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Abstract. Deep inelastic weak and electromagnetic processes are consideted within the
parton framework taking the partons to be integrally charged quarks and coloured
gluons. Despite the participation of the spin-one gluons in these processes, scaling
is shown to be maintained by treating the problem in a unified gauge modcl based
on the group SU3eorour ® SUL )@ U(1). This is a consequence of the
vector-dominance type of couplings between thce gluons and the weak or electro-
magnetic vector bosons which are induced by the spontaneous breakdown of gauge
symmetry. As a further consequence it is found that in the asymptotic region far
above the gluon masses the colour octet parts of the weak and electromagnetic
currents of the quarks are damped so that, in particular, the integrally charged quarks
behave as fractionally charged quarks in this region.

Keywords. Unified gauge model; SUc 100 (3) ® SUL ()R U (1) ; spin-one colour
gluons; integrally-charged quarks; deep inelastic lepton-hadron scattering; parton
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1. Introduction

Most of the present-day models for hadrons involve two kinds of constituents—
spin-half quarks and spin-one gluons. Both the quarks and gluons are presun:ed
to participate in strong interactions. However, it is usually assumed that only
the quarks have weak and electromagnetic interactions; the gluons are
regarded as completely neutral with respect to these interactions. We would
like to study the consequences of the alternative hypothesis that toth the gluons
and the quarks participate in weak. and electromagnetic processes.

There is a characteristic distinction between the weak and electromagnetic
interactions of quarks on one hand and of gluons on the other. This
distinguishing feature is revealed in their respective contributions to the deep-
inelastic structure functions of the nucleon. Whereas the contribution from the
spin-half constituents calculated in the parton-model (Feynman 1972, Roy 1975)
obeys Bjorken scaling, the contribution from the spin one partons violates Bjorken
scaling strongly. This violation can be traced to the positive powers
of momenta arising from the gluon-coupling as well as to the gluon-spin sum-
mation (Cleymens and Komen 1974, Rajasekaran and Roy 1975). It is natural
to ask the following question. Is it possible for the gluons to participate in weak
and electromagnetic interactions without impairing the validity of the Bjorken
scaling of deep-inelastic lepton-hadron processes ? This is in fact possible
provided all the interactions including the gluon-couplings are incorporated in a
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unified renormalisable gauge theory of weak, electromagnetic and strong inter-
actions. Furman and Komen (1975) as well as Cheng and Wilczek (1974) have
already constructed such gauge models unifying electromagnetic and strong inter-
actions. These models provide interesting examples of scaling being achieved
even for massive charged spin-one partons. The aim of the present paper is to
incorporate the weak interactions also in such a unified framework. We consider
a unified gauge model of weak, electromagnetic and strong interactions and
analyse the resulting pattern of the various interactions in detail. Now the gluons
contribute to all the deep inelastic lepton-hadron processes—electromagnetic as
well as weak—and yet scaling is maintained asymptotically.

For our purpose, unified gauge models can be divided into two broad classes.
In the first class (Weinberg 1973) the colour gauge group of the strong interactions
is assumed to commute with the gauge group of the weak and electromagnetic
interactions and the quarks are chosen to be the fractionally-charged ones of Gell-
Mann and Zweig (Gell-Mann 1964, Zweig 1964). Colour in this class of theories
is an exact gauge symmetry and the coloured gluons are massless. The giuons
belong to the regular representation of the colour gauge group and are singlets
with respect to the weak and electromagnetic gauge groups. So the gluons in
this class of models cannot be seen by weak or electromagnetic probes.

Our interest lies in the second class of unified gauge models where the colour
gauge group does not commute with the gauge group of the weak and electro-
magnetic interactions. Here colour gauge invariance is broken spontaneously,
and as a comsequence not only do the gluons acquire masses but also they mix
with the weak and electromagnetic vector bosons. It is through this mixing that
the desired weak and electromagnetic interactions of the gluons emerge. Further,
as a result of this mixing phenomenon, the effective weak and electromagnetic
vertices of the gluons involve vector-dominance type of diagrams. It is the
(g — m?)™! factor, associated with these that restores scaling. The most direct
way of achieving all these is to employ the integrally-charged quarks of Han and
Nambu (1965). Since the electric charge operator for the Han-Nambu quarks
does not commute with the generators of the colour group, the required mixing
is produced.

In this paper we study a unified gauge model of weak, electromagnetic and
strong interactions based on integrally-charged coloured quarks. Such a
model was proposed by Pati and Salam (1973). However, certain important
consequences of this type of model following from the mixing of the gluons
with the weak and electromagnetic vector bosons have not been realised so for.
A,S we have already pointed out, one consequence is the emergence of
weak and electromagnetic couplings for the gluons with the important feature that
these couplings preserve Bjorken scaling. As another consequence we may
mention the remarkable result that even though the colour degree of freedom may
be excited, the integrally-charged quaIks behave asymptotlcally hke the fractlonally-
charged quarks !

- The unified gauge models of-the first class are asymptotically free (Gioss and
Wilezek 1973, Politzer 1974), provided the infrared problein of masskéss nonabelian
gauge fields can be solved. Hence there is a possibility of - achieving a figld-
theoretic understanding of Bjorken scaling (modulo logarithmic vioations) inthese
models. In contrast, the unified gauge models of the second class are not
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asymptotically free in an exact sense, although, as we shall argue later, they may
be approximately so. In any case our discussion of scahng will be confined to
the parton-framework and no attempt will be made in this paper to justify the
parton-model.

The gauge model is constructed in section 2 and the spontaneous breakdown
of gauge symmetry is introduced in section 3. Section 4 analyses the interactions
of the vector bosons and the fermions. In section 5 we calculate the effective
weak and electromagnetic vertices of the gluons and the quarks. These are used
in section 6 to compute the structure functions for deep inelastic lepton-hadron
scattering as well as the cross section for et e~ annihilation. Section 7 is devoted
to a summary_and discussion.

2. Gauge model

We take the gauge group as SU'(3) @ SU; (2) ® U (1) for our unified gauge
modelt (c.f. Pati and Salain 1973). The strong interactions are primarily described in
terms of the colour gauge group SU’ (3) and integrally-charged Han-Nambu quarks.
The weak and electromagnetic interactions are related to the gaugegroup SU; (2)
@ U (1) as in the Weinberg-Salam model (Weinberg 1967, Salam 1968). How-
ever, because of the mixing introduced by the charge operator, an exclusive asso-
ciation of SU, (2) ® U (1) with weak and electromagnetic interactions and SU’ (3)
with strong interaction is not possible in the present model.

The quarks can be written in the form of two arrays:

p,° pot pst (Clo cot Ca+>
Hoy = (nl' ny° 1230) » K= AT A0 A0 2.1)
where the Latin subscript i refers to the colour indices 1, 2, 3 and the Greek sub-

script o spans the SU (2) space and refers to p, n or ¢, A. The superscripts denote
the electric charges. The quarks »; and A; are the Cabibbo-rotated objects:

n; = cos 8,f1; -+ sin 6.,
A, = —sin 8,71, + cos 0,7, - : B

where 7, and A, are the “ physical” quarks and 8, is the Cabibbo angle. The
charmed quarks c; are required for eliminating the | AS | =1 neutral currents
(Glashow eral 1970).

