PRAMANA © Printed in India Vol. 45, No. 2,
—— joumal of August 1995
physics pp. 91-139

Generalized Fock spaces, new forms of quantum statistics and their
algebras

A K MISHRA and G RAJASEKARAN
Institute of Mathematical Sciences, Taramani, Madras 600 113, India

. MS received 4 March 1995

Abstract. Weformulate a theory of generalized Fock spaces which underlies the different forms

of quantum statistics such as ‘infinite’, Bose—Einstein and Fermi-Dirac statistics. Single-indexed

systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are

studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and -
algebra. This general formalism not only unifies the various forms of statistics and algebras, but

also allows us to construct many new forms of quantum statistics as well as many algebras of
creation and destruction operators. Some of thesc are: new algebras for infinite statistics,

g-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or

statistics of frozen order, ‘doubly-infinite’ statistics, many representations of orthostatistics,

Hubbard statistics and its variations.
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1. Introduction

Recently, much effort has been devoted to g-deformations of oscillators. Both single
oscillators [1-12] as well as systems of oscillators [ 13—33] have been studied. However,
inspite of the larger literature which now exists, a unified picture of multioscillator
systems covering the various g-deformations and algebras that have been proposed,
has not emerged.

The aim of the present work is to construct a general formalism which may help one
to develop such a unified picture. We construct a theory of generalized Fock spaces
which has sufficient flexibility to encompass all types of oscillator algebras that have
- been proposed in the past as well as those that may be proposed in the future. Using this
formalism, we are able to classify and clarify the interconnections that exist between
different g-deformations and different algebras.

In another paper [34] we have pointed out that as far as a single-oscillator is concerned,
g-deformation does not lead to anything fundamentally new, and is merely equivalent
to a change of variable. A g-deformed oscillator is just a different representation of the
usual oscillator. On the other hand, when we go to multioscillator systems, new things
are possible; these are the new forms of statistics. However, even here, we find that many
of the g-deformations for multioscillator systems proposed in the literature again
belong to the category of substitution or change of variables and should be regarded
only as different representations of the well-known Bose-Einstein or Fermi—Dirac
statistics. Particular mention must be made of the work of Greenberg [13, 14] in this
context. In contrast to most of the recent work on multioscillator systems which are
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nothing but Bose or Fermi statistics in disguise, Greenberg’s proposal involves a new
statistics, called infinite statistics and this statistics is infact based on a new F ock space
which is much larger than the usyal bosonic or fermionic Fock spaces.

In order to construct a unified theory, we find it convenient to start with the
underlying space of the allowed states of the system. We construct the creation and
destruction operators ¢ and ¢ as outer products of the state vectors. It is this device of
starting with the set of state vectors of the system as the primary concept, that cuts
through the jungle of different algebras which, prima Jacie look different, but on closer
examination are found to be related. Two sets of creation and destruction operators
which are related by substitution, operate on the same space of state vectors and hence
describe essentially the same class of systems.

We first formulate the theory of the generalized Fock spaces. The key element is the
notion of independence of the permutation-ordered states. The largest linear vector
Space constructed in this way is the super Fock space. The subsequent specification of
a subset of states in this space as null states leads to many reduced Fock spaces. The
general theory which applies to the super Fock space as well as to the reduced Fock
spaces, all of which are to be called collectively as generalized Fock spaces, then allows
us to construct annihilation, creation and number operators. Whereas the annihilation
and creation operators and their algebras even for a particular Fock space are not
unique and many representations are possible, a universal representation for the
number operators valid for all forms of statistics and algebras exists.

We apply the formalism to the super Fock space as well as to the bosonic and
fermionic Fock spaces, the latter being the most familiar examples of reduced Fock
spaces. Super Fock space is characterized by a unique statistics named “infinite
statistics’. However, the same infinite statistics can be represented by different algebras
of c and ¢ and we give a number of representations of infinite statistics. In the bosonic
and fermionic Fock Spaces, many different forms of statistics can be defined and for
each form of statistics many different representations of ¢ and ¢ are possible.

Although the main aim of the general framework presented here is to develop
a unified picture of the various forms of statistics and algebras, the same formalism also
allows us to construct a large number of new forms of quantum statistics as well as new
algebras of ¢ and c'. In fact there is no limit to the number of possibilities.

An important part of our work deals with two-indexed systems. Our general
formalism for the single-indexed system applies to most multi-indexed systems also
since in most cases a multiplet of indices can be mapped into a single index. But, we
show that there exist certain situations where such a mapping is not possible.
Consequently, we develop the general formalism for the two indexed system and
discover an enormously rich variety of novel forms of quantum statistics and algebras.

The plan of the paper is as follows. The theory of the generalized Fock spaces is given
in§2.In§ 3 we apply the general theory to the super Fock spaceand in §4 we applyitto
the reduced bosonic and fermionic Fock spaces. Section 4 also contains a new statistics
called null statistics. The alternative approach of starting with cc' algebras and deriving
cc relations therefrom is presented in §5. Two-indexed systems are treated in §6 and
Appendix. Section 7 is devoted to summary and discussion.

A quick overview of the paper may be obtained from the pictorial summaries given in
figures 3 and 4 and the tabular information provided in tables i—4.
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2. Generalized Fock spaces

Given a set of oscillators with indices g, h,i---m, we construct the state vector

|ng,nh...nm; D= llg...lg 1h"'1h"' lm"'1m> 2.1)

ng Bh Bm

On the rhs. of this equation, 1,1, o 1 m &PPear n,,n,---n, times respectively and
Mgy denote the.number of quanta with indices g --- m respectively. Together with the
state (2.1) we consider the set of all states obtained through all distinct permutations of
the entries on the r.h.s. of (2.1). Thus, we have

gs -3 2> = 1,01, L1, Lo Ly L1, (2.2)
ng—1 mp—1 nm

Mgy My Ay 355 =1,1,1,1,1,---1,--- 1

m e Im) 23
ny Nm—2
|ng,nh...nm;s> =|1m...1m cee ]_h...lh lg'nlg> (2_4)
N nh ng

Here we have given examples of a few permutations. In (2.2), the positions of one
g-quantum and one h-quantum has been interchanged and in (2.3), we have indicated
a few more interchanges. Collectively, we shall denote the set of all these states as

Mg My s i, p=1,2,...8 (2.5)

where s is the total number of distinct permutations and u labels each of these states. It
is easy to see that

(n, +n,+ - +n,)!

§= (2.6)
nm!---n,!

(In (2.3), u has been put 35 rather arbitrarily). We assume the existence of a unique
'vacuum state corresponding to zero occupation number for all the oscillators:

|0>=10,0,0...0> 2.7

We shall first consider the set of all the s states given in (2.5) as linearly independent.
Although they are linearly independent, they may not be orthogonal to each other in
general, nor are they normalized. However, a state in one sector characterized by the
occupationnumbers (n,,,...n,,) is orthogonal to any state in another sector character-
ized by another set of occupation numbers (n;,n,...n, ). We can summarize these
statements by the'equation: '

(ny,my. . s alng, my. . n, B = 5n;n95n;nh" .5n:ﬂana,, (2.8)

Note in particular that the inner product vanishes even if a sihgle occupation number
does not match. Within the same sector, the inner product is given by

(ng...nysalng...n,; B> =M, | (2.8a)
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where Misa s x s hermitian matrix. In fact, there is an infinite set of matrices of varying
dimensions, one corresponding to each sector {n,...n,}. We choose all these matrices
to be positive definite. This set of inner-product matrices M plays an important role in
the general formalism.

From the set of linearly independent vectors given in (2.5), it is possible to construct
an orthonormal set of vectors which we shall denote by a double-barred ket:

Inge. s s p=1...s. (2.9)
These satisfy the orthonormality relation
Kng...mpsalng...n,; B = 5,,;,,'. . .5,,:",,’"5“. (2.10)

There is no unique way of doing this and the resulting orthonormal set is not unique.
One may use Gram—Schmidt orthogonalization procedure or calculate the eigenstates
of the inner-product matrix M or follow any other method. Whatever may be the
method, one can write the relation connecting the two sets of kets:

g B =3 X Iy 150> @2.11)

and the inverse relation:
[y...m 0y = Z(’X“l)ﬁa In,...n,.; B> (2.12)
8

where X is a non-singular matrix. Although X is not unique (since it depends on the
particular orthogonalization procedure used), it is possible to show, usiry, (2.8), (2.10),
(2.11) and (2.12), that X X1 is the inverse of the innerproduct matrix [34a].

M-l=xxt (2.13)

Thus, one simple way of ensuring positivity of the inner-product matrix is to choose
a non-singular matrix X and then determine M using (2.13). Again it must be kept in
mind that we are dealing with an infinite set of matrices, X, one for each sector
{n,...n,}. Also the orthonormality relation holds between vectors from two different
sectors and we have already used this in writing (2.10).

The completeness relation for the orthonormal set of states [n,...n,; 1> can be
written in the form:

I= % % Mges P U K0y s ‘ (2.14)

gty 1t .
where I is the identity operator. Substituting from (2.1 1)into (2.14) and using (2.13), we
get the resolution of the identity operator in terms of the non-orthonormal set of states:

I= y 5 ]ng...nm;v>(M_1)v;(ng...n,ﬁ;ll (2.14a)

Ng..lm A,v

It is convenient to define the projection operator

Png..ng) =¥ In,...n_; ud &ny.omp il (2.15)
3 .
=3 lng...nm;v>(M‘1)vl<ng...nm;il (2.16)
A
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so that we have

I= Y P,...n,) 2.17)
Rg...tm
One can easily verify the following properties of the projection operators:
P(ng...nm)lln;...n;u;p» =6"gn;...5"_,,;||ng...nm;u)> . (2.18)
P(n,...n)np. ..y =0, .. Oy_n Mg e M 1) (2.19)

It is worth noting that P(n,...n,) projects out any single state not only from the
orthonormal set ||n,...n,,; 1> but also from the non-orthonormal set |n .. .1, 1).
In terms of the above projection operators it is very easy to construct the number
operators:
Ny= Y  mP@,..n..n,) (2.20)

Rg...Bi...Am

which satisfy the following properties

Nplng...ny...ngs p) = Mg Mo Py 113 (2.21)
Nelng...m.. .y )= Mng. . My By (2.22)
[N.N;1=0 foranyk and j (2.23)

We now introduce the transition operators which connect states, lying in different
sectors. Obviously it is enough to define the so-called annihilation and creation
operators ¢; and cj. We define '

=3 Y Ay lng...(n;+ D...n 0 Y. n V| (2.24)
Mg...Rj...Rm f'V .
and ¢; as the hermitian conjugate of ¢}, where A,., are a set of arbitrary (complex)
numbers. Note that the span of y' is larger than that of v and this is the reason for the
prime on . Specifically, :

_(ng+..(n; + 1)+...n,)!
nl...(n;+ 1)!...n,!

p=1..7s ¥ (2.25a)
_(ng+...nj+...nm)!
nl..nl..n,!

