aguilar-Benitez et al 1986; Yost etal 1988) quote the real and imaginary
parts of the pole (wherever known) in addition to the conventional mass and width
of the hadron. This striking property of the pole of the scattering amplitude gives
added support to the view that a resonance or an unstable particie must be defined
by the pole of the S matrix. :

Although the stability property of the pole is now well-known, so far it seems to
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be based only on empirical observation. Our purpose is to provide a theoretical
foundation for it. We give a simple but general proof for the stability of the position
and residue of the pole under certain conditions. Our method also allows us to obtain
a relation between the shifts in the Breit~Wigner mass and width parameters. The
shifts in the mass and the energy-dependent width function are found to be so
correlated that the shift in the pole position is zero.

In §2, the proof of the stability of the position and residue of the S matrix pole is
given, while §3 is devoted to the derivation of the relations between the shifts of the
Breit—-Wigner parameters. In §4, we discuss the examples of various forms of
parametrization used for the case of the resonance A(1232) which illustrate the stability
of the pole. The numerical comparison of the data with our relation between shifts
of the Breit-Wigner parameters is also presented in this section. In the final section, the

loss of the uniqueness of the S matrix pole because of the existence of “shadow poles”
is briefly discussed.

2. Stability of ‘the pole parameters

Let us define the T matrix in terms of the S matrix by
i
T=-(1-25). 1
=9 (1)

We consider two-body reactions in a single partial wave. Also, except in the final
section where the discussion is relevant to multichannel scattering, in the rest of the
paper we consider only single-channel scattering. However, the formulae will be
written in such a way that they will be valid for multichannel case also. Let W be
the energy in the c.m. system. If W, is the position of a resonance pole in an unphysical
sheet of the complex W plane, we may write

R
W—-w

p

T(W) =

+ C(W) 3

in the vicinity of the resonance. Here R is the residue matrix and C(W) is the nonpole
term which is finite at W,. It is more convenient for our purposes to consider T~ }(W)
which has only a zero at W,

T‘l(W)=(W-Wp){R+(W—-WP)C}“. (3)

Consider now two different parametrizations T,(W) and Ty(W) of the scattering
amplitude given by two different formulae. Examples of such parametrizations will

be given in §4. Since we may always put the amplitude in the form (2) in the
neighbourhood of a resonance pole, we may write :

R,
W _ Wm + CI(W) . » A

R, @
To(W) = 5=+ Co(W),

P2

Tl(W) =
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Let us suppose that both parametrizations provide equally good fits to the
experimental data according to some suitably chosen criterion. We may then expect
that the differences '

OT(W) = To(W) — Ty(W)

6WP = WPz - pr
0R=R, —R, (5)
SC(W)=C, - C,

are small enough so that second and higher orders of these differences may be ignored.
In that case the differences may be computed as if they were ordinary differentials.
Weinterpret W, R, 6C(W)as the changesin W,, R and C(W)respectively introduced
by a change in the parametrization of the scattering amplitude.

For the sake of clarity, we shall first present our results in the form of two theorems

Theorem 1. If the first order difference in T =Y (W) is zero Jor a region near W,, then
s0 is the first order difference in the pole position w,.

Theorem 2. If the first order differences in both T~ YW) and (3/6W)T ™ Y(W) are zero,
then so are the first order differences in W, and the pole residue R.
The proof is straightforward. From (3), the first order difference is

0T ™ = — W, {R+ (W = W,)C} '+ (W = W)S{R +(W — W,)C} "' (6)
where the differences are to be taken at fixed W. Putting

6T~ (W,)=0 | ' 7
we get
SW,=0 (8)

which proves theorem 1.
To prove theorem 2, we differentiate (3) and get
-1

ow

=’R+(W——W,,)C}"+(W—Wp)5%{R+(W—Wp)C}". %)

Hence the first order difference of the derivative of T ~? is

BT e D _
77 =0{R+(W—W,,)C} L= oW, R+ (W = W,)C)
, p ,
+(W—Wp)é[a—W—{R-{-(W——Wp)C}“‘]. (10)

We now demand the vanishing of 6T~ Y(W,) as well as

0T 1
0 ow

W,)=0. (11)
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Since the condition 6T~ *(W,)=0 led to the vanishing of 6W,, we get from (10)
[6{R+ (W —W,)C} ']y, =0

which implies |
[6{R+ (W — WP)C}]Wp =0.

This leads to
[5R — 3W,C + (W — W,)3Cl,,, =O.