Both H and K belong to the 3* representation of the colour gauge group
SU’ (3). The 3* representation has been chosen rather than.3 because of a techni-
cal convenience relating to the charge structure (see egs. (2.4) and (2.5)). The trans-
formation property under the left-handed gauge group SU, (2) depends on the
chirality of the quarks. We define the left-handed and nght handed quarkstT as

q=%0—7)¢ =31 +r)a. . (2.3)

¥ Although the paper of Pati and Salam (1973) contains a description of the gauge model
we find it necessary to present it in this section, chiefly because we want to disentangle the model
from other features of Pati-Salam’s work such as unifiéd lepton-quark multiplets which are not
germane to the present investigation.

++ Our metric and gamma matrices are the same as in Bjorken and Drell (1964).
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Then, H, and K, belong to the doublet representation of the group SU, (2) whereas
all the right-handed quarks piz, mp, ¢ and Ay are singlets under the same.
The electric charge operator can be written as

Q s [31 + ’12" Yf + 13L _+_ U (2.4)

where [3' and Y’ are the two diagonal generators of SU’(3), I, is the diagonal
generator of SU,; (2) and U is the generator of an abelian group U (1) which com-
mutes with SU’ (3) and SU, (2). For the quarks H and K, we can write

(L0 0y 1 1 0 0
(F5)y = — (0 — 1 0); (Y)y = —3 (0 : O);
0 0 0 0 0 —2

1 /1 0
(Lor)ap == 3 (O _ 1)- (2.5)

The matrices [;" and Y’ operate in the colour space denoted by the Latin indices,
whereas /., operates in the SU, (2) space denoted by the Greek indices. Further
note that the negative signs in the definitions of 73" and Y’ are due to the fact that

H and K belong to 3* rather than 3. The U quantum numbers of the various
quark multiplets are the following:

U(HLa Kp) = (',,
U (pg, cr) = 3 (2.6)
U (g, Az) = — 1.

The consistency of these assignments with the integral charges indicated as super-
scripts in eq. (2.1) can be easily checked.
The leptons consist of two doublets under SU, (2):

G )

and two SU, (2) singlets e, and pp. Here e and p refer to the negatively charged
leptons and L and R denote the left-handed and right-handed objects defined in
the same way as in eq. (2.3). All the leptons are taken to be singlets under the
colour group SU’ (3). The U quantum numbers of the leptons are

U(EL, M) = — 4,
U(ep, pr) = — 1. (2.8)

We can now define the fermion currents which will be useful in describing the
interactions between the fermions and the gauge-bosons. They are the colour

octet j, the SU, (2) triplet ji. and the singlet current jo given by

— <, q"
T = o o AT
Ju= @G 5 7u | g2 ), (U=1,...,8),

a=p. 8, ¢, A
qs

3
———" k » - k
jyk = > {@«;ﬁc) 12_ YuL ("p:‘) + (C&f\o ;T YurL (;‘)

And
=1

+ (a,é)g'/#L(Z') +(ﬁyﬂ);m (:j‘)} » k=123, (.9
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J g = 2; {% (f’()’p.LPi + Rey s + Ei‘)’;LLci -+ ’-\4'}’;11.}%)

i=1

+ % (pi'}’,uRpi -+ Eiy,uRcf) —% (ﬁi‘)’/m".' -+ X‘y,u}?’\i)}
! — 3 (TyurVe + Eppre + vuyurVy + Bt
| - (é')’uRe + F"’)’uRIJ‘)-
Here A* are the 3* representation matrices of the SU’ (3) group:

Nl = — (A1) . (2.10)
and +* are the Pauli matrices. We have also defined
vul =iy (L F vs). | (2.11)

The Lagrangian density for the fermions is

Lr=12 X oM +i X Dym,L
I

f==1 Q=p,n.0, A L=e,
8 ’ ~ S Py ~ . ~[ . ~

+f X iuVHtg 2 i WK g Ov. 2.12)
i=1 =1

We have introduced the fields V,/, W,[‘ and (7# which stand for the gauge vector

bosons of the groups SU’ (3), SU. (2) and U (1) respectively and f, g and g’ are
the corresponding coupling constants. The vector boson part of the Lagrangian
density is

8 : 3 ~ ~ e ~ - &
Lyg=—1% ;é: (V'Iw + ff o V" v,hr—3 X (Wlw 4+ geif® W#’ WyL)Z

(£33
—1 03, (2.13)
where f¥* are the structure constants of the SU’(3) group and

Vie =3V} —3V,} et

Now that all the gauge-interactions have been written down, one can verify that
the model is anomaly-free.

3. Breakdown of symmetry

We now introduce the spontaneous breakdown of gauge symmetry which gene-
rates the masses of all the gauge bosons except the photon and of all the fermions
except the neutrinos. As a further consequence of this symmetry-breaking, the
gluons mix with the weak and electromagnetic bosons. The spontaneous break-
down of symmetry is achieved through the device of the nonvanishing vacuum
expectation values of the Higgs scalars.

We introduce the following two sets of Higgs scalar fields:

o
Ous = (o‘ a® a") , 3.H
o~ o o
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2= ("), -- 6.2

- where the subscripts are to be taken in the same sense as in eq. (2.1). Under the
group SU' ) Q SUL YR U(1), ¢ transforms as (3*,2 @1, 1) and 5 trans-
forms as (1, 2, 1). The first two rows of o,; denote the two components of the
SU. (2) doublet while the last row is a singlet under SU; (2). The U quantum

numbers of o are 4 and — } for the SU; (2) doublet and singlet parts respectively,
whereas % has U= 3.

The Higgs part of the Lagrangian is
3

8 -~
. <4 . ot
ﬁH = E D‘uoa{ ol 4 g z Aij V.ulz O‘a’ —_1 g E T;B Wﬂ,j Gﬁ‘

i & 1=y i=1

~ 3 ~ 2
'—iéluaﬂ ﬁp.aﬂiz ! + Z; Opa ""ig Z 'T{!.ﬁ W,u"’?ﬁ __._i% Uuna
' 3 i=1

3

+ E {(p'iﬁi)[. (Gp:,,ﬂ p'fR + G"nniR + G”)\n)\iﬂ + Gpo'flo CiR)

i=1

+ (54;5‘1)1. (ch"lo Pir + Ganip + Gapdir + G’ ¢ip) + h.c}
+ G, B8). ner + Gy, Fu)r Me + hec.
— V(oai> Ma)- (33)

Here A" is as defined in eq. (2.10), Uap denotes the U quantum numbers of the
o fields written as a matrix in the SU; (2) space (e = 1, 2 refers to the SU, (2)
doublet part of ¢ and o = 3 refers to the SU, (2) singlet):

1 1 0 0 ‘
Uap = (0 1 0) . (3.4
0 0 —2
For the Yukawa interaction of fermions with » we have introduced the coupling
constants G,, G,, etc. and also have defined the doublet v (with U = — ) which

is charge-conjugate to 7:

we(T) 69

“Note that Yukawa interaction of fermions with o is forbidden by invariance under
SU’ (3). The *“ Higgs potential ” ¥V (oy;, 7,) in eq. (3.3) represents a quartic poly-
nomial in the scalar fields invariant under SU' (3) @ SU,. (2) & U ().