(2.25b)

Hence A is a rectangular matrix. Since A is arbitrary in general, the relation (2.24)
provides the most general definition of the creation operator. Even in this general case,
it is possible to verify the following commutation relation between the number
operator defined in (2.20) and the creation operator defined in (2.24)

[N J= —cj6, (2.26)

The projection property given in (2.19) plays a crucial role in the proof of (2.26).

So far we did not specify how the ordered state vectors |n...1,,; ) are constructed.
In fact, in general there is no need to specify any procedure for their explicit
construction. The formalism given so far holds whatever may be the explicit form of
their construction. However, once annihilation and creation operators c.and c' are
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introduced, there exists a natural procedure to construct the set of ordered states usin g
c"and the vacuum state |0). This procedure has the advantage that the arbitrariness of
the matrix 4 introduced in (2.24) disappears and A in fact gets determined in terms of
M. Hence let us do it. ,

In terms of creation operators, the ordered state (2.2) for instance is constructed as

follows:

,u 1,1, 1‘1“5;1-"' 1\_,,1.;;1}} =(c]ys~ lc},c;(c}:‘)”"— ety oy (2.27)
and other sta:;s— zla.re cons:;ucted ina s’;milar fashion. We may introduce the notation
g s 1 = (eI clm: 110 (2.28)
(ng...nm;ul=<Ol(c,';'"...c;g;u) ‘ (2.29)

where (c]"s...c™; 1) is a permutation of the creation operators similar to the permuta-
tions defined in (2.1)~(2.5) and (c;',,"'...c;'gg ) is defined as the hermitian conjugate of
(c;"x...c’*m"'",u). For states constructed in this manner, there exists a simple formula
connecting states in ‘adjacent’ sectors. F or instance,

15, 1,...1, ... L1, > = c}llg...lg S S (2.30)
More generally, we may write
c}lng...nj...;/1>=llj,ng...nj...;/b (2.31)

where|1;, Mg...nj...;A) on the right is a subset of states in which one quantum appears
on the extreme left. Although the total number of states in the set | Ng...(m;+1)..; 1> is
§' given by (2.25a), the total number of states in the subset [1;n,...n j-+-3A) 18 5 given by
(2.25b). Further the states in the subset |1 jsMg-+-N.. 5 A) are given the same ordinal
number 4 as in the set [n,...n;..; 2>, This is possible since the quanta {ny...n;...} are
permuted among themselves without disturbing the extra J-quantum sitting on the
extreme left,

We now substitute the expression for c} given by (2.24) into the Lh.s. of (2.31). We have

T .
cjlng...nj..., A>

= )y ¥ Ay (n)+ 1)...;u’><n_;...n}...;vlng...nj...;b
u'v

’

Ng...nj...
=) A#.vMMing...(nj +1)..5u> (2.32)
'y )
where we have used (2.8). On comparing with (2.31), we get
LAnM,,=6,, - (2.33)

From (2.33) we see that y'=2 This means that in (2.24), only the subset
[1;,m,...n j--+3 4 contributes and hence A is in fact a square matrix and is equal to the
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inverse of M~ 1:

A=M"" (2.34)
So, we may rewrite (2.24): _
c}= Y AZ(M"l))_v|lj,ny...nj...;/"t><ng...nj...;vl. (2.35)

Thus, A and hence ¢ and ¢ are completely determined in terms of the set of M matrices.
Next, consider the expression for the number operator (egs. (2.20), (2.15) and (2.16)):

Ne= Y m Y lIng. m . ng; ) Kng. . ey il (2.36)

Ngeo MicerAm

= Y Y ing ey M)y gy V] (2.37)
Av

Ng...lk...im

One may try to express this in terms of ¢ and c¢’. Using (2.28) and (2.29),

No= Y mY (s . .chm )0y
Av

n&....nk...nm

Ol(c™....cx. .. (MY, (2.38)

v

Apart from ¢’ and ¢, the above expression contains the vacuum projector |0 <0|. Later
we shall give examples where |0) 0] is determined as products of ¢t and ¢ so that N, can
be expressed entirely in terms of ¢" and ¢. However, in general, this does not lead to
simple results, whereas (2.36) provides us with a universal representation of number
operators which is valid in all cases. '

So far, we regarded the set of state vectors |ny,ny,...; u); p = 1...s(wheres is given by
(2.6)) to be linearly independent and the resulting generalized Fock space is the
complete Fock space, which we shall call the super Fock space.

We shall now show how to construct reduced Fock spaces. The motivation for thisis
that many Fock spaces of physical interest such as the bosonic Fock space or fermionic
Fock space are reduced Fock spaces. There are various ways of doing this. One may
postulate relationships between states connected by permutations, or one may disallow
certain permutations by equating them to null vectors. Yet another way to achieve this
is to use the permutation group S, acting on the n-particle state. The super Fock space
we have constructed consists of all the representations of the permutation group. If we
allow only certain representations of S,, we get a reduced Fock space.

All these possibilities are contained in the statement that in the space of vectors
[y My 5 u>, there are r null vectors (r < s)

Y B2lng,m..;uy=0; p=12,..1 r<s (2.39)
u ‘ .

where BZ are constants. So, the dimension of the vector space in the sector {n,, .. s
reduced to d given by . ‘

d=s—r. (2.40)
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i ant class of reduced Fock spaces are those for which d = 1. Here, all the
sta?ei Iégggcraggd by permutation of indices will be taken to be relatefi to egch c;tghgr
;hrough equations of the type (2.39). In other words, the number Qf relations rin (?.: )1?
s— 1. We shall call this space as the bosonic F. o.ck space. If we impose the addltlon:fl
restriction: n, = 0 or 1 only, the resulting space will be called Jermionic Fock space. This
restriction can also be stated in the form of (2.39):

Ingny..sup=0 for n,m,..>2. (2.41)

We can define a new reduced Fock space, also of dimension d = 1 in each sector, by
taking the set of all the permuted states as null states except a §1ngle state (of a chosen
order) which is taken to be the allowed state. We shall call this as the F ock space of
frozen order. _ .

Another important class of reduced Fock spaces are those associated with para-
statistics [35-37], which we shall call parabosonic and parafermionic Fock spaces. For
these, the number of relations r is smaller than for bosonic or fermionic Fock spaces, so
that the dimension d satisfies

I<d<s. (2.42)

The formalism constructed in the present section is valid for all these reduced Fock
spaces also, with the modification that all the summations over y, v etc. will now go over
therange 1...d and correspondingly; X, M and 4 become d x d matrices. There is an
arbitrariness in the choice of the d states, Any choice of d states will do, as long as they
are non-null states.

All these Fock spaces, the super Fock space as well as the reduced ones will be
collectively called generalized Fock spaces. To sum up this discussion we may note that
a generalized Fock space is completely defined by stating what are the allowed states of
the system.

We shall define statistics by the precise relationship linking states obtained by
permutation. In general, many relationships can be envisaged and hence many different
forms of statistics can reside within 5 particular reduced Fock space. However, in super
Fock space, all the states obtajned by permutation are independent and so there is a
unique statistics associated with this Fock space, namely ‘infinite statistics’. Similarly, in the
Fock space of frozen order too, there exists only a single statistics, named ‘nul] statistics’,

In this section we started with the generalized Fock space consisting of the set of
allowed states of the System and constructed the creation, annihilation and number
operators in terms of the outer products of state vectors, Do these ¢ and ¢! form an
operator algebra? In general, ¢ and ot constructed in this way may not form a simple
algebra, or even a closed algebra. Historically, it is the Teverse route that has been
followed; one postulates an algebra of ¢ and ot and then deduces the states allowed by
the algebra. In this Sense, a given relation involving ¢ and ct implicitly defines an inner
product and Fhrough it specxﬁes' the allowed and the nuj] states of the system. In
practice, starting with an algebrg i an easier procedure and we shall use it in the latter

sections. Actually, it is complementary to the approach described in this section.
Therefore we have two equivalent ways of dealing with th

In the first approach, which we have formulated i this sectj
terms of the allowed stateg of the system and the algebra o
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consequence. This is the more fundamental approach and is of universal validity. In the
second approach, which we have used in the latter sections, we start with an algebra of
c and c" and then determine the states of the system allowed by the cc' algebra. Since the

--trictions on the allowed states of the system can generally be stated in the form of
cc relations, the first approach can be characterized as cc —cc' while the second is
cct —cc. Within the second approach, an elegant method to derive cc relations from cct
algebras will be described. ‘

For infinite statistics, there is no restriction on the allowed states and cc relations do
not exist. Hence, for this statistics, the first approach should be interpreted as ‘no cc
relation’ — cc' algebra while in the second approach, starting with any particular cct
algebra describing infinite statistics one shows that there does not exist any cc relation.
In those cases where the cc' algebra depends on a continuous parameter g, one can
determine the values of g where cc relation exists. Generally, these values of g corre-
spond to the boundary of the region in the parameter space where infinite statistics with
positive definite M exists. On this boundary, one or more eigenvalues of the M matrices
become zero, thus leading to the emergence of the same number of null vectors in the
Fock space which can equivalently be interpreted as the emergence of cc relations. Thus
the formalism unifies infinite statistics residing on the super Fock space with the
various forms of statistics residing on reduced Fock spaces.

It must be noted that the inner product matrices M occurring in (2.35) are quite
arbitrary. Consequently, more than one realization or representation of creation and
destruction operators is possible. In fact, it is this freedom to select arbitrary M which
enables one to construct different algebras involving ¢ and c', all operating over the
same Fock space.

To sum up, we construct a three-tiered structure consisting of Fock space, statistics
and algebra. Fock space is specified by the set of the allowed states of the system.
Statistics is defined by the nature of the symmetry of the allowed states under
permutation. Algebra of the creation and destruction operators is determined by the
choice of the inner product matrices M.

Different representations of infinite statistics are constructed in § 3. In the bosonic
and fermionic Fock spaces, many forms of quantum statistics which include Bose and
Fermit statistics are possible. These and the null statistics in the Fock space of frozen
order are taken up in §4.