Again making use of the vanishing of oW,, we get the required result:
6R=0. (12)

We now come to the physical interpretation of the theorems. If the scattering
amplitude in the neighbourhood of the resonance is known to sufficient accuracy
from experimental data, and different parametrizations are used to fit the same data,
then it is reasonable to suppose that 0T~ Y(W,) is vanishingly small for any two
parametrizations which provide equally good fits to the amplitude. (Recall the meaning
of the difference 6T ! given by (5).) Our theorem 1 then says that W, tends to zero,
ie., the pole position is well-determined.

If further the experimental data are so accurately known and the parametrizations
provide such good fits that even the first derivative of the scattering amplitude in the
neighbourhood of the resonance is well represented (so that 6(6T~!/éW) (W,) can
be set equal to zero), then, according to our theorem 2, the residue also is well
determined. Because of the more stringent condition for the stability of the residue,
it is clear that the stability of the pole position will be on a better footing when one
looks at the results of actual fits to the data.

3. Shift of the Breit-Wigner parameters

Since in almost all phenomenological work on resonances, the Breit—Wigner formula,
or some modification thereof, is utilized, it will be useful and instructive to deduce
the consequences of the theorems of the last section for the Breit-Wigner parameters.
The shifts in the Breit—-Wigner mass and width parameters caused by a change in the
type of parametrization will be found to be related.

The Breit-Wigner formula for the T matrix element near a resonance can be written
as

3 F(W)
Wo — W—(i/2T(W)

T(W) = + B(W). (13)

Here W, is the resonance energy or mass taken to be real. In general, F and I are
energy-dependent quantities. B is a background term. In the multichannel case F and
B are to be interpreted as matrices in the channel space.

Let us now relate the Breit—~Wigner parameters W, and T to the pole parameters
of the last section. The pole position W, is determined by the equation

i
Wo~ W, —5T(W,)=0, (14)
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The residue of the right hand side of (13) at this pole is given by
__1FW)
1+ @/ (W,)

where the prime denotes differentiation with respect to W:

(15)

(W) = [or{( W)/oW 1y,
Calculating the first order differences from (14) and (15), we get the formulae

oW, = {6W, — 10T (W,)} {1 + 4il"(W,)} ! (16)
and
OR={1+(i/2r"(W,)} 2[3{1 + (/DT (W) }0F(W,) — (i/4)6T (W, F(W,)

+{2(1 + (LT W) F (W) — (/4T (W )F(W,) 5 W,]. (17)

Using (16) and (17), it is now easy to ‘sta'te the theorems of the last section in terms
of Breit-Wigner parameters. If 67~ *(W,) = 0, then

5Wo=%i51"(W,,). (18)
If, in addition, 60T~ '/0W) (W,) =0, then
{1+ @/2)r( W,) }oF( W,) = (i/2)0T" (W, )F( w,). (19)

Egs (18) and (19) are the desired relations between the shifts in the Breit—~Wigner
parameters.

Insspite of their simplicity these relations are quite remarkable. Especially interesting
is the appearance of i in both relations. This emphasizes the known fact that r(w)
evaluated at the complex pole W, is complex. Since 0W, is real, (18) implies that the
shift in the width 6I'(W,) caused by any change in the type of parametrization is
necessarily purely imaginary.

In the next section we shall study how well the relation (18) is satisfied when applied
to various parametrizations that have been used to fit the A(1232) resonance.

4. Application to A(1232)

In this section we apply our formulae to the A(1232) resonance and provide concrete
illustration of the ideas of the foregoing sections.

For comparison with our formulae, only those fits satisfying the following two
criteria should be chosen: (i) the fits should be to the same data, and (ii) the fits should
be equally good, in the sense that y2 per degree of freedom should be comparable.
We have chosen the following parametrizations of the best studied hadronic resonance,
the A** (1232):

(a) Breit—Wigner I (Séding et al 1972; Barbaro—Galtieri 1973): In this parametrization,
the P55 partial wave amplitude in the pion-nucleon chanpel is taken to be a resonant
term plus a nonresonant background:

- w,I
WZIW?—iw,r

) exp(2id ) + exp (2idg) sin 54 (20
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3 2.2

q 1+ gér
=r.l-L 21
: 0(‘10> (H‘qzrz) =

Yagd. (22)

with

(SB = tan_

W and g are the c.m. energy and momentum respectively. Wy, Iy, r and a are
adjustable parameters.