We assume that the structure of ¥ (og;, 74) is such as to lead to the following
nonvanishing vacuum expectation values: :

100y - |
(%4>=<°’>(g é ?), | (3.6)

(m)=(n)((1)); (na"):(n)((l)), ) (3.7
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where (o) and (5) are two real constants. We replace all the scalar fields by their
vacuum expectation values and ignore all other effects of the Higgs scalars. This
can be justified by making the explicit assumption that the masses of all the
physical scalar fields are sufficiently large. It may be further pointed out that
we are using the Higgs mechanism only as a convenient device to keep track of the
pattern of symmetry-breaking. Ultimately this might be replaced by the dynamical
symmetry-breaking mechanism which dispenses with the elementary scalar fields
altogether (see for instance Cornwall and Norton 1973 or Jackiw and Johnson
1973).

Thus, on replacing the scalar fields in eq. (3.3) by their vacuum exrectaticn
values given by eqs. (3.6) and (3.7), we get the boson mass terms (leaving the
fermion terms for later discussion):

Lo =T (P> | W2+ g2 | W22 | —gWs + g U |y

i (S| kw

; | ;o
£ =] 6.9

'where we have suppressed the Lorentz indices of the vector fields. The first curly
Dbracket in eq. (3.8) contains the Weinberg-Salam mixing between the SU, (2)

2

gauge bosons W,ﬁ and the U (1) gauge boson ffﬂ whereas the second curly bracket
contains the mixing between these gauge bosons and the colour gauge bosons ¥,

The usual method of dealing with the mixing problem is to define a set of fields
which are orthonormal to each other and which diagonalise the quadratic par
of the Lagrangian completely. This would mix all the vector fields in a mecst
cumbersome way. Instead, as elaborated below, we shall follow a more convenient
procedure orignially due to t'Hooft (1971) (see also Furman and Kcmen 1975),
The final results for physical matrix elements are of course the same in both

~methods.
We define the fields of the charged intermediate vector bosons W,, W, the

neutral intermediate vector boson Z, and the photon A:

~ 1 = o
o= ‘\72“ (W' + iWuD),

Wt = (T2 — 1,3,

s _gWS—g U, (3.9)

S/ Caa Ll |

- g WS +,§UE.

ST

] -
Thus the first curly bracket of eq. (3.8) becomes
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38 Wt e 1 (3 + 8 () Z, 2%
We next define the following gluon fields:

~

Gl =V, —]é Wi, (i=1,2,3),

Gl=Vs (i=4567, (3.10)
1 g
V3 f

This definition converts the .second curly bracket of eq. (3.8) into

~

Gl =V, — Uy

3% {a)? 28;' G, G*. We thus have the following expression for the boson mass
i=1

part of the Lagrangian:

8

2 2 o2 ~ - ~9 oz - o~

190

i=1

(3.11)

So all the gluons have the same mass m,. This as well as the masses of the weak
vector bosons m@ and m3z are given by

mp=f2(a)?; mi=48%(7); m*=3%@+gD(n)» (.12
We see that the Weinberg-Salam part of eq. (3.8) has been diagonalised by the

usual choice of orthogonal fields Z, and 4,. But the gluon fields G,* for

i =1,2,3,8defined by eq. (3.10) are not orthogonal to the weak and electromagnetic

fields }17#1, ﬁ/’,ﬂ, Zu and /'f#. In fact, we have avoided the complication of diago-

nalizing the four-fold mixing between ¥ 5, V8 W,?and U . by the simple definition
of the gluon fields made in eq (3.10). This definition renders £, diagonal
although not all the fields are orthogonal to each other. This non-orthogonality
generates quadratic couplings between the vector fields. These couplings as well
as certain multiplicative renormalizations for the weak bosons and the photon will
be considered in the next section.

It may be worth pointing out that this simple treatment of the mixing problem
has been facilitated by the choice of the Higgs scalars that we have made. This
method does not work for other choices of Higgs scalars, as for instance, the
choice made by Pati and Salam (1973), namely the o field transforming as 2 @ 2
under SU, (2).

Finally we come to the fermion mass terms. The substitution of eq. (3.7) in
eq. (3.3) leads to

3 - —
Ley =G, (1) ée + Gp, () br + ’IZ' ) {Gp.ﬁ{P; + G an; + Gyeic; + GaA;

+ % (Gpo + Gu) (p’lci + Eipi) + % (Gpc - ch) (ﬁﬁ'act - c}}’ﬁpfl)
+ % (G + G,) (AN + i."() + % (Gar — Gn) (Figysds — Xn)’ﬁ"i)}n
(3.13)

b ot B b
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where we have assumed CP invariance so that all G’s are real. We may identify

the lepton masses to be n, = G, () and ny, = G, (7). The quark mass terms
involve nondiagonal pieces which change parity, strangeness and charm. Diago-
nalisation of these will result in the mass terms

3 R A PPN R A N
21 {r,pips + mann, + meeic; + mAAd,
where p,, #1;, ¢, and A; denote the physical quark fields which are related to the
old fields p,, n;, ¢; and A; through Cabibbo type of rotation. We shall not go into
the details here except to mention that there are actually four * Cabibbo angles ™,
two for the left-handed quarks and two for the right-handed quarks and the con-
ventional Cabibbo angle can be written in terms of the former (see for instance
Rajasekaran, 1972). Thus, as we already mentioned in section 2, the quark-

fields entering the interaction Lagrangian given by eq. (2.7) are in fact Cabibbo
rotated quarks.

4, The interactions among the physical vector bosons and fermions

In this section we shall rewrite all the interactions in terms of the ‘ physical’
vector particles [i.e., gluons, weak bosons and the photons c.f. eqs (3.9) and

(3.10)] which emerged as a result of symmetry breaking. However, before that,
we have to define some new quantities.

4.1. Definitions of new fields and coupling constants

It is convenient to introduce a nomenclature for the gluons. The gluions G’ for
i=1, 2, 3, 8 which have colour-hypercharge ¥’ - 0 will be called p,’ whereas

G, fori=4, 5, 6,7 with Y'# 0 will be called K,’. Further, let us define (sup-
pressing the vector index)

1 . 1 .
p =75 Gy + iGy) K = =5 (G, F iG0)
1 .
pt =3 (G —iGy) K = 5 (Go— 1y,
p08 — GO, £ = \—}2 (G + iGy). 4.1)

Note that p, pt, K+ and K- are charged gluons while p?, p°, K° and K? are neutral.
It should be stressed that p»s and K’s stand for colour octet gluons and they are
not to be confused with the known hadrons usually denoted by these SY{nb01S-

As we already pointed out in the last section, in addition to the cubic and
quartic interactions between the vector bosons contained in eq. (2.13), we have
quadratic interactions. These latter arise due to the fact that not all of our vecto1l'
boson fields as defined in eqgs (3.9) and (3.10) are orthogonal to each other. Al
these. interactions (quadratic, cubic and quartic) can be obtained by §Ub5%t“tlng
eqs (3.9) and (3.10) into eq. (2.13). The resulting expressions, Wthhk zwet o-':;
rather complicated appearance, simplify if we redefine the ﬁel‘ds 9f ﬁf wea Ve;
bosons and the weak coupling constants by certain multiplicative ‘° renormaliza-
tion >* factors.