3. Super Fock space and infinite statistics

3.1 The standard representation (M = 1)

Having taken all the s states to be independent, the simplest choice of the matrix X is
the unit matrix which implies M and A4 also to be unit matrices (of appropriate
dimensions) for all the sectors {n,,n,...}:

X=M=A4A=1 . G.1)

~ For this choice, which we shall call the standard representation of infinite statistics, the
ordered states (2.5) themselves form an orthonormal set: -

<ng,n,,...;u|ng,n,,,..;v>=5uv. : : (3.2)
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Further, the creation and annihilation operators are given by

¢} = > Zllj,ng,n,,...;u)(ng,n,,...;,ul (3.3)
Rg,fpee. I

;= 3 2lngmy.;ud {1 ng,ny.. .l (3.4)
ngnp... H

From(3.3) and (3.4), using the orthogonality and completeness relations, one can derive

the cc' algebra:
(3.5)

¢ s
;= c),-j
This algebra was first proposed by Greenberg [13], in an important paper on infinite

statistics. _ ‘
In the standard representation, we also have the useful identity:

T cle;=1-105<0] (3.6)

Although this identity can be obtained from (3.3) and (3.4) that define ¢’ and ¢, it is
important to note that within Fock space it follows from the cc' algebra (3.5). We shall
prove it by showing that (3.6) is valid, when applied on any state in the super Fock
space. First applying on |0}, we find that both sides are zero. Next we apply on the other
states ¢fc]...|0):

{Zcfc‘i-l+|0><0l}c;c}:...l0>=0 (3.7)

Using (3.5) and noting <Olc;'. =0 we see that the left side of (3.7) infact vanishes, thus

completing the proof of (3.6).
In a different context, Cuntz [38] had studied the algebra defined by (3.5) and by the
relation:

Z cle;=1. (3.8)

Cuniz algebra is inconsistent with Fock space, as can be seen by applying both sides of
(3.8)on |0). In contrast, our ¢3.6), because of the inclusion of the vacuum projector term
init, is consistent with Fock space and is infact a consequence of the algebra of ¢ and ¢t
in the standard representation of infinite statistics,

Putting M = 1, the number operator N, given in (2.38) becomes

N= ¥ nkZ(c;"S...c{""...cf,f"";u)lO)(Ol(c,':;"...c;:“...cgs;u) (3.9)

Rg...Ak...Mpy, m

Substitution of |0> (0| from (3.6) into this equation and a straightforward but tedious
calculation finally leads to

N= ¥ Z(c;"x...c,t"*...cf,’,’"’;u)c{ck(cfn’"...c;*...c;‘;,u) (3.9a)
Mg, Mic...tm L

Thi.s expression is identical to Greenberg’s formula for N x [13], though it is written in
a d1ﬁ"er+ent form. This illustrates the derivation of the representation of N, in terms of
cand ¢". As already mentioned, in general neither the procedure nor the result is simple
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and in any case one does not need it. The universal representation of N « givenin (2.36)is
sufficient. .

3.2 g-mutators with real g

Many other choices of M are possible. A particularly interesting choice is the one in which
M is given as a function of a real parameter g. Consider the inner product between the
n-particle state vectors with all occupation numbers unity: |1, 1,...; u). The inner product
matrix M in this sector has dimension n! x n! and its matrix element is taken to be

Ly sl 1,1, 50> = ¢, (3.10)

where g is a real number lying in the range —1 <q< + 1 and J is the number of
" inversions required to transform the state [1,,1,...;v) into the state |1,,1,...;u).
Number of inversions is the minimum number of successive interchanges between
adjacent quanta that will take the state |1, 1,...;v) to |1, 1,...; u>. For example,

<1h191k|1g1h 1,>=4¢ (3.11)
1,1,1,11,1, 1,>=4% (3.12)

The positivity of the g-dependent M matrices defined above has been proved by Fivel
[15] and Zagier [16]. In particular, Zagier has given the explicit form of the determi-
nant of the (n! x n!) dimensional M matrix for arbitrary n:

n—1 .
detM = kUl [1 _ qk(k+ 1)](n——k)n!/k(k+ 1) (313)

At ¢=0, M is the unit matrix and so is positive-definite. Hence, it will remain
positive-definite in — 1 << g < 1, if det M has no zeroes there. According to (3.13), for
real g, zeroes of det M occur only at g = + 1, thus proving the positive-definiteness of
Mintherange —1<g <1.

The inner product for states with occupation numbers larger than unity (which are
the same as states with repeated indices) is obtained from the above inner product for
states with distinct indices by symmetrizing with respect to the repeated indices. For
example, consider

2l L1 > =<1y, 1,1, (3.14)

Replace one of the g’s by h in both the initial and final states and thus get a matrix
element with distinct indices which can be calculated using (3.10). This replacement can
be donein (2!)? ways. The sum of these (2!)? matrix elements divided by 2! is the required
answer. Thus,

<1glg1m‘ lg l‘nlg> =%[<1y1h1m|191m1h> + <lglh1ml 1h1m1g>
+<1h1g1m|191m1h>+ <1h1g1m|1h1mlg>] (315)
=q+q° (3.16)

It is clear that the matrix M for repeated indices is obtained from the higher
dimensional matrix for distinct indices by a process of collapse or reduction. It can be
shown that this process retains the positivity of the matrix.
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It is worth noting that the norm for n-particle state with all the indices repeated is
{nylng > = [n,!y = [n,14[ny —11,-..[2], [1], (3.17)

where the ‘g-number’ [n], is defined by

n

1—_ n- .
[n]qz_l___z_=1+q+q2+...q . (3.18)

Inverting these M matrices and defining the creation operator through (2.35), one
can derive the algebra of ¢ and ¢'. This is more difficult than the reverse procedure
which is the way this subject really developed. Greenberg [14] proposed the g-mutator

algebra:
¢;cf—qcfe; =0y (3.19)

J

The g-dependent M matrices defined through (3.10), (3.15) and (3.16) follow from this
algebra. Fivel and Zagier then proved the positivity of these M matrices for
—1<g< + 1. Inspite of the fact that we have not derived (3.19) from the M matrices
defined here, we can assert its validity because the M matrices completely determine
cand c'. It is in order to emphasize this point that we have presented the M matrices
first and the algebra of ¢ and c' as a derived consequence.

3.3 New representations of infinite statistics

First we briefly consider the 2-parameter algebra

CiC}—Q1C}Cz—Q25ijZ ciey =9 (3.20)
k -

where g, and g, are real parameters. This may be regarded as another representation of
infinite statistics. Although the determination of the full region in the {4:,9,} para-
meter space for which M is positive definite is still an unsolved problem, one can show
[19] positivity of M on the straight line defined by ¢, =0; — 1 < g, < co. Infact it'is
possible to map this whole line on to the point q; = 0; g, = 0 by a redefinition of cand c'
so that we just get back the standard representation defined by (3.5).
We next present two new algebras:
pY (3.21)

t o ata 2%k <iNg
Cicj = €jCy = 0y;p ™=

and

c,.c;f_.p"lc}ci=0 for i#j} (3.2

t_ ot N
G =G =p™

where pis a real parameter and N ;are number operators already written down in § 2. Of
these two algebras, the first one (3.21)is based on ordered indices, that is, given any two
indices i and j, one must be considered larger or smaller than the other. So, we may take
the indices to be the natural numbers 1,2,3...

Equations (3.21) and (3.22) are again representations of the same infinite statistics,
for it is possible to map both these algebras on to Greenberg’s g-mutator algebra of
(3.19) with the following identification of the parameters: p=gq~'. Temporarily
renaming the (¢, ') of (3.21) and (3.22) by (b, b') and (d, d') respectively, the mapping or
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transformation equations are

== pEk<iNi (1/2)Ni
b= p= T ptPNe, (3.23)

— p{1/2)N;
di =p C;. (3.24)

Hence, it is clear that both the algebras of (3.21) and (3.22) lead to positive definite
M matrices for p> + 1 and p < — 1 (corresponding to — 1 <g < +1).:

An interesting feature of the algebra (3.21) is the validity of ordinary commutation
relation between ¢; and ¢ fori # jas in Bose statistics; nevertheless the full algebra (3.21)
describes infinite statistics!

In contrast to the situation for the g-mutator algebra of (3.19), where the number
operators can be expressed in terms of ¢ and ¢ only after considerable algebraic
manouvers [16,17] and the resulting expressions are quite complicated, the corre-
sponding expressions for the algebras (3.21) and (3.22) are simple. For (3.21), we get
(taking p > 0)

N1=

ogp OBl —cien)

p log(cic] —cfe) =2 ) Ny

1
Ni= lo
g k<t (3.25)

For (3.22), the number operator is even simpler:

N,= log(c;cl —cl¢;) foralli (3.26)

log p

In spite of our ability 1o write down such formal expressions for N, in terms of ¢’s and
¢'s, we must also point out that they are not of much use. All that one ever needs of the
number operators are the properties contained in (2.21)~(2.23) and (2.26) and as for
explicit representation, (2.36) and (2.37) will do.

3.4 g-mutators with complex q

We now generalize Greenberg’s ¢-mutator algebra to complex 4. This generalized
algebra is based on ordered indices and is defined by the following equations.

cich—qche, =0 for i<j (3:27)
¢;ef —pelei=1 (3.28)

where g and p are complex and real parameters respectively and the indices i, etc. refer
to any of the natural numbers 1,2,3,.... The relation for the opposite order i>j is
derivable from (3.27) by hermitian conjugation:

¢ich—g*cle;=0 for i>j (3.27")

and so it is not an independent relation. R
Let us now calculate the inner product matrix for this algebra. For distinct indices,

we find
(L1, L --;ullglhlk---;\’)=(q*)’*q" (3.29)
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2 1 3

v

3 1 2

Figure 1. Inversion diagram for the permutation (213)—(312),
Positive inversions: (1, 3)=(3,1)and (2, 3)-(3,2).
Negative inversion: (2, 1)—=(1,2).

v— 1. The total number of inversions (the sum of positive and negative inversions)is the
same as the number of inversions already defined below (3.10). We further define an inver-
sion as positive if it is a transposition of indices from the ascending order to the descending
order and as negative if it is the Teverse transposition. For example, (1,2)>(2,1) is
a positive inversion while (2,1)=(1,2)is a negative inversion. Thus we have

<131112]121113>=(Q*)24 (3-29;)

since the permutation (213)-(312) contains two positive and one negative inversions
as shown in figure 1.

The relationship between the algebra defined by (3.27)and (3.28) with complex ¢ (and
p=|q|)and Greenberg’s algebra defined by (3.19) with real q can be given. Calling the
creation operators for the former and latter algebras as c'(g)and ¢f( |q|) respectively, the
relationship is

cl(g) =Ml g)) (3.30)
where 6 is the phase of q:
q=|qle” (3.31)

and N, are the number operators defined in (2.37).
As a consequence, the inner product matrices for the two algebras are related by
6-dependent unitary matrices:

Mi(g)= T*O)M(lq)) T(6) (3-32)
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where
T'T=TT =1 (3.33)

We have already given in (3.13), Zagier’s result for the determinant of M for real g. For
our algebra with complex g, because of (3.32), the determinant of M for n particles with
distinct indices is

n—1 .
det Mn(q) — l—I (1 _ |q|k(k+ 1))(n—k)n!/k(k+~1) (334)
k=1

Zeroes of det M, (q) occur only on the circle |g| = 1. Hence, M, (q) for complex q is
positive for |g| < 1, and we have thus extended the Fivel-Zagier result for positivity to
complex g (for the case p=|q|).

In contrast to the situation for Greenberg’s algebra, the inner product matrix M for
states with repeated indices cannot be derived from that for states with distinct indices,
for the present algebra. For n-particle states with all the indices repeated, the norm is
the same as in (3.17) and (3.18), with g replaced by p:

{nyln, > =(1+p)(1 +p+pd)...(L+p+p*+..p""") (3.35)

which is positive for p> — 1. For states with only some indices repeated, M is
a function of both g and p and the problem is more complicated; but we have verified
positivity of the M’s up to 3-particle states for —1 <p< lq]~2.

If we choose p = — 1, all states with repeated indices are forbidden. This isjust Pauli’s
exclusion principle. Thus, the algebra defined by (3.27) and (3.28) with p = — 1 leads to
infinite statistics with exclusion principle.