(b) Breit-Wigner I (Cheng and Lichtenberg 1973). This has the same expression for
T as Breit-Wigner I, but with

_r (4 W
r-n(a) (%) @
53=tan"‘a(%)3 o (24

(¢) Palynomial (Séding et al 1972; Barbaro—Galtieri 1973): In this fit the amplitude is

written as
3

q
= 25
g3 cotd —ig? )
with
4
gicoté= Y a,q¥? ‘ (26)
n=1 .
(d) Extended Chew-Low (Vasan 1976); This parametrization is defined by
T=q* {131 — Aw)—ig +‘;—Lf(l ~ Aw)(1 + Bw + Cw?)} ! (27)

where w=W —M (1 -4p), M is the proton mass and B =000277. Despite its
appearance, this form has only three adjustable parameters A, B and C since it is
semitheoretical. The parameters ;' and A’ are related to the 7+ mass u and the
pseudovector pion-nucleon coupling constant [ by the following equations

u2 1 1/2
"=l 1— -
H u( 4M2+2ﬁ) ,
. oT 4f? 19 42
lim ——=—"—( 14+ _
om0 T 3;42< T30 M7

(e) Breit-Wigner 111 (Vasan 1976): T and I are as in (a) but J as in (b).
For all the parametrizations above, the resonance energy or mass W, is defined to

be the energy at which the resonant part of the amplitude T is equal to i. The width
parameter I', is defined by the relation

-1

o .. .
‘ro=~2{m(7‘1+z)} . (28)

W=W0
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We have considered fits to two different sets of N P, phase shift data. One set
consists of 14 data points from Carter 71 partial wave analysis (Carter et al 1971).
The other set consists of 11 points from the more accurate data of Carter 73 analysis
(Carter et al 1973). The parametrizations (a) to (c) above were fitted to the Carter 71

data while (d) and (e) were, to the Carter 73 data. The values of the parameters in
the various fits are as follows:

Fits ro Carter 71 data:

Breit-Wigner I W, =1234MeV, I', = 120 MeV,
r=089f a=0028fm?3
Breit-Wigner I. W, = 12433 MeV, T, = 1522MeV,
a=2767
Polynomial: a, =178{73, a,=—041f"!, g,=—053f
a,=—013f3 W,=12314MeV, T,=112MeV

F its to Carter 73 data:

Extended Chew-Low: A=341GeV™!, B= —235GeV~1,

C=828GeV~2 W,= 12306 MeV,

To=1145MeV, u =139-3MeV,

% =0-187 GeV?

Breit-Wigner III: W, = 12340 MeV, I', =124 MeV,
r=0842f a=923.

In table 1, the values of W, and I',, for the various parametrizations are collected
together for convenience. The first three lines a) to c) refer to fits to Carter 71 data
while the last two lines d) and e) refer to fits to Carter 73 data. These fits satisfy the
two criteria mentioned in the beginning of this section. The rather large shifts in W,
and T'y as one goes from one parametrization to another can be noted. The pole
position W, is also presented in the same table. The remarkable stability in both the

Table 1. Mass, width and pole positions for various parametrizations of

A (1232).

W, | 1PN W, rw,
Parametrization 2/df (MeV)  (MeV) (MeV) (MeV)
a) B-W 1 9-7/10 12340 120 1211-2-50-0i  98-1-47-3i
b) B-W I 16/11 12433 1522 1210-7-507i  989-66-3i
c) Poly. 122/10 12314 112 1211-3-50-2i  98-7-42:0i
d) E.C-L 54/8 12306 114-5 1209-5-50-5i  99-2-43-8i

e) B-WIII 50/7 112340 124 1209-7-50-3i  98:7-50-3i
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Table 2. Comparison of the mass shift with the
shift in the width function.

P
—oI'(W,)
W, 2 ?
Parametrization (MeV) (MeV)
Breit—Wigner |
93 95+ 04i
Breit—Wigner II

Polynomial }

) 119 122+ 01i
Breit—Wigner 1I

Extended Chew-Low

} 34 32402
Breit—Wigner 111

real and imaginary parts of W, is obvious. It is interesting to note that the pole
position is apparently stable even when the data are changed! In the last column of
this table, we give the value of the width function at the pole, I'(W,), which will be
needed for verifying our relation (18). '