We first introduce the coupling constants e, il and f defined by
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~ ~

~e ) s
_ 8 . =& . j=—~f_ @2

(g2 _]l__ g’:?.)l,’? (g‘.'. + g"l)l/ﬂ (gZ _]L_ g'2)l/2 .
We then define the “renormalized  fields W,, Z, and 4,:

™2
]

M g
A, (1 %J;) A | @3
z,= (1 —; +3§-§)l/2@
and the “ renormalized > coupling constants g, ¢, # and k&
g*(l f;_ 1/25; | e=(1+%7%§) "
1;:(1 .1-;?2 3’}0 )"1/2/?; k = (1+h2+3’} TR @

Although we have introduced four semi weak coupling constants, g, e, /1 and k
in terms of which we shall write down all the interactions, only two of these are
independent. Thus, for instance, 7 and & can be expressed in terms of g and e:

2 52 .
(i 1580
k=e‘~’(1~—5g—:)D, 4.5
£, 4.5)
N T JIREE
p={p—e—3h@ e)#vm(g--§e~)} .

It may also be useful to note from eq. (4.4) that all these renormalised coupling
constants g, e, 7 and k are bounded from above by the strong coupling constant
f. We shall always regard g, e, & and k as small compared to f.

Combining eqs (3.9) and (3.10) and using eqs (4.2)-(4.4), the fields V' for
i=1, 2, 3, 8 can be written as

?‘A/u (4. 6)

8 __ .k 5 e~ . k e
. ¥ . ¥ N VG s (Y Tt

We now use the set of eqs (4.1)-(4.6) along with eq. (3.9) in the Lagrangian of
section 2 and thus get all the physical interactions.
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4.2. Interactions among the physical vector bosons

The quadratic part of eq. (2.13) is

3

L= —1 (Z(Vih)? +Z(WM1’)2 “l“(U.uv) )

=1

3

—4 (Z(Gun)® + 2Wl W + (Z) + (4)?)

=]

— 5 {g(m WK ot Wi) +hp3 ZW teps 4B (4.7)

k e . e k
s O !

Hence, in addition to the kinetic terms, we have vector-dominance type of couplings
between the weak vector bosons and the gluons: Wp, Zp» ®, 4p* 8 with coupling

1 . : . .
constants == 7 (appropriate semiweak coupling constant). There is also a ZA

coupling which is of higher order in the semiweak coupling constant.
Let us next consider the cubic interactions contained in eq. (2.13):

~
Ol

o= —1 } Fi v, pem o 8 3’ " iy, i
1 m, n=1 ~1 !hk:‘]
. 1 =, , /3 =
— i [f {e1orD) — 5 (R _K) ——5 (HRr o3 (R K)— 57 (R )}

W) + (1Y) *;’fz (WRe'_K) —=5 (VIR0

+

4+

+g

+ 1 {(6%2) — 5 (2R K) -+ 5 (ZRK) + (W1 W)}
{(p’rpA) —z (AKT;K) 5 L kK + (WTWA)}
{

+ 24 (GTWZ) + gh (W12) + ge (1WA) +ge (W Td) +g° wtwpnt )
(4.8)
where 7./ = 1 (7' & i), the prime is used to denote matrices acting in colour
space and K = ﬁ:) Moreover, we have introduced the following convenient
notation for the symmetric Yang-Mills coupling of three vector fields:
(ABC) = A,,B*C” + B, ChA” + C,ydhB". | (4.9)

The first line of eq. (4.8) is the cubic strong interaction among the gluons. The
next three lines of the same equation describe the emission or absorption of a
single weak vector boson W or Z or a photon 4 by the gluons, all of which are
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characterised by an appropriate semiweak coupling constant. There are also
mutual interactions among the weak-electromagnetic vector bosons of the type
(WtWZ) and (W'WA). The last line contains the cubic interactions which are
of higher order in the semiweak coupling constant.

We shall now examine the quartic interaction:

I(;EZ____ — 1 f2 3 fimn fiea o pon e e
— 1 g2 5 &k 4 I e W, (4.10)

By following the same procedure again, the quartic interactions can be seen to be
of the following types:

(a) f2 G

(b) gfWG?, hfZG3, efAGS3, etc. ;

(c) g* W2 G?, h? 22 G2, e* A2 G2, ehAZG?, etc.;

(d) g°f WP G, g ef ' W* AG, g* hf* W? ZG,
ge -1 WA2 G, gehf~ WAZG, etc.;

(e) g> IV, e W™ A2, h> W2 Z2, ch W? AZ, etc.

Here (@) refers to the quartic gluon coupling, (b) to couplings linear in the weak
or electromagnetic boson fields, (¢) to couplings quadratic in the photon and/or
weak bosons, (d) to couplings cubic in the photon and/or weak bosons and (e)
to quartic couplings among weak and electromagnetic bosons. We choose not
to write these interactions in detail since, as will be explained later, these are
not needed for our present purpose.

4.3. Interactions between the fermions and the physical vector bosons

We rewrite the fermion-vector boson interaction given in eq. (2.12) in terms of
physical vector bosons introduced in sections 3 and 4.1. Usingegs (3.9) and
(4.1-4.6), the following form is obtained for this interaction:

Q
_cFlNT ZJ:Z j,,u,l G,UJ + ej'umr AM
=31

+ Rg/“o (o~ WH - ju¥r WEY) + hj 7 70, (4.11)

The currents appearing here are all related to the original SU’ (3) and SU, (2)
currents of eq. (2.9) as follows:

./.,u.W:h = jp.i_ —{"jl,fu.i = (jul + Up.z) + (.il,ul = ij’,u2)a

G = 73 i

, , . . |

JuE" =(u® + 4.7 + (J A "\7§J #8>’ . 4.12)
Ji& = sec? 8 (j,W3 —sin? 4 j FM)

) . . tan2 8
= (.]y,a — tan? HJ#U) =+ (] MS =/ ;,58):
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where 8 is the Weinberg-Salam mixing angle given by

tan? f = %— (4.13)

Equation (4.11) exhibits the strong, electromagnetic and weak interactions of the
quarks and the leptons. It is clear that the strong interaction is colour invariant
whereas the weak and electromagnetic interactions break colour symmetry. The
weak and electromagnetic currents defined by eq. (4.12) contain a colour singlet
part as well as a colour octet part (denoted by a prime). All the low-lying hadrons
are taken to be colour singlets and so any matrix element of the colour octet part
of the currents taken between the low-lying hadron states vanishes. The colour
octet part of the currents will contribute to physical processes only above the
colour threshold-namely only when colour nonsinglet hadrons are produced.