Infact, we can restrict both (3.5) and (3.19) to i #j and for i = j replace them by

cicf+cle=1 (3.36)

In all these cases, we have infinite statistics with exclusion principle.
A compilation of the various algebras all representing infinite statistics is given in
table 1.

3.5 Unitary transformations

We must point out an important difference between the algebras described by (3.5),
(3.19)and (3.20) on the one hand and the algebras of (3.21),(3.22),(3.27) and (3.28) on the
othier hand. It is easy to see that the former are covariant under the unitary transform-
ations on the indices:

= Y Upnlm; UU=UU'=1. (3.37)

In fact,one;can show [19] that under certain conditions (3.20) is the most general
bilinear algebra of ¢; and c} invariant under this unitary transformation. This property
is violated for the complex g-algebra of (3.27) and (3.28) as well as the algebras of (3.21)
and (3.22). Covariance under the unitary transformation is desirable in a general
context since it is closely connected to the superposition principle in quantum
mechanics [3]. Nevertheless, algebras violating this requirement have been proposed
in the recent literature, either because of the possibility of applications to specific
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Table 1. Representations of infinite statistics.

Statistics Representation Algebra
Infinite Standard representation cej =10,
g-mutator (with real g) el —qcie = d;;
Two-parameter algebra { ;e — g1 cie
=430, % chc =0,
» g-mutator, transformed €iC) = ¢j¢; = 3, pPTeiti pli
» g-mutator, transformed { acj—p el =0, for i)
¢l —cley=pM
» g-mutator (with complex g) ¢ c;f - qc}c‘- =0, for i<j
{c,.c:.’ —peje;=1

Infinite with ' . o
Pauli principle Standard representation ¢;c;=0, for i#]
el +cle=1
» g-mutator (with real ¢) ¢e) — gcie; =0, for isj
{cic; +cje=1.
» g-mutator (with complex g)  f¢;¢} —qcle, =0, for i<
{c,-c;‘ +cle=1

systems in condensed matter physics or because of mathematical motivation. Hence,
we include such algebras in our investigation.

3.6 Thermodynamics

A detailed treatment of thermodynamic aspects is outside the scope of the present
paper. Nevertheless a brief statement is in order.
Consider the partition function for the canonical ensemble:

Z= Tre #H (3.38)

where f=(kT)™! and H is the Hamiltonian of the system. If the system consists of
non-interacting particles, we have

where N, are the number operators and ¢; are the single-particle energies. Hence, using
the orthonormal set ||. . B3 in the evaluation of the trace in (3.38), we get

Z= ) dl..n,..)e Fren (3.40)

niyn2...

where d(...n;...) is the dimension of the sector {...nj...}, defined in (2.40), and the
summation is over all the allowed occupation numbers n, for all i,

All the thermodynamics of the system can be derived from the partition function.
Further, the set of d(.. .n j---) on the r.hus. of (3.40) provide invariant characteristics of
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the Fock space that are not dependent on the particular statistics or algebra living in
that Fock space. ﬂencg, thermodynamics is the same for all forms of statistics and
algebras residing in a given Fock space.

For super Fock space and the associated infinite statistics, for which d is equal
y t
s defined by (2.6): e

d=n!/nini!; n== zni, (3.41)

the thermodynamics is independent of the particular representation or algebra of c and
¢!, In particular, if one uses the g-mutator algebra (3.19) to describe infinite statistics,
the properties of the system in thermodynamic equilibrium are independent of g,
provided g lies in therange — 1 <g < 1. Greenberg [ 14] had originally envisaged small
violations of Fermi or Bose statistics by choosing g = ¥ (1 — &), ¢ small and positive. We
see that equilibrium thermodynamics will not manifest such small violations.

The expression for d given by (3.41) is the same as Boltzmann counting and hence
Greenberg has called infinite statistics as ‘quantum Boltzmann statistics’. However,
since the Gibbs factor 1/n! is missing, the statistical mechanics of a system of free
particles obeying infinite statistics with the index i in (3.40) interpreted as momentum
will suffer Gibbs paradox [20]. Therefore, the super Fock space and the associated
infinite statistics cannot be naively applied to familiar physical systems. In our
approach, super Fock space plays the role of a mathematical template which can be
used for carving out various physical systems.

Aslong as one takes the Hamiltonian to be of the form (3.39) which is the only correct
form for non-interacting particles, the statistical mechanics and thermodynamics of the
system are independent of the algebra of ¢ and c¢'. One can then construct interaction
terms involving c and c' as in the usual many-body theory and their effect will of course
depend on the algebra.

Recent literature contains many calculations on the statistical distributions or other
thermodynamic quantities for the Hamiltonian

H=Y gl (3.42)

with ¢ and ¢! satisfying some g-deformed algebra. Since cf¢; is not a number operator in
general, the physical meaning of the Hamiltonian (3.42) is not a priori clear, although
one may suppose that it takes into account some type of interactions.

4. Statistics and algebras in bosonic, fermionic and frozen Fock spaces

We introduce two types of reduced Fock spaces in subsection 4.1. In one, we take any
two states obtained by permutation to be related to each other and we allow all
occupation numbers: n; = 0, 1,2,... for all i. In the other, any two states obtained by
permutation are again related to each other but occupation numbers are restricted by
exclusion principle: ;=0 and 1 only. We shall call the former as bosonic Fock space
and the latter as fermionic Fock space. _

In subsection 4.2, we introduce the Fock space of frozen order, in which permuta-
tions are forbidden and this also comes in two varieties, bosonic and fermionic.
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4.1  Bosonic and fermionic Fock spaces

A consistent way of defining a general relationship among permuted states for both the
bosonic and fermionic Fock spaces is to take

Ingnse sy =q'Ing,ny.. 51> (4.1)

where g is a complex number and J is the number of inversions in the permutation:
1 — p. The number of inversions was already defined in §3. Although J was defined
there for the case in which the occupation numbers were restricted to unity, the same
definition can be extended to larger occupation numbers. We assume g # 0. The case
q = O will be considered separately. Many different forms of statistics as well as various
algebras of ¢ and ¢ can be shown to be contained as particular cases of (4.1).

We first make some general remarks amplifying the meaning of (4.1). This equation
can be obtained by repeated application of the elementary relation:

L1y =gl 1), for i>j 4.2)

where, except for the two adjacent quanta of indices i and J which are interchanged, all
other quanta are left unchanged. In (4.2), we have used the same notation for the state
vectors as onthe r.h.s. of (2.1)~(2.4). It is clear that, for any g other than + 1, (4.2) makes
sense only if the indices i and j are ordered through an inequality (to be specific, i > J)-
Hence we have taken the indices to be the natural numbers 1,2,3... in writing (4.1).

The relationship among the state vectors given in (4.1) or (4.2) can be equivalently
expressed as a quadratic relation between two creation operators or two annihilation
operators. For any state |...), using (2.30) or (2.31) we have

cell...>=[1,1,...

cell..>=]1,1,...

- Comparing with (4.2), we get
clell...>=gqclcll...>, for i >j

Since this is valid for any state ..., we can write

clef—gclet=0 for i>j
or,
cici—q*c;e;=0 for i>j. 4.3)

The abovecc relation (eq. 4.3) is common to both bosonic and fermionic spaces. But
for the fermionic space there exists the additional restriction:
clel=0, or ¢e=0. (4.9)

All the states Iny,ny...;u) for fixed occupation numbers (n,,n,...) but different
values of 1 being related to each other through (4.1), the dimension of the vector space
in any sector (n,,n,...) is reduced to unity. So, for each sector we choose one standard
vector |ny,n,...;1> which we rewrite as |ny,ny...», dispensing with p completely.

The matrices X and M then become numbers related by

M™'=XxXx* (4.5)
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Equation (2.1 1) becomes

Ing,ny...» =X(n,n,..)[0,05..0

(4.6)
and we have
&ny,ny. i, ny. D =0, 40, .- (4.7)
From (2.35), we get
ch= > |1j,n1,n2...nj..><n1,n2...nj..|M“1(n1,n-,..)
Ny..nj... B

= 3 <M ng,ny.. .0+ 1)..5<ny,ny..n AM ™ ny,ny. )

where we have pushed the j quantum to the right of all i quanta for i < j using (4.2). Also
using (4.5) and (4.6),

C;: Z q2i<jn[ X(nl-.nj..)
AT X(ny..(n;+1)..)

ny,n,...(n;+1).. > &ny 0, n; Al
(4.8)

Equatiop (4.8) and its hermitian conjugate define the most general form of creationand
destruction operators for the bosonic and fermionic Fock spaces.
If we assume factorization of the norm M as well as that of X:

X(n1="2~-‘)=¢("1)¢(”2)---= 4.9
then we get
o i< jii qb(n) ’
ch= nl...znj...q ~————————¢(nj_:_1)lln1..nj+ 1.y &ny..n;. |l (4.10)
¢*(nj)

- * \Zi< jhi
6= L TR

We now construct the operator algebrasfor ¢t and ¢ given by (4.10) and (4.11). Firstof
all, for any form of ¢(n;), we get

ny. .0 D &ny..(n;+ 1) (4.11)

t_ gt = <]
Cic{ qijc; 0 for 1.<]} (4.12)
¢;ch—q*cie; =0 for i>]

For i =j, the algebra depends on the choice of ¢ and ¢(n;). We find

ol ey P :

t | 280N 1 4.13

cjcj-lql SN, +D (4.13)

e, =gl M%\J—)U ’ (4.14)
j

where N;, N ;... are number operators and $(N;)is the function introduced in (4.9). So,
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we can write the generalised commutation relation

+ t o e 2%i<jN;
cjcj—pcjcj-IQI J f(NJ)

fN,)= ’M 2 1p(N, =’ 4.15)
! ¢(Nj+ 1) ¢(Nj)

where p is any (complex) number. Equations (4.12) and (4.15) constitute the cc' algebra
for g-statistics defined by the cc algebra of (4.3).