The verification of the relation (18) is presented in Table 2. To minimize unknown
effects in the numerical comparison of the fits to our formulae, we have compared
two fits (to the same data) having appreciably different values for the parameters Wo
and T'y. The shifts 6W, and T (W,) are calculated as differences between the
parametrizations indicated in the first column of table 2. A look at the second and
third columns shows that the relation OW, = i6T(W,)/2 is well satisfied. It is seen that
the large imaginary part of 6T (W,) is taken care of by the extra factor i. As oW, is
not zero, though very small, we cannot expect strict equality of the two sides of the
relation. As seen from table 1, the pole position W, is determined at best with an
error of 0-5 MeV. Hence, the agreement between the two columns of table 2 should
be considered quite satisfactory. This good agreement of our relation (18) with data
supports the arguments made in proving the stability of the pole position since both
derivations are based essentially on the same logic. .

We have not displayed any numerical verification of relation (19) (which would
indicate that 6R tends to zero) because we do not feel that the fits determine the
residue R well enough for the application of our first order formula to be meaningful.
It may be recalled that relation (19) implies that the fits are a good representation of
not only the amplitude T but also the derivative OT/ow.

5. Discussion

The aim of our work has been to demystify the pole and provide a simple understanding
of the stability of the pole, under different parametrizations of the scattering amplitude.
We have shown that the pole position has a first order stability under variations of
the forms of parametrizations, provided the experimental data in the neighbourhood
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of the pole are equally well fitted by the various parametrizations. Under the same
conditions we have also derived a relation between the shifts of the Breit—Wigner
parameters and this relation is found to agree well for the actual shifts found in the
parametrizations fitted to A(1232).

Because of its stability, the position of the pole seems to be the best way of
characterizing the properties of the resonant state — the real and imaginary parts of the
pole position playing the roles of the conventional mass and width of the resonance.
However, here we would like to draw attention to a basic issue. There is in fact no
unique correspondence between a resonance and a single pole of the multichannel §
matrix. It has been known for quite some time that a single pole of the S matrix in
a particular Riemann sheet of the complex energy plane is in general followed by a
retinue of poles, called shadow poles, existing in the other Riemann sheets (Dalitz
and Rajasekaran 1963; Eden and Taylor 1963; Ross 1963; Amati 1963). Experimental
evidence for the existence of these shadow poles has recently been found. Shadow
poles exist and their positions have been determined in the case of J* =3* resonance
in the (na, dt) channels of nuclear physics (Hale etal 1987) and in the case of the
isoscalar J=07 state f,(975) (formerly S (975)) in the (nn, KK) channels of particle
physics (Au et al 1987). Thus, in principle, a resonance is represented by a system of
poles in various Riemann sheets and often there is no a priori justification for choosing
one among them for characterizing the resonance.

In many physical situations, one of the poles may be nearest to the physical region
where the experimental data on the scattering exist. Since our stability argument
depended on the nearness of the pole to the region where experimental data are fitted,
it is clear that only this nearby pole is expected to be stable and thus, for most
practical purposes, the real and imaginary parts of this pole do have some significance.
But, from a fundamental point of view, all the poles of the § matrix on the various
Riemann sheets are equal manifestations of the resonance phenomenon and none is
to be singled out as having a closer relationship with the resonance.

There does exist a pole which is of special significance and that is the pole of the
K matrix. A single and unique pole of the K matrix in fact replaces or represents the
whole system of shadow poles of the § matrix (Rajasekaran 1965). However, the
determination of the K matrix and its pole from the experimental data being more
indirect, the position of the K matrix pole is not expected to be so stable.

Finally, we must point out that there are certain important exceptional situations
where shadow poles do not exist (Rajasekaran 1972). The question of the existence
or nonexistence of shadow poles is in fact intimately connected to hadron dynamics
and contains information about the nature of the hadron: whether it is a normal
bound state of quarks or whether it is a “molecule” of other hadrons. The nucleon
and A(1232) are examples of the former while deuteron and possibily A (1405) are
examples of the latter (Rajasekaran 1972; Dalitz 1982). A fuller discussion of this
problem is outside the scope of the present paper and is reserved for a future
publication.

To sum up, poles of the S matrix may-be the best candidates for the definition of
unstable particles. One can even mathematically prove the stability of the poles under
changes in the parametrization of the scattering amplitude. But, because of the
existence of the shadow poles there is no unique correspondence between particle
and pole. For each particle in general, there may be a Tretinue of poles in various
Riemann sheets. The existence or nonexistence of shadow poles is related to deeper
questions of dynamics. '
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