It may be worthwhile to write down the colour-singlet and colour-octet pcuts
of the electromagnetic current separately:

(j,u.EM)colour _—'.j,u3 +jp,U

singlet
= ‘24' (G Dy uli — 57 ully —3 '_\i?m\.’ + ’?Tzi'}'pci)
1=1
— (Y uC + fypup) 4.14)

=2 X 0.4 Gey utds — €y ue -t Eyur),

i=1 g=p,n,Cs A\

(j/AEM)colouv ZJ,,U. + - ,3]/,4,

oclat

= X (—3 qwﬁﬂl + 3% ‘_72'J’M€Iz + 3% qw’p%)

U=p, N, 05 A

= 2 X Qs(q)dwugs
i=1 @=p,n, 6, A
where Qo (¢;) and Qg (¢,) denote reSpectively the colour-singlet and colour-octet
parts of the electric charge of the quark ¢,. One can see that

Qolg) = (% —4, —4, %) for (pi> My Ais €) respectively,
Qs (q) = (— 3%, 4, 3) for (¢, 2, q3) TESpectively.

Hence, as far as the colour singlet part of the electromagnetic current is concerned
(.., below colour threshold), the quarks p, nA and ¢ behave like fractionally charged
Gell-Mann-Zweig quarks. Only if both the colour singlet and the colour octet
parts of electromagnetic current contribute equally, do the'quarks behave—through
Qo (91) + Qs (g)—as integrally charged Han-Nambu quarks. This point will
be discussed furthe. in section 6.

It should be noted that the colour octet currents Jub (U=1,...,8) are pure
vector currents whereas j,° (@ = 1, 2, 3) are pure V-A currents; on the other hand
Ju¥ contains both V-4 and V -~ 4 pieces (vide eq. 2.9). It is now clear from
eq. (4.12) that the charged weak currents which are purely left-handed below
colour threshold lose this feature when that threshold is crossed. The ncutral
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weak current has the Weinberg-Salam mixture of ¥ and 4 below colour threshold,
but gets an additional vector piece above colour threshold.

4.4 The complete interaction Lagrangian

Finally, it is convenient to write down all the interactions—those of the vector
bosons as well as of the fermions—in the same form as in eq. (4.11). Hence we
write :

8
.. n .
.L”‘“r = f 2 J,u. strong G'ul eJ,u,EM A'u

m)

4+ ~\-§2 (0= W - W WEY) 4 1] Z ZP, (4.15)

In.eq. (4.15)
JVE = JE 4+ J5

T8 = T3+ J8,

1
JEH = (1,54 JY) + (J"ls' 4 ;/j ]’M8>’ (4.16)
] JZ —=sect § (J,¥* —sin® 0 J,E¥)

— (7,2 —tant 0 7,0 + (72 ——MT%—B 7).
We have used J, to denote the total current which is the sum of the corresponding
J. defined in eq. (4.12) and the vector boson current. The latter consists of linear,
quadratic and cubic terms which can be read off from eqs (4.7), (4.8) and (4.10)
respectively. We shall- not write these terms explicitly since for our subsequent
calculations we can directly make use of the interactions as given in eqs
(4.7)-(4.10). We do, however, note the difference between J',? of eqs (4.16) and

T4, swong OF €q. (4.15), namely, J',t includes the linear term in the gluon fields

whereas J'h. g d0OES nNOt.

Equation (4.16) shows that each of the total weak and electromagnetic currents
can be split up into a colour singlet part (unprimed) plus a clour octet part (primed).
By examining the way in which these interactions have been generated from the
original gauge invariant interactions of egs. (2.12) and (2.13) one can see that
whereas, as we already noted, the weak and electromagnetic currents of quarks
have both colour singlet and colour octet parts, the corresponding currents of
gluons are pure colour octets and further that the currents of leptons, weak bosons
and photons are pure colour singlets.

‘The masses of the gluons and the weak vector bosons have been already given

in eq. (3.12). (The transition from I/f/, Z to W, Z does not cause any drastic
change). The masses my, and .m, are greater than 37 GeV as in the original
Weinberg-Salam model. The gluon mass m, does not suffer from any such
constraint and we shall not try to fix it. If there are other colour-nonsinglet hadrons

much lighter than the gluons, then the colour threshold could be considerably
lower than m,.
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On the other hand, from the point of view of the parton framework, the effective
mass of the gluon-parton may be much smaller than the mas.es of the colour-non-
singlet hadrons just as the effective mass of the quark-prrton is believed to be smzll
compared to the usual hadronic masses. If this is the case, colour threshold could
be much higher than the gluon-mass n,

5. Effective weak and electromagretic yvertices

In this section we calculate the effective vertices for the weak and electromagnetic
interactions of the gluons and the quarks to the lowest order of the semiweak
coupling constant, using the interaction Lagrangian given in the last section.
Because of the quadratic-coupling of the weak bosons with the gluons, this gene-
rally involves the addition of a vector-dominance-type of diagram to the direct
coupling diagram. _ _

For the current matrix element (p3 | gJ,¥~|p*), which corresponds to the
absorption of the weak boson W- by the gluon p*, in order g we have to add the
two diagrams («) and (b) shown in figure 1. By using eq. (4.8) and comparing
with eq. (4.15), the contribution of the direct diagram (a) is seen to be

— /2 g¢'P € Vyap, ' | (5.1

where € and € are the polarization vectors of the initial and final gluons while
Viag 1s the symmetric Yang-Mills vertex: '

Viag = (P + 0y 8ag - (@ — D)8 Sua — (P + Da gup- (5.2)

The initial and final momenta are p and p’ respectively and ¢ = p’ —p. In order
to calculate the contribution of diagram (1 b), we need the p propagator:

"‘(gp» — q,uq,,) (q> — m 21 (5.3)

2
m,

and the pW vertex read off from eq. (4.7):
T gy — uty)- G.4)

Using these, the contribution of diagram (1 b) can be calculated to be

R
(@) - | o p)
Figure 1. The two diagrams contributing tc the effective vertex for the absorption
cf the weak vector boson W- by the gluon a ™!
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2
8 .a q d
V2 ge'f € Viyap prp— (5.5)

The ¢,g9, terms occurring in (5.3) and (5.4) do not contribute because of the form
of the three-point vertex (5.2). Hence the effective vertex, which is the sum of
expressions (5.1) and (5.5), is

me?