What we have derived above can be regarded as the most general algebra of
creation and annihilation operators for g-statistics, subject to the assumption
of the factorization of the normalization factor implied by (4.9). In particular, since the
function ¢(N;) occurring in (4.15) is arbitrary, we may regard our equations as
constituting an infinite-parameter deformation of the algebra of ¢ and c¢'. Exploiting
the arbitrariness of ¢(N;) we can get many simpler forms of the algebra which we
now describe. ‘

(i) Choosing ¢(n;) to be a constant independert of n; but noting that ¢(— 1) must
vanish [38a], (4.15) becomes

¢j¢j = pejey =g N {1 — p(1 -8y o)} (4.16)

where Jy , is the Kronecker delta, which can also be represented as sin N ;/nN ;.
(ii) Putting p=0in (4.16) we get the simple algebra:

¢jch=|q|*Ni ) @.17)

(ili) As a third possibility, we may choose f(N;)in (4.15) to be unity and p real so that
we have the algebra:

€;¢; — peic; = | g| 2= (4.18)

This choice requires that the function &(n) must satisfy the equation

() > |, —1)?
oo, +0| P[4 | ! (4.19)

The solution of this functional equation (with the constraints that ¢(0) is finite and
&(— 1) vanishes) is

o)™ =[(n)!], = [n],[n—1],...[1], (4.20)
where
[n]p=i:1=1+p+p2+...+p”_1 (4.21)

}'7 or p=1, the ‘p-gumbers’ in (4.20) and (4.21) become ordinary numbers.
(iv) Asa final choice we put p=|q/*in (4.18)-(4.21). Asa consequence of this choice, the

F.h.s. of (4.18) becomes a bilinear function of c and ¢'. For, from (4.14), we can prove an
identity: ’

s, | PN — 1))

('CHZ"' 1) Z C+C = I lz~x<kN; &___ 2
k<j Kk kZ::j 1 ®(N,) (lq] 1)
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— 2 ‘ql22i<kNi(‘ql2Nk_ 1)

k<j
=‘q‘22i<jNi__1 @ 2‘))
where we have used (4.20) and (4.21) with p =|q|?. Hence (4.18) can be replaced by

cich—lglPcle; =1+ (1> = 1) ¥ ciey
_ k<j

Any one of (4.16), (4.17), (4.18) or (4.23) together with (4.12) constitute a cc' algebra

and one can construct many more examples of cc' algebras, all of which correspond to

the same g-statistics specified by (4.3). We have so far assumed that the occupation

numbers are unrestricted: nj,>;0 and so these algebras are valid for the bosonic
g-statistics, namely g-statistics in the bosonic space.

The fermionic g-statistics is defined by (4.3) and (4.4). In this case, n; n (4.10) and

(4.11) can take the value 0 only, while all the other occupation numbers \;’vill range over

0 and 1. So, the only arbitrary parameter that enters the definition of ¢ and ¢' is

r= ¢(0)/¢(1). The cc' relation for i # j is still the same as in (4.12) while the ¢ ¢t relation
of (4.15) can be simplified to . it

(4.23)

¢;ch— pele;= |q[2=<iN4 7| {Sy, 0 — POn,.1 } 4.29)

Further, we can generally prove the fermionic analogue of the identity which was
earlier proved in (4.22) for the bosonic case only for a special choice of ¢(n):

(aPP =1 Y ce =g =1 ¥ 1gP==¥Irl* oy,

k<j k<j

=3 |g|PFeN(|gPM = Dir? 4.25)

k<j
=(‘q122i<1N( - 1)‘,.‘2

Hence, (4.24) can be rewritten as
CjC; - Pc}cj ={|ri*+ (1q1* 1) z C;Ck}(‘snj,o —Po,.1) (4.26)
k<j

Equations (4.12) and (4.26) constitute the general algebra for the fermionic g-statistics.
In contrast to (4.15) of the bosonic case, the fermionic case does not have the freedom of
infinite-parameter deformation.

On the r.h.s. of (4.26), apart from the curly bracket { } which is bilinear in ¢ and c',
there are Kronecker deltas which depend on the operator N;. A simpler relation is

obtained for the choice p= — 1, since 5~,,o + 0,1 = 1. We then have
¢;ct+cle;=Irf* + (g = 1) ¥ cle (4.27)
k<j
A further choice |r|* = 1 gives
¢,c+cle;=1+ (gl = 1) X s (4.28)
k<j

which is the fermionic analogue of (4.23).
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The algebra given by (4.3), (4.12) and (4.23) (for real q) are covariant under the
quantum group SU,(n) where n is the tota] number of indices. This is true of the
fermionicalgebra of (4.3),(4.12)and (4.28)also. (See refs. [21-3 1] for this relationship to

not describe it. The formalism of the generalized Fock space appears to be capable of
incorporating many general algebraic structures. In particular, the ¢ ;] algebra of (4.15)
constitutes a general infinite-parameter deformation while the quantum-group related
algebra of (4.23) is only a particular case of this,

We have constructed the general algebras for arbitrary complex ¢. The choice of
q defines the symmetry of the state under permutation. Hence we call the different
choices of g as different forms of statistics. Particular values of gsuchasg=+1 or
g=¢e" are of special interest, although these cases are all contained in the general
formulae already given. We shall call the statistics obtained for g=+1, —1and ¢ as
Bose statistics, Fermi statistics or ‘fractional’ statistics respectively. Either the bosonic
or fermionic Fock space can be used to construct any one of the various forms of
statistics. Thus, within our terminology, it is perfectly possible for instance to have
Fermi statistics residing in bosonic Fock space or vice versa.

Within a particular statistics, different choices of M or ¢ correspond to different
representations of ¢;and cl, which in turn lead to different cc algebras. If we assume the
factorization given in (4.9),for a given g, only the i = Jjpartofthe cc’ algebra depends on
the representation. :

For the sake of clarity, all these forms of statistics and algebras are exhibited in
tables 2 and 3 for the bosonic and fermionic spaces respectively.

Several comments are in order, concerning the contents of these tables. The algebra

¢icj—cie;=0, for isj | (4.29)
ccj—cle;=0, for isj | (4.30)
el =1 4.31)

(4.31) coupled with (4.29) and (4.30) infact describes Bose statistics only, although in
a noncanonical representation.

Attention may be drawn to the ‘anticommuting bosons’ and the ‘commuting
fermions’ shown in tables 2 and 3 respectively. The commuting fermions have been
called hard-core bosons in condensed-matter-physics literature. Our terminology
Seeéms more appropriate since they are really fermions in disguise, living in the
fermionic Fock space.

The precise connection of our fractional’ statistics to the exchange property of the
wavefunctions proposed [39,40] for one and two-dimensional systems needs further
study. In particular, a suitable mapping of the ordered indices to coordinates in one and
two-dimensions is necessary.
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Among all the different algebras givenin tables 2 and 3, only two of them, namely the
canonical representations for the bosons and fermions have the distinction of being
covariant under the unitary transformations that mix the indices (see (3.37)). All the
other algebras violate this requirement, although, as we have already mentioned, two of
them, one in the bosonic and the other in the fermionic Fock spaces, are covariant
under the quantum groups S U,(n).

The examples contained in these tables can be called deformed-oscillator algebras on
which many papers [1-12,21-27,32,41,42] have been written recently. In spite of the
multiplicity of these deformed algebras, we must not ignore the basic fact that they are
all avatars of just two primary constructions which may be taken to be the canonical
bosonic algebra for the bosonic Fock space and the canonical fermionic algebra for the
fermionic Fock space. All the different forms of statistics belonging to the bosonic Fock
space as well as their various algebraic representations are related to each other and to
the canonical bosonic algebra and similar is the situation for the fermionic Fock space.
Given two different forms of statistics within the bosonic Fock space characterized by
the statistics parameters ¢, and g, respectively, or/and two different representations
characterized by the functions ¢, (1) and ¢, (n) respectively, it is easy to get from (4.10)
the relationship

)= (ﬂ)hmi"bzwf— h_¢\(N)
g $2(N;) ¢ (N;—1)
The corresponding equation for the fermionic Fock space is
Zi<jN;
cl@) = <@> (fl> (1) (4.33)
q; '

Hence, from the point of view of Fock space, there is nothing new in all these deformed
oscillators. :
In the above equations, the number operator N, are given by

Ni= Y mlng.on..p&ny...n,...| (4.34)

By Bica,

¢l(1) (4.32)

q

and, written in this fashion in terms of the normalized states |, N,isthe samein all the
different forms of statistics (within the bosonic or fermionic Fock spaces) and in all the
different representations.

Using (4.14) it is also possible to express the number operators in terms of ¢ and ¢’ in
any statistics or any representation within the bosonic or fermionic Fock space. Noting
that for the canonical bosonic algebra |

1
g=1; ¢(n) =W’ (4.35)
we get from (4.14)
N;=dc;. (4.36)

For other statistics and representations also, the set of equations obtained from (4.14)
starting with j = 1 and successively increasing j, can be seen to be implicit recursion
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formulae for all N;. Thus we have

e = ¢(N1 - 1) z

i ®(Ny)

e [N, - D) 4.37)
R T

By choosing ¢(N;) one then gets the desired explicit expressions for N;. However, as
already emphasized, such expressions are not of much use: the universal representation
of N; given in (4.34) is sufficient for all purposes.

The formalism of Fock space developed here has sufficient flexibility so as to allow
many straightforward extensions or generalizations. For instance, the relationship
between permuted states defined by (4.1) or (4.2) can be generalized further. Instead of
(4.3), we may take

¢;c;—qficic;=0 for i>}, ' (4.38)

where g;; are complex parameters. This may be called multiparameter g-statistics. The
algebras corresponding to such extensions as well as further generalizations can all be
constructed essentially by the same procedure as given in this section. Details will be
presented elsewhere. Suffices it to say that, once the relationship among the permuted
states is specified through the cc relation, the rest of the story follows.

Special cases of such algebras have been reported in the literature on quantum
groups [21-33]. We have already referred to the generality of our approach as
compared to quantum groups. As further points of comparison between the two
approaches we must mention the following. From the point of view of quantum groups,
the whole set of relations among ¢ and c¢' are taken for granted. In contrast, our analysis
based on the underlying Fock space reveals the cc relation as the key to the whole
algebraic structure, although the normalization function @(n) also plays a role in
determining the actual representation of the operators. Hence, depending on the mode
of expressing the cc relation and the choice of ¢(n), one can generate any number of
algebras of ¢ and c'. Thus, our approach helps to demystify the quantum-group related
algebras by reducing them to their basic essentials which are identified to be simple
properties of state vectors in the Fock space. Reversing the procedure, one can
probably reconstruct the whole edifice of the quantum group itself starting from the
more elementary notions relating to states in the Fock space. This of course lies outside
the purview of the present paper.

4.2 Fock space of frozen order and null statistics

In subsection 4.1 we had taken any two states obtained by permutation to be related to
each other. We now consider a limiting situation in which the particles are frozen in
a particular order, with no permutation allowed. This is the Fock space of frozen states
and the associated statistics is the statistics of frozen states. Whereas in infinite statistics
each permutation leads to a new state, in the statistics of frozen states no permutation is
allowed. To emphasize this contrast, the latter may be called null statistics. Although
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this may be obtained as the limit g —0 of the g-statistics, more properly, it must be
regarded as an independent statistics. For, whereas the statistics for two (non-zero)
values of g are related to each other through (4.32) or (4.33), the statistics for
g =0 cannot be related to statistics for g 0. Hence, we shall construct the algebra
of ¢ and ¢ for this system of frozen states directly from the definition. Again, depend-
ing on whether the particles obey exclusion principle or not, we have two different
versions of the system which we shall call the fermionic and the bosonic versions
respectively.

Let us first consider the bosonic version. Referring to (4 1) the Fock space of frozen
states is obtained by taking |[n,n,...; 1) as the allowed state and requiring

nyn,...;u>=0 for u+#1 - (4.39)
Or, equivalently

l...1;1,..>=0 for i<j (4.40)
and hence v

cc;=0 for i<j . (4.41)

Assuming factorization of the norm as in (4.9), we can represent the creation operator
in the form:

L 110,...0,_ 4, (14 Dy g D &0 Oy
(4.42)

The zeroes in the state vectors arise from the fact that c* can create a quantum with
index j only if indices i <j are unoccupied. From (4.41) and the orthogonality of the
states, we get

ccl=0 for k#j (4.43)

The c;c! algebra will depend on the choice of ¢(n;)/p(n;+1). We shall assume
o(n;) = qb(n + 1) for simplicity. Then, by using the completeness relation for the states,
one can verlfy
cici=1— 3 cle (4.44)
k<j ‘
Equations (4.41), (4.43) and (4.44) together define the algebra for the bosonic version of

the statistics of frozen order.
For the fermionic version, (4.41) is replaccd by

ce;=0 for i<j A (4.45)
and one again gets

ccl=0 for k#j ' ‘ (4.46)
but, instead of (4.44), one finds |

cel=1—3 cle, : ' (4.47)

k<j
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Thus, the fermionic version of the statistics of frozen states is described by the algebra of
(4.45)-(4.47). It is interesting to note that the replacement of the sign < in the bosonic
algebra by the sign < yields the fermionic algebra. '

Finally, we note that the expression for the number operators in terms of c and ¢' for
the above algebra of null statistics can be shown to be essentially the same as that for
the standard representation of infinite statistics (eq. 3.9a), but because of (4.41) or (4.45),
it can be simplified to read as

Ne= Y e cmcie,cm.. e (4.48)
My Mo,

where the sum over ny,n,...n, is unrestricted (> 0) for the bosonic version, but is
restricted for the fermionic version: n,,n,...n,_, go over 0 and 1 while n,=0.

4.3 Thermodynamic aspects

For the bosonic and fermionic Fock spaces, (3.40) for the partition function becomes

Z= ) e Fhem (4.49)
ny,n,...

wheren;=0,1,2,... oo for the bosonic space and n; = 0, 1 for the fermionic space. This
is a well-known result for the canonical Bose and Fermi statistics, but we emphasize the
fact that the partition function and the resulting thermodynamics is the same for all the
various g-statistics and g-deformed algebras living in the same bosonic Fock space and
similarly for the fermionic Fock space. This point has been missed in much of the
current literature and so considerable confusion has been created. Part of this
confusion is due to the choice of the inappropriate Hamiltonian (eqg. (3.42)) and the
wrong emphasis placed on some particular algebra of ¢ and ¢,

We further note that the above Z in (4.49) is valid even for the Fock space of frozen
order and null statistics since d = 1 in this case too.

To sum up, equilibrium thermodynamics of a system of free particles is determined
entirely by the dimension d and spectrum of allowed occupation numbers which
together characterize the Fock space and does not depend on the permutation
properties of the multiparticle states or the algebras of ¢ and ¢

5. Derivation of cc relations from cc' algebras

In the last section construction of the bilinear algebra of ¢ and ¢ starting from states
related by (4.1) was shown. In other words, cc™ algebra has been derived from the cc
algebra given by (4.3). The converse is also true; the cc algebra can be derived from the
cc' algebra, as is shown in this section. Thus, within the framework of Fock space it is
unnecessary to give both cc and cc' relations. Fither the cc relation or the cc relation

can be used to define the Fock space and the other can be derived. But there are some
caveats:

(i) Although the cc relation does define the Fock space, the cc' algebra does not follow

uniquely; as already pointed out, the operators c, ¢t and their algebras depend on the
choice of M. ’
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(ii) In order to define the Fock space completely, the cc' algebra must fulfill certain
conditions. The cc" algebra must be such that an arbitrary inner product ¢0|c;c;...
cycy|0) or infact the vacuum matrix element of any polynomial in the ¢’s and ¢"s
arbitrarily ordered, can be calculated using the cc’ algebra and the definition of the
vacuum state |0):

¢/0>=0 forallk. (5.1
A general form of the cc' algebra that satisfies this requirement is:
¢i¢;=Ay+ 3 BijmCiCm (5.2)
} k.m
where 4;; and B, can be constants, but more generally they can be functions of the

number operators. All the cc' algebras considered in this paper are of this form.
There exists an elegant method [197 to derive cc relations from the cc' algebras.
Restricting ourselves to relations quadratic in ¢, we define :

Q;;=cic;—q'cic (5.3)

where ¢’ may be an arbitrary complex parameter. Suppose that, by using the given cc'
algebra, we are able to prove .
QUCZ = Z Fijk:i’j’k’CZ' Qi'j' (5.4)
i'j'k’
for all i, j and k where F ;.- may be a c-number or operator. Then, by applying this
equation successively, we get
7CkCme -+ = Y > FinwiweFrpmeymCoCre - Qury | (5.5)
ijkiym
Allowing both sides of this equation to act on |0}, the right side vanishes and so we see

that Q,; acting on any Fock state ciet...]0> gives zero. Hence we may write the
operator identity:

Q,;=0 (5.6)
which is the cc relation sought after. It may also be pointed out that often one finds

Figeryie = JiseBii 05 O ‘ (5.7)
so that (5.4) is simplified to

Qi,-CZ = fijkc; Qi ) (5.8)

Thus, the form-invariance of Q;; on being pushed to the right of ¢}, as explicitly given in
(5.4) or (5.8) is the necessary and sufficient condition for the existence of the cc relation.
We may now apply this method on various cc’ algebras discussed in the previous
sections.

5.1 g-mutator algebra with real q:
The cc' algebra is

¢icj—qcic; =0y, Vi,j. . (5.9)
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We define

Qu=cic;—q'ciciy Vhj (5.10)
From (5.9), '

0,;6h =1 —aq)c:dy;+(a— a0+ q*clQ; (5.11)
The form-invariance of Q;; requires

g=q=1tl (5.12)

So, we get the cc relations
cc;teie=0 (5.13)

corresponding to Bose and Fermi statisticsat g = £ 1. For — 1< g<1,therearenocc
relations and we have infinite statistics. The inner product matrix M which remains
positive definite for — 1 < g < 1, develops zero eigenvalues at g = + 1. (see eq. (3.13))
corresponding to the null states such as (cfc¢; + cl¢])|0) arising from (5.13).

5.2 g-mutator algebra with complex q

The cc' relations are

cich—qcle;=0 for i<j (5.14)
¢l —pefe;=1 (5.15)
We define
Q,;=cic;—q'cie; for i<j (5.16)
=¢c; for i=j ' (5.17)

Using (5.14) and (5.15), we find
Q;¢i=q*c;Q; for i<j<k
=g¥'clg, for k<i<j
=|glc}Q, for i<k<j
= (g* —q)c;+ pg*ciQ,; for k=i<j (5.18)
=(1—gq)e;+pgctQ, for i<j=k |
=(1+p)c;+p*clQ; for i=j=k

The form-invariance of Q;; for i <j requires
g=q*=e" : (5.19)

where 6 is real. We thus get the cc relation corresponding to fractional statistics at the
boundary |q| = 1 of the disc || < 1 in the complex plane. ‘

We already know that the disc |g| < 1 corresponds to the region of positive-definite
inner product matrix M for the complex g-mutator algebra of infinite statistics. At the
boundary of this positivity region, we have fractional statistics living in a reduced Fock
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Im q

Re q

dh
NP

Figure 2. The complex g-plane of the g-mutator algebra. The disc |g| <1 corre-
sponds to infinite statistics and the circle |g| = 1 corresponds to fractional statistics.
F and B are the Fermi-Dirac and Bose—Einstein points.

space (see figure 2). It is the states of vanishing norm of the form
C(oclel|0)) —eP(..clcl...[0y) for i<j (5.20)

which contribute to the zeroes of det M, in (3.34) at |g| =1. Once we remove these
states, we get the reduced Fock space of positive-definite norm.
The form-invariance of Q,; for i =j requires

p=—1 - (5.21)
with the corresponding cc relation

c;c;=0 ' (5.22)
This leads to the exclusion principlé namely n; = O or 1 only; equivalently, the norms of
states with repeated indices are zero as seen by putting p = — 1 in (3.35).

To sum up, we may note four possibilities all contained in the algebra of (5.14) and
(5.15):

(a) Infinite statistics with multiple occupation

lgl#1;, p#—1. (5.23)
(b) Infinite statistics with exclusion principle

lgl#1; p=-—1 | (5.24)
(c) Fractional statistics with multiple occupation ‘ ‘

g=¢% p#—1 ‘ (5.25)
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(d) Fractional statistics with exclusion principle

q=e"; p=—1. (5.26)

5.3 g-statistics

The cc' relations are

c;cj—qcie; =0 for i<j (5.27)

¢;cj —peje;=1qPHNif(N)) | (5.28)
We define :

Q;;=cic;—qcic; for i>j (5.29)

Using (5.27), (5.28) we get

Q;ct=q*clQ,; for i<j<k

=q*¥clQ, for k<i<j
=1q)*¢]Q,; for i<k<j
=pq*cjQ;;+ cilgP N f(NY1 —g'q*) for i>j=k

=pqciQ;+1qIP < Mr f(N)e,(g—q'lgl?) for k=i>j (5.30)

Repeating the argument of form-invariance of Q,,, we conclude

ijs

cc;—q* 'c;e;=0 for i>j (5.31)
In this proof we have not used any particular form of f(N;), but have used only the
standard commutation relations among N, and ¢, (egs. (2.23) and (2.26)).

This derivation of the ¢;c; relation for i % is valid for the bosonic as well as the

fermionic Fock spaces. However, for the fermionic space, there exists the additional
relation:

cic;=0 (5.32)

To derive this, we now commute c} through c;c; using (5.27—5.28),‘ we get
cicich=q*clee; for i>k |
=q%cicic; for k>i
=pcjec+|gP e, {pf (N,;— 1)+ f(N)} for i=k| (5.33)

So, for the validity of (5.32), we require

e {pf(N;— 1)+ f(N)} =0 (5.34)
Substituting the form of f(N,) for the fermionic Fock space (from eq. (4.24))
SIN)=Ir*(0y, 0= poy,,), (5.35)

- wesee that (5.34) is satisfied, since in the fermionic Fock space, d,, w2 =0andc;8y o =0.
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One may also note that (5.34) is also satisfied for p= —1 and f(N,) = constant
(which may be chosen to be unity). So, for bosonic Fock space, i.e. ¢;c; # 0, we must
avoid p= — 1in (5.28) and (4.15).

‘The above derivations of cc relations have used the general cc' algebra and hence
includes the cases of quantum-group-covariant algebras, independent deformed oscil-
lators, commuting fermions, anticommuting bosons etc. Further, it must be noted that
the presence of the term with the factor |¢|*%*</* in (5.28) is crucial for the validity of the
cc relations; without this factor, there will be no cc relation and we will get infinite
statistics. “

6. Two-indexed systems

We have so far considered generalized Fock spaces consisting of states [n,,n,...,; u>
where the indices g,h,... may refer either to a single quantum number, or to a
collection of quantum numbers, specifying the space, spin and other internal degrees
of freedom. In the latter case, it may be supposed that one has mapped a collection
of indices to a single index. What is envisaged in this section are situations where
such mapping is not possible. This can happen in various ways. To be specific,
let us consider oscillators with a pair of indices, a latin index (g, h,...) and a greek
index («, B...). There exists a class of systems in which the occupation numbers
with a single index n, or n, are defined, but occupation numbers with both the indices
n, are not defined. Such systems cannot be mapped into single-indexed systems.
In another class of systems, n,, do exist, but the subsidiary conditions that define
the reduced Fock space depend on the two indices g and « in such a way that prevents
mapping of (g,«) into a single index. We consider these two classes of systems in
subections 6.1 and 6.2 respectively.