(6 () | 87 | 97 (P)) = V2 8¢F & Vyag 570 (5.6 a)
By following the same procedure, we get all the other vertices:
2
(= () | g™ | p=(p)) = £ ec'f &® V#aﬁq—gﬂ_z-"m ; (5.6 0)
2
((0) | RZ | 9% () = o he® & Vyap 517 (5.6¢)
(K(p') | g™ | K(p)) = —ge'B e Vygpr'é, fﬂiﬁf (5.6 d)
g
2
K (p) | eTf | K(p) = —5 P < Vgl (s’ + 1) figr—as (5:60)
h I
(K@) W2 K@) = —35 F e Viaply (m’ —tan? 6) & m———
(5.6 1)

For the electromagnetic and the neutral current vertices of the p-gluons given in
eq. (5.6 b) and (5.6 ¢), p® alone contributes in the intermediate state. On the
other hand, for the same vertices of the K-gluons given in eqgs. (5.6 ¢) and (5.6 1)
both p3 and p® intermediate states occur. In eqs (5.6 d)-(5.6f), +_ and =’
" denote the ¢ colour isospin’ matrices which are sandwiched between the final

and initial spinors ¢, and £; of the K-gluons which are defined to be ((1)) for K+

and ((1)) for K% Eqs (5.6 d)-(5.6f) are applicable, with an overall change

of sign, to K-gluons also.

One should note that the quartic vertices considered in the last section are not
needed here because we restrict ourselves to the lowest order in the semiweak
coupling constants and because calculations are done within the parton frame-
work. In the parton model, the constitutents of the hadrons are treated as free
and hence the strong coupling constant f should be taken as zero effectively. One
can see that the quartic vertices involve either higher order semiweak coupling
constants or positive powers of f; hence none of these enters our calculations.

We next discuss the effective vertices for the quarks which we shall denote by
Q For the example shown in figure 2, we get

(@) 187" 1 @ ()

= gil (P') {(T-t-?pL + X’H’u) — X'H’u &T_g:;;rz} u (p)
)

= 830 (e —Varu 72 ) u ) (5.7 0)
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(b)

(a)

Figure 2. The two diagrams contributing to the effective vertex for the absorption
of the weak wvector boson W~ by the quark.

where X'y = 1 (A" & iA,’) and u denotes the quark spinor which includes all the
internal symmetry structure [both SU’ (3) and SU, (2)]. In the first line of
eq. (5.7 a) we have given the two contributions from diagrams (2) and (b) respect-
1vely. The g,q, terms in the vector dominance contribution do not contribute when
sandwiched between the spinor wavefunctions of the quarks. The second line of
eq. (5.7 a) exhibits the vertex as a sum of two parts—a colour singlet part which
is not modified by the vector-dominance diagram and a colour octet part which

gets a g®—dependent contribution from that diagram.
The same phenomenon occurs for all the vertices. Each of the vertices can
be written as a colour singlet part which is the same as in the Weinberg-Salam

model and a ¢2-dependent colour octet part:

(Q ()| eJi™ | O (p))
~5a@ {(n +3)m (v 2 e v 67
(O (p) | hTZ | O ()

g a(p’) {(TayuL —tan® 0 (mayur + %?’M)}

—(A — tan? \/3) s ] u (p). (5.7 ¢)

— m,?
In writing these equations, it may be helpful to note
QNI =%a(p) (rayur + 3y u(D)
Again, both p® and p® contribute in the intermediate states of the vertices corres-

ponding to egs (5.7 b) and (5.7 ¢).

The set of eqs (5.6) and (5.7) summarises the essential content of the present
unified gauge model as far as the weak and electromagnetic interactions of the
quark-partons and gluon-partons are concerned. We see that all- the partons
are endowed with a structure arising from the vector-dominance denominator.
However, this structure should be distinguished from the usual structure of hadrons,

for it remains even when the strong coupling constant f is put zero.
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If we had followed the alternative procedure of defining the orthonormal set
of vector fields which diagonalises the quadratic part of the Lagrangian completely,
then the quadratic coupling between weak vector bosons and gluons would of
course have been absent. In this approach, the vector-domainance denominator
in the complete matrix element of lepton-hadron scattering would arise from
direct lepton-gluon couplings. Thus, the vector-dominance structure is a charac-
teristic feature of this class of models.

6. Deep inelastic lepton-hadron scattering and e* e~ annihilation

6.1. Lepton-hadron scattering

Let us first define the inelastic structure functions of the nucleon arising solely
from the colour octet parts of the currents:

4_1;7 fd4 xe(p| [Ju(x),J 2 O]]p)

PPy ! L
= §in (_gyywl,_l— - Wg, "‘i“ .. .)- (6.1)

my®

In eq. (6.1) | p ) is a spin-averaged nucleon state with four momentum p and the
dots stand for terms which do not concern us here. The occurrence of the
Kronecker delta in the colour SU (3) indices / and = in the RHS of eq. (6.1) as
well as the lack of any dependence of W,” and W, on the colour indices follow
from the colour singlet property of the nucleon. Note that the colour octet current
Jil is a pure vector and so there is no additional structure function such as W,*
corresponding to parity-violation. The structure functions W,’ and W,  are real
functions of Q2 = —¢?® and v =p . g/my. In the deep inelastic limit when v,
Q2 oo in such a way that x = Q?/2myv stays finite, the functions W' and
vWy' Imy will be called F,” and F.' respectively. According to the hypothesis of
Bjorken scaling, F,’ and F," are functions of x only.

In view of egs. (4.16) where the physical currents are split up into their colour
singlet and colour-octet parts, we can writc the deep inelastic structure functions
relevant for charged current (CC), neutral current (NC) and electromagnetic
current (EM) scattering as a sum of F (WS), given by the Weinberg-Salam theory,
plus a colour contribution. Defining the structure functions for the complete
weak and electromagnetic currents as well as their colour singlet parts by equations
analogous to eq. (6.1), we get

F$, = F{%, (WS) 4 2F; .,

FYS, = FYS (WS) + (1 + tan' 6) F. 4,

Fily = Fi2 (WS) + 3 Fi.», (6.2)
FS = F§E (ws),

FY¢ = F2(ws).

It should be remembered that in the colour-singlet part of the electromagnetic
current the quarks behave like Gell-Mann-Zweig quarks so that F (WS) should
be calculated with the fractional charge assignment. The Weinberg-Salam

e

PR =P S
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contribution F (W.S) has been worked out by a number of authors (e.g., Palmer
1973, Sehgal 1974) and so we shall concentrate on the colour-contribution Fj,,
alonef.

To calculate F, , we need the matrix elements of J, between the gluon partons
" as well as between the quark partons Q. Although these are contained in
eqs (5.6) and (5.7), the following compact equations will be more convenient:

(G [ TE] G @) = 1™ P e Vg 57, 6.3
()11 0)) =~ () G rue(s) ", (6.4)

where the quark spinors include all the internal symmetry structure of SU‘(3)
and SU; (2). In fact only the colour components /= 1, 2, 3, 8 are relevant for

the weak and electromagnetic currents.
Using the vertices given in eqs (6.3) and (6.4) it is straightforward to calculate

the structure functions F, , within the parton-model framework. We deem
it sufficient to present the results:

7 2 — m4
Frt 00 =4 (1 +4m )(Qa- e () .
1 m,? B :
+4(Q2 + m2)? q=§, X {q (x) + q (x)}, (6.5)

, _ . 2 4 m,t
Fy (xa Qz) = X(3 + ;%_g + 45 4) (Qg 1 m 2)"'2g(X)

2W2 S {q () + g ()} (6.6)

pnc)\

In these equations g (x) is the probability function for any ome of the octet of
gluons to have a fraction x of the longitudinal momentum of the nucleon in the
infinite momentum frame. It is of course the same for each of the eight gluons
since the nucleon is a colour singlet. Similarly the quark-contribution contains
the probability functions for the quarks p (x), # (x), ¢ (x) and A (x) as well as for
the antiquarks ;(x), n(x), ¢(x) and X (»). Again, these are independent of
colour—e.g., py (x) = ps (x) = ps (x).

The tactor m,* (Q* 4+ m,*)~% in eqs (6.5) and (6.6) owes its existence to the
vector-dominance type of diagrams; without it both F;,” and F;’ become infinite
in the deep inclastic limit Q% — co. In other words, the contribution from the
direct coupling of the spin-one gluons viclates Bjorken scaling strongly (Cleymens
and Komen 1974, Rajasekaran and Roy 1975). But now in the unified gauge
theory there naturally arises the suppression factor m,* (Q? + m,?)~2 and thus

+ This colour contribution should be added only above colour threshold. The success
of the fractionally-charged quark parton model in the ianterpretation of the clectron-scattering
experiments at SLAC and the neutrino-scattering experiments at CERN suggests that these
regionns of energy are below colour threshold. However, we keep an open mind about the

regions now being explored at Fermilab.
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Bjorken scaling is preserved asymptotically. Indeed as 0% — oo, the gluon contri-
bution to F,’ vanishes and that* to F,’ becomes } xg (x). Thus gluons contri-
bute a term I xg (x) which is universal for all lepton-hadron scattering—apart
from some numerical coefficients and the Weinberg-Salam mixing angle given
in eq. (6.2). Further, the colour octet parts of the quark contributions .to
eqs (6.5) and (6.6) vanish as Q® — co. Hence, in the limit 0% > m,* we obtain:

FOC () ~ FC (WS), F% (x) > F¥ (WS) + 3 g (),
NG (x) = FYC(WS), FY°(x) —~ F°(WS) + (1 + % tan? 6) ;’fg (x), (6.7)

B (x) = FEY (WS), FP¥ ()~ FEY (WS) + 58 (0,

Fy (x) — F3 (WS).

Although in the far asymptotic region, F,’ and F,” do scale, in the intermediate
energy region (above the colour threshold, but with | g2 | ~ m,?) scaling is violated
as is clear from eqs (6.5) and (6.6). Whether the form of the scaling-violation
given by these equations is physically relevant will depend on the applicability
of the parton model in this intermediate region.

It is well known (e.g., Lipkin 1972) that the integrally charged Han-Nambu
quarks behave like fractionally charged Gell-Mann-Zweig quarks below the
threshold for colour excitation. The integrally charged nature of the Han Nambu
quarks is expected to become manifest once the colour threshold is crossed. We
have seen above, however, that in the present unified gauge model the colour octet
parts of the quark contributions to the structure functions contain a damping
factor m,* (Q% + m,2 )2 and hence vanish for Q2 > m,22. So we reach the inte-
resting conclusion that even above colour threshold, once the scaling regime is
reestablished (i.e., Q%> m,*) the Han-Nambu quarks behave as though they
were fractionally charged. The importance of this conclusion perhaps warrants
the more detailed statement given below. ‘

From eq. (5.7 b) we may define an “ effective ’ electric charge of the quark
qi:

m 2
Qur (92) = Qo (9:) — Qs (q) 3—— (6.8)
q my
In eq. (6.8) the constants O, (g;) and Qg (q;) are as defined in eqs (4.14). One

can now distinguish between three cases in so far as the g? dependence of Q

efp
is concerned.

(a) Below the threshold for colour excitation: The colour octet part of the
current is inoperative and hence

Ourt (4:) = Qo (q9)-

* This asymptotically non-vanishing contribution to F’, arises from the third term cone
taining Q* in eq. (6.6), which in turn can be traced to the ‘ anomalous moment * term in the gluon
interaction (see Rajasekaran and Roy 1975). Note that the Yang-Mills coupling fixes the
*anomalous moment’ x to be umity.

j
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In other words, the effective charges are the same as in the Gell-Mann-
Zweig model.

- (b) Above colour threshold but with | q®>| <€ m2: From eq. (6.8)

Oere (9.) = Qo (g:) -+ Qs (9)).

Referring to eq. (4.14) we see that these are just the charges for the Han-
Nambu quarks.

(¢) Above colour threshold and with | q®|> m,2: In this case we again get
Qer(g) = Qo(q:)-

Thus, despite the manifestation by the quarks of their integral charges in the
intermediate region, for asymptotic | 2| they again behave like fractionally charged
objects. :

Since the colour octet parts of the quark contributions to the weak structure
functions also are damped out for |g?|> m2 in this asymptotic region the
charged current regains its V-4 nature and the neutral current becomes the
usual Weinberg-Salam mixture of ¥ and A, as far as the quark contributions are
concerned.

However, as we have already noted, the colour octet parts do not vanish
completely. There is a nonvanishing contributionf in the far asymptotic region
coming from the spin-one gluons given by eq. (6.7). As some specific consequences
of this contribution, we may mention here the following: (1) The Callan-Gross
relation (see e.g., Roy 1975) 2 x F, = F, is no longer valid. In particular, we
get:

o  EPM —oxF"

) 1 g (x)
im o= "%xFm 75 3T 02 @™ i) (6-9)

Sq=p, N, A

where o, ; are the longitudinal, transverse virtual photon cross-sections (e.g.,
Roy 1975) and Q@ (q) are the fractional charges of the quarks. (2) The high
energy limit of o“(3N)/c*(vN)—i.e., the ratio of the cross-sections of anti-
neutrino and neutrino scattering off an isospin-averaged nucleon target via
charged current interaction—is no longer 1/3 even if the quark-antiquark * sea ™
contribution is neglected. In these circumstances one may write (putting the
Cabibbo angle §, = 0 and now defining the quark probabilities with respect to
a proton target):

o ny | 00 TP () + i ()

a® (WN)

7 (6.10)
g dx x {3n (x) + 3p (x) + 1g(x)}

(3) The result

eN
2

F:N(CC)

5

18

t+ Since an application of the momentum conservation sum-rule to the CERN and SLAC
1

data on lepton-hadron scattering already shows (e.g., Roy 1975) that [ dxxg(x) is non-zero,
Q

g (x) cannot vanish identically.
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based on the fractionally-charged quark model in the absence of the ““sea ** con.
tribution, is no longer true. Again, ignoring the “sea® and with 8, = 0, we
now have:

F¥ =& x{p(x) +n (x)} + Ixg (),
FoNC = 3x {p (x) + n ()} + L xg (x). ' 6.11)

Thus, because of the gluon terms, we see that
5
eN VN(CC)

Most other sum-rules and quark parton model relationships, based on fractionally-
charged quarks, remain unaffected.