In may also be mentioned that we first encountered such systems in the study of the
Hubbard model in the limit of infinite Coulomb repulsion [43-46]. Although this was
our original motivation, this has now opened the door to a more general framework
encompassing novel forms of statistics and algebras.

6.1 Systems in which n,, do not exist

Wespecify the states as |n , n,...;n,, ng...; u>, wheren,, ny,. .. are the numbers of quanta

with indices g, h... respectively, while n,, n,, ... are the numbers of quanta with indices
a, B... respectively and we have the constraint:

Ryt + . o=n+n,+... (6.1)

We may regard n, as the total number of quanta with index g whatever may be their
greek index and similarly for n,. In such a state, the occupancy number with both
indices such as n,, is not defined. The latin indices and the greek indices are indepen-
dently permutated and this leads to a much enlarged space in each sector. Now p goes
over 1...s' where
S,=(ng+n,,+...)!X(n,,+n,,+...)! 62)
nylml... nlngl...
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This is to be compared to the size of the space of the states [n,,, n,,...; #) for which the
range of u is

S=(ngz+ nhﬁ+"')! (63)
n el

In general, ' is larger than s. ‘

Let us consider the two-particle sector as an example. If we specify occupation
numbers with both indices, we have the two states in the sector (1,,, 1,5):[1,,, 1,53 ,l,{)
with y =1 or 2 which correspond to |1,,,1,;> and [1,5,1,,> anc? another two states in
the sector (1,,,,1,5):1,, 1,5 > with =1 or 2 correqundmg to |1, 1,,> and
|14, 1., (Here we are not using ko, mp etc. in their generic sense; they are used.to
denote specific values of the indices). On the other hand, with the new type of states with
decoupled indices for which occupation number with both indices do not exist, we have
the two-particlestates|1,, 1,;1,, 15; 4> and now p goes over 1 to 4 corresponding to the
four state vectors [1,,, 1,50, 11,55 Ly Ds 1 Lgs g D5 [ 14ps L >- Thus, both the sectors
considered earlier are combined to form a single enlarged sector. Such a regrouping of
sectors with consequent enlargement occurs throughout the Fock space, in the case of
the decoupled indices.

The construction of the orthonormal set as well as the other properties of the
generalized Fock spaces given in §2 goes through for the present case of decoupled
indices also except that the matrices X, M etc. will be of higher dimensions. The
creation and destruction operators cj,, ¢,, also can be constructed in the same way asin
§2. The relevant equations and formulae with the appropriate changes incorporated
are given in Appendix A. They are self-explanatory.

Just as in the case of single-indexed systems (cf. § 2), we can again have a super Fock
space in which all the states connected by independent permutation of the latin and
greek indices are taken to be independent. We shall call the associated statistics as
‘doubly-infinite’ statistics since it is infinite statistics in latin and greek indices separate-
ly. By imposing relations among the permutated states, one can get many kinds of
reduced Fock spaces. Because of the larger number of available states in each sector,
many new types of statistics become possible. These can be discussed and the associated
algebras can be constructed by the same procedureasin § 3, 4 and 5. However, we shall
be brief and restrict ourselves to presenting some of the important resulis only. Some of
these algebras and the new kinds of statistics implied by them have been discussed by us
in greater detail in the earlier papers [18, 19,46].

Doubly-infinite statistics

Consider the cc" algebra described by

c,mcfnﬁ ~ 0, Z cfn.'_ck.', = Oim0ap | (6.4)

‘

where g is a real parameter lying in the range
—-l<g<l. (6.5)

It is the second term on the left of (6.4) in which « and B have been dissociated from
k and m respectively that leads to the decoupling of the latin and greek indices and
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prevents the mapping of latin and greek indices to a single index. One can show [19]
that the inner-product matrices following from this algebra are all positive-definite for
—1 < g < 1. Further, one can show using arguments similar to those in § 5 that there is
no cc relation for this algebra in the same parameter range and so all the states
connected by independent permutation of the latin and greek indices are independent.
The underlying Fock space is the full super Fock space of dimension given by (6.2)and
we have infinite statistics in latin and greek indices separately, or doubly-infinite
statistics. *

For g = 01in (6.4), the two indices can be mapped into a single index and the algebra
reduces to the standard representation of single-indexed infinite statistics described
in§3.1.

The algebra of (6.4) is covariant under the unitary transformations on the latin
indices: '

do= Y Upplnss UlU=UU'=1 (6.6)

as well as under separate unitary transformations on the greek indices:

€= Vs ViV=Wi=1 (6.7)
A

But the algebra is not covariant under the enlarged unitary transformations involving
both the latin and greek indices (for g 5 0). A special case of the unitary transformations
of (6.6) and (6.7) is the phase transformation. Equation (6.4) is covariant under either of
the following phase transformations:

) dka = eid,kcka (68)
€= €0y, | : (6.9)

As a consequence, the number operators N, and N, exist. However, (6.4) is not
covariant under the transformation:

fka = ei¢ka cka (610)

and correspondingly, N,/ does not exist.

We can make g in (6.4) complex provided we order the latin indices and thus we get
an algebra which is the analogue of the g-mutator algebra with complex g for the
single-indexed systems (§ 3): '

CiaCly— a0, Y €l =0 for i<j (6.11)
y

CiuClp— POup 2. ClyCy=0op ‘ (6.12)
7 ‘

where g is complex, but p is real. This again describes the same doubly-infinite statistics;
only the representation and algebra are different. This algebra is no longer covariant
under the unitary transformations of (6.6) and (6.7), but is still covariant under the
phase transformations of (6.8) and (6.9). Positivity of the inner-product matrices
M requires |q| < 1. As for p, similar statements as in §3 can be made.
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Coming back to (6.4), at the boundary of the range of g given in (6.5), r_1ame‘1y.at
q= * 1, we get two new forms of statistics called orthobose and or.thoferml statistics
[18,19,46] which reside in reduced Fock spaces defined by cc relations. The algebras
for these are given below:

Orthobose statistics:

Ckacfnﬂ - 51[3 2 C:;lycky = 5km51ﬂ . R (6 13)
7

ChaCmp — CmaCip = 0. (6.14)
Orthofermi statistics:

CaCmp+ O2p 2. ChisCioy = 61000 (61.5)
¥

CkaCmp T CruaCiip = 0. (6.16)

The inner product matrices M for the reduced Fock spaces generated by these
algebras(eqgs. (6.13)—(6.16)) can be shown to be positive. In both these statistics, any two
states obtained by permuting the greek indices are independent. On the other hand,
states obtained by permuting the latin indices are either equal to each other, or related
by (— 1) where J is the number of inversions in the permutation of the latin indices, for
the orthobose or orthofermi statistics respectively. Thus, we have infinite statistics in
the greek indices and Bose or Fermi statistics in the latin indices. For orthofermi
statistics, we have the further condition:

m.=0or 1 only. (6.17)

It must be noted that the exclusion implied by (6.17) is stronger than the usual Pauli
exclusion principle; (6.17) requires that there cannot be more than one particle with
index k whatever may be its greek index.

We have constructed a local relativistic quantum field theory [47] based on
orthostatistics. It may be worth mentioning that although orthostatistics does involve -
infinite statistics, the problems faced by finite statistics are avoided by associating the
latin index (pertaining to Fermi or Bose statistics) with the conventional degrees of
freedom such as momentum and spin and assigning the greek index (of infinite
statistics) to a new degree of freedom.

Orthostatistics can be generalized to g-orthostatistics. We keep the infinite statistics
in the greek indices but have g-bose or g-fermi statistics in the latin indices. More
precisely, we must regard these as g-orthostatistics lying in orthobosonic and orthofer- -
mionic Fock spaces. We can call them g-orthobose or g-orthofermi statistics.

q-Orthobose statistics:

CiaClp+ 0,5 Y. che, =0 for i< (6.18)
?
uCip—1a[%0,5 . chyes =0, + 9p(lql*=1) 3 ¥ el cy, (6.19)
7 k<j y :
CixCip+q*cicp =0 for i<j (6.20)
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q—Orthofermi statistics:

Ciy ,ﬁ+q5aﬁ2c ¢, =0 for i<j (6.21)

CuClp + Oap Z clycjy =05+ 0g(lgl* — 1) kZ_ 2 Ciy oy (6.22)
<j vy

CiaCip+ q*CjuCip=0 for i<j (6.23)

CiaCip = =0 (6-24)

In (6.18)—(6.24), q is an arbitrary complex parameter. For ¢ = ¢, and g = 0 we shall
have fractional statistics and statistics of frozen order respectively, but in the latin
indices only. Of course one can construct many other algebras corresponding to the
same statistics, just as in the case of the single-indexed systems.

Further, these equations are analogous to (4.3), (4.12), (4.23) and (4.28) which are
covariant under quantum groups. So, another direction is indicated here for the further
generalization of quantum-group-theoretic structures to two-indexed systems.

6.2 Systems in which n, exist

We shall now consider a different kind of double-indexed systems. Here, the occupation
numbers n,, exist, nevertheless mapping to single-indexed systems is not possible
because of the subsidiary conditions that define the reduced Fock space. We give below
three examples of such double-indexed systems, described by the algebras:

(a)

CaCrp + (1= Oiom) Conp Cia = Oim B (1 -2 cltycky> (6.25)
v
ChaCmp T (1= O ) Conp €y = 0. (6.26)
(b) - . ,
Ckac:nﬂ - (1 - (jkm)cjnﬂcka = 5km5aﬂ (1 + Z C;cycky) (627)
y
(1 = G4 CiaCmp — CmpCha) = 0. . (6.28)
) .
CxCmp = (1 = S ) Cong Cia = Ojom O (1 -X c;ycky> (6.29)
Y
ChaCmp — (1 = O4m) CupCra = 0. , (6.30)

Each of these algebras is covariant under the unitary transformation on the greek
indices defined by (6.7), but not covariant under the unitary transformation on the latin
indices defined by (6.6). However, all of them are covariant under not only the phase
transformations in (6.8) and (6.9) but also the ka-dependent phase transformation of
(6.10), hence all the occupation numbers n,, n, as well as n,, exist.

Algebra (a) leads to states which are antisymmetric for simultaneous 1nterchange of
latin and greek indices as in Fermi-Dirac statistics, but the usual Pauli exclusion -
principle is replaced by the stronger or more exclusive exclusion principle, as in
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orthofermi statistics (see eq. (6.17)):

m. =0 or 1 only, (6.31)
where

n=Yn, (6.32)

These are precisely the states that are allowed in the Hubbard model of strongly
correlated electrons in the limit of infinite intrasite Coulomb repulsion if we interpret
the latin index as the site and the greek index as the spin. Hence, this algebra and the
statistics can be called Hubbard algebra and Hubbard statistics respectively. For more
details, the reader is referred to [46]. Since n,, exists, the states of the system can be

Table 4. Statistics and algebras for 2-indexed systems.

Statisticsin  Statistics in

N,, latin indices greek indices cc' algebra
Do not exist infinite ) infinite ClaCg— 49,5 Y. el = OO (realvq)
v
» . | N CeaCrp — 0,5 2. Choc, =0, for k<m -
¥
to =
) ClaChs — P, 2. CyCry=0,, (complex g
Y and real p)
t t e o
» Fermi/Bose » ckacmﬁ i 5:2/5 Z cmycky - 5km 5::[2
Y
T — . .
CCig—=a0,5 3, clc, =0 fori<;
Y
i . t
” g-fermi/ ” CiaCls = X0, 3 chc,
Y
g-bose
=0,,+ 5ap(]q|2 ~-nNyy c}:rcky
k<j 'y
x=|g|* for g-bose; x=—1 for g-fermi
Exist Antisymmetric for total CuChg +(1— Sim) g e

exchange, but n, < 1 :
= 5km6aﬁ (1 - Z Cltycky)
Y

» *  Symmetric for total exchange Cualig — (1 =8, ) o,
for k # m, but infinite
TR . =5km5ap 1+chck
statistics in greek indices , Y
fork=m
” Symmetric for total exchange - CaChg — (1= 8,,)c o,
butn, <1 ‘

='5km6aﬂ (1 - Z clycky>
Y
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characterized as |n,, 1. ..; u>. However, because of the above constraint (eq. (6.31))
which can be rewritten in the form:

Y n,=0o0r1only - (6.33)

this system cannot be mapped into a single-indexed system. _

Algebra (b) can be regarded as the bosonic ‘counterpoint’ of algebra (a). States are
symmetric under simultaneous exchange of latin and greek indices for quanta with
different latin indices (k # m). But for quanta with identical latin indices (k = m), thereis
no restriction on the symmetry with respect to the greek indices. In other words, thereis
infinite statistics in greek indices if the corresponding latin indices are identical.
Whereas algebra (a) leads to more exclusive states than allowed by Pauli, algebra (b)
leads to ‘more inclusive’ states than allowed by Bose. For this reason we may call
algebra (b) as the ‘inclusive counterpoint’ to algebra (a). Such a restriction on the
allowed states of a two-indexed system which distinguishes k = m from k % mcannot be
mapped into a condition for a single-indexed system.

Finally, algebra (c) leads to states that are symmetric for simultaneous exchange of
latin and greek indices, but the stronger exclusion principle of (6.33) is also valid as in
algebra (a). Hence, algebras (a) and (c) represent two forms of statistics which may be
called antisymmetric and symmetric Hubbard statistics respectively both residing
within the same reduced Fock space. On the other hand, algebra (b) and its statistics lie
in a different reduced Fock space which is a Fock space with the new ‘inclusion’
principle.

A compilation of the algebras and statistics for two-indexed systems is given in
table 4. The cc relations are not included since they can be shown to follow from the cc'
algebra, whenever they exist.

7. Summary and discussion

We have formulated a theory of generalized Fock spaces which is sufficiently general so
as to encompass the well-known Fock spaces and many newer ones. We have shown
that such a theory can be constructed without introducing creation and annihilation
operators. The only requirements for constructing a generalized Fock space are to
specify the set of allowed states, and to make it an inner product space. By freeing the
notion of the underlying state space from c and ¢, we are able to define different forms
of quantum statistics in a representation independent manner. Subsequently, one can
construct ¢ and ¢ and their algebras in any desired representation.

Our general formalism not only unifies the various forms of statistics and algebras
proposed so far but also allows one to construct many new forms of quantum statistics
as well -as algebras of ¢ and ¢! in a systematic manner. Some of these are the following:

(a) Many new algebras for infinite statistics

(b) Complex g-statistics and a number of cc' algebras representing them
(c) A consistent algebra of ¢ and ¢! for ‘fractional’ statistics

(d) Null statistics or statistics of frozen order

() ‘Doubly-infinite’ statistics and its representations

(f) g-orthobose and g-orthofermi statistics
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(&) A statistics for two-indexed systems with a new ‘inclusion principle’.
(h) A symmetric version of Hubbard statistics.

Our primary concept is that of generalized Fock space, of which many categories
have been introduced in this paper. Next comes the notion of statistics which is defined
by the type of Symmetry or relationship among the state vectors residing in the
particular type of Fock space. In a given Fock space, more than one type of symmetry
can be postulated, the prime example of this being the symmetry, antisymmetry or
q-symmetry in the bosonic and fermionic Fock spaces. For a given statistics, there can
exist different representations of ¢ and ¢!, leading to different cc' relations. To
summarize, a particular Fock Space can admit different statistics, and a particular
statistics can be represented by more than one cc' algebra. But the important point is
that various statistics and algebras residing in a given Fock space are all interelated.

L | GENERALISED FOCK SPACES —-t]

Fock:  space Bosonic and Pa;aiezmmmc -
with  frozen Fermionic ;n b . Super Fock
order . arabosonic space
spaces
Null | 1 5% || Fractionall | Paca. Infinite
Statistics etatistics) | or I‘?erfm statistics statistics : statistics
statistics
Many
Algebra Ql;:ntum- represen- A{]gebra.s Green's Standard . tat q-mutator’
of Null || 5% tions of of Fac | | trilinear | | epresen. ||TRO30 || FEE
Statistics based q- statis- tional algebra tation with real q plex q
) algebra tics statistics

Canonical .

bosonic Deformed Commutin cAorllxt:x-nut-

and oscilla- fermions §|°

fermionic || tors . L“g

algebras osons

Figure 3. Generalized Fock spaces, quantum statistics, algebras and their inter-
connections.
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These interconnections are given by generalized versions of the well-known Jordan—
Wigner—Klein transformations. No such interconnections exist among statistics and
algebras belonging to distinct Fock spaces. We must further add that equilibrium
thermodynamics of a system of free particles is the same for all the different statistics
and algebras within the same Fock space.

For the sake of clarity, the above-described logical order of concepts as well as their
logical interconnections are presented in the form of flow charts or block diagrams in
figures 3 and 4. The single-indexed systems are considered in figure 3. The Fock spaces
of higher dimension are shown to the right of those of lower dimension. The Fock space
of frozen order as well as the bosonic and fermionic Fock spaces have the lowest
dimension d =1 in any sector {n,,n,...}. Next come the parafermionic and para-
bosonic Fock spaces which have d > 1. At the extreme right, we have the super Fock
space which has the largest dimension d = s in each sector with s given by (2.6). Null
statistics and infinite statistics can be regarded as the opposite limiting cases of
generalized statistics and hence these two forms of statistics along with their Fock
spaces occupy the opposite ends of the diagram. Although not shown separately

( Generalised Fock Spaces with two indices |

Fci’f}t space Fock space Orthobosonic Super Fock
v | with new ‘and or- q?a;es
:;: ;;:;:i' "inclusion” thofermionic ;nt l“:i’o
3 rinciple spaces ecouple
ple P P pace indices
Hubbard Symmetrig Inclusive Ortho g-ortho- Poul.aly )
.. Hubbard .. . L. infinite
statistics L. statistics statistics statistics . .
statistics statistics
Standard Generali-
5 i , 3 ; . N
Hubbard ymmetrid Inclusive algebra sation of | Real Complex:
Hubbard quantum- | [ q repre- | | q repre
algebra algebra of ortho- . .
alge})ra tatisti group al- | | sentation | | sentation
statistics gebras.

Figured. Same as figure 3 for systems with two indices that cannot be mapped into
a single index. ‘

Pramana — J. Phys., Vol. 45, No. 2, August 1995 . 133



A K Mishra and G Rajasekaran

in figure 3 because of lack of space, the bosonic and fermionic Fock spaces are distinct
and each must be separately associated with the complete set of statistics and algebras
shown. Same is true of the parabosonic and parafermionic Fock spaces. Further,
there are two Fock spaces of frozen order, the bosonic and fermionic type. And finally,
there exists another super Fock space with exclusion principle, which is not shown
separately.

Within the parafermionic and parabosonic Fock spaces many ‘deformations’ of
parastatistics and many other representations and algebras apart from Green’s
trilinear algebra [35] are possible. These are indicated by the hanging arrows in
figure 3. Further, as shown by the dotted lines, there is enough room for many new
varieties of Fock spaces and associated statistics and algebras. These possibilities may
be pursued in the future.

Coming to figure 4 depicting the systems with two indices, here again Fock spaces of
higher dimension generally lie to the right. Although shown together, the orthobosonic
and orthofermionic Fock spaces must be regarded distinct. Here, one can'envisage
a richer harvest of new Fock spaces, statistics and algebras because of the two indices
and this again is for the future.

We now conclude with some general comments:

1. We must once again repeat and emphasize the point that most of the g-deformations
on oscillators discussed in the literature amount to only a change of variable and
hence must be regarded as different avatars of bosonic or fermionic systems.
However, one must clearly distinguish those deformations such as the g-mutator
algebra of Greenberg that require the construction of new types of Fock spaces.
Obviously, Greenberg-type of deformations can never be reduced to change of
variables living within the bosonic or fermionic Fock space. Some degree of confusion
prevails in recent literature since this distinction is not kept in mind. (see for instance
[7,32,41,42,48]).

2. In §4, we have shown that algebras that are covariant under quantum groups are
only a particular case of the more general class of algebras that can be derived from the
formalism of generalized Fock spaces. This formalism is based on linear vector space
and linear operators acting on this space; mathematically, no more sophistication is
required. And yet it is capable of handling quantum-group related structures in
a self-contained manner. It would seem that the basic concepts of quantum groups are
contained in the theory of generalized Fock spaces and it must be possible to construct
quantum group itself starting from this theory.

3. We have already referred to the desirability of covariance under unitary transform-
ations that mix the indices as a requirement for the aigebras of creation and annihila-
tion operators. We shall call the algebras that statisfy this requirement as covariant
algebras. This property stems from the superposition principle in quantum mechanics.
Since the indices describe quantum states of a single particle, if we demand that, for any
orthonormal set of quantum states obtained by superposition of the original set of
quantum states, the algebra should retain the same form, then covariance under
unitary transformations follows. Many of the algebras presented in this paper violate
this requirement. Nevertheless, these algebras may be useful to describe specific systems
in specific states such as those encountered in condensed matter physics.
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Some of these noncovariant algebras do have other nice physical and mathematical
properties. Under this category, we may include the algebras that are covariant under
quantum groups or the algebras representing braid group statistics [49,50].

Among the algebras for single-indexed systems that have been discussed, Green-
berg’s g-mutator algebra is the only g-deformation that is covariant under unitary
transformations, but then one has to pay the price of the enlarged Fock space. Every
other known g-deformation leads to a noncovariant algebra.

Greenberg’s g-mutator algebra (