6.2. Electron-Positron annihilation

If the parton model is applicable to the process of a high-energy electron-posi-
tron pair annihilating into hadrons through one-photon intermediate state, then
the corresponding crosssection may be written as

3 —
o (ete~ — hadrons) = ) 2 o (ete™ — qiqy)
i=1 g=p.n,0, \

+oa(ete —ptp) +o(et e — K+ K). (6.12)

Here g,q; refers to the quark-antiquark pair and p*, p~, K+, K- refer to the charged
gluons (not to the usual hadrons denoted by these symbols). Using the form
and matrix elements of the electromagnetic current already discussed [cf eqs
(5.6b), (5.6¢), (5.75), (6.8)], we have:

o (et o= = q3) = 477a (1 4 2m 2mJ ) (1 4mg2 )

2 2
{Qo(qi)—gs(qi) x gL (6.13)
c(ete —ptp) =o0c(et e = K+*K")
3/2 mi .
- (-2 (ﬁ+2o 2+12)m, (6.14)

where S is the square of the total et e~ energy in the CM system, m7, the effective
quark mass and a the fine structure constant. For comparison, we may also give

(et e —>putp)= 472:(1 +2m# (1 __Amy? ); (6.15)
and define
+ .
R_o-(e e -—>hadrons). (6.16)

o(et e —ptp)

When §— oo, the quark crosssection ofeq. (6.13) as well as the gluon crosssection

of eq. (6.14) behave like 1/S, so that R goes to a constant. Here again the vector
dominance factor m* (S —m,2)~% of the gluon contributions is crucial for the
asymptotic constancy of R.
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The detailed S-dependence contained in the above formulae may not be physically
relevant. However, the crosssection for large enough S may reflect some inte-
resting features of the underlying physics. Let us take the CM energy to be much
larger than the effective quark mass. Let us further assume, for simplicity, that
S is sufficiently large so that all the four quark degrees of freedom p, n, A, ¢ have
been excited; in other words the centre of mass energy is above the charm-anti-
charm threshold. Again, we may envisage three cases: :

(@) CM energy below the threshold for colour excitation:
In this region

4

o (et e — q.q;) = KX 0% (q.),

ofeter —prpT) =o(ete" > KvK) =0,
R = 3L, (6.17)
(b) CM energy above colour threshold but S<€myp2: Now

o (et e = ) = “Te {04 (g) + O (g

c(ete-—>ptp)=c(ete = K+K)=0 ‘ (6.18)
and so
R=6.
(¢} CM energy very much larger than the gluon mass :
4’

Here o(ete™ — q,g,) = =5 € 0% (44);

ma’
c(ete” —>ptp)=oc(ete > K+ K)= 125°

R =3} +} =331 (6.19)

Hence, provided that the colour threshold is much lower than the gluon mass,
R starts with the well-known value 34 for three fractionally charged quartets of
quarks, increases to 6 (which is characteristic of the Han-Nambu quartets), perhaps
risest to even higher values in the region S ~ m,? [vide eq. (6.13)] and then falls
back to 331 which is not very different from the first number. On the other
hand, if there is no intermediate region of energy corresponding to case (b), then
the high values R> 6 may not be attained. If we are below the charm-anti-
charm threshold, the values of R given in eqs (6.17), (6.18) and (6.19) should
be replaced by 2, 4 and 2{ respectively.

7. Summary and discussion

The point of view that weak and electromagnetic interactions being universal
should be shared by gluons also has led us to study a unified gauge model based

on the group SU'(3) ® SU (2), &® U (1) with integrally charged quarks. We

t Of course, parton model may not be trusted in this region.
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have worked out the weak and electromagnetic interactions of both the gluons
and the quarks in this model. When these cluons and quarks are treated within
the parton framework, we recover scaling in the asymptotic region. The contri-
butions of both gluons and quarks to deep inelastic lepton-hadron scaling as well
as to et e~ annihilation have been calculated. In the asymptotic region, the weak
and electromagnetic currents of the quarks recover their colour-singlet nature.
In particular, the integrally charged quarks behave as though they are fractionally
charged.

Although in this paper, we have confined our attention to the SU’' (3) @ SU (2),
& U (1) model, it is clear that the main conclusions would follow in a large class
of models. The scaling behaviour of the gluon interactions as well as the asymp-
totic colour singlet nature of the quark currents would follow in all models
in which the colour gauge bosons mix with the photon and weak vector bosons,

The above-mentioned conclusions are consequences of the vector-dominance
type of denominators which arise due to the mixing of the gluons with the weak
and electromagnetic vector bosons. Vector-dominance of currents is an old idea
(Nambu 1957) and it was given a gauge-theoretic basis by Sakurai (1960). Matrix
elements of currents were taken to be dominated by the low-lying hadronic vector
mesons (such as the p meson of mass 770 MeV) which also played the role of the
strong gauge bosons. Vector-dominance of this type has been incorporated within
a unified gauge model by Bars, Halpern and Yoshimura (1973). Although the
modelstudied in the present paper also leads to the vector-dominance of the currents,
we are now concerned with the coloured currents and our strong gauge bosons
are coloured gluons. The choice of coloured gluons as the gauge bosons is
preferable to the identification of the low-lying hadronic vector mesons as the
strong gauge bosons of a unified theory, for in the latter case, there is no ¢ natural’
mechanism of ensuring the absence of order a violation of parity and strangeness
(see Weinberg 1973).

We had mentioned in the introduction that in the present model strong inter-
actions are not asymptotically free. There are two factors which militate against
asymptotic freedom, namely the presence of Higgs scalars and the mixing of the
strong interaction with the U (1) interaction. However, neither of these appears
to be an insurmountable obstacle towards the construction of an asymptotically
free model. For, the clementary Higgs scalar fields can be avoided if the symmetry
is broken dynamically. The mixing with the U (1) interaction is not a serious
factor, since the corresponding coupling constant g’ is small enough for the inter-
action to be treated perturbatively. Alternatively one may perhaps embed SU’ (3)
R SUL(2) @ U(l) in a larger non-abelian group with no abelian factor. To
sum up, the models of the type considered in this paper can be expected to be
asymptotically free, at least approximately.

We have avoided detailed comparison with experiments since, at the present
moment, there is already a great deal of discussion in the literature concerning

the relevance of the new degrees of freedom such as colour and charm in the context

of the recent experimental developments in et e~ annihilation and lepton-hadron
scattering. We have restricted ourselves to presenting certain interesting con-
sequences pertaining to these processes following from the unified gauge model
based on integrally charged quarks. Hopefully, this will help to sharpen the
confrontation between various theoretical models and experimental data.
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Note added

After this paper was completed, we received a preprint by Pati and Salam
(ICTP preprint IC|{75|95) in which the authors have arrived at the same results as
ours regarding the quark contribution. However, contrary to their conclusion, we
find that colour does manifest itself through the gluons. The gluon contribution
scales and does not vanish in the asymptotic region.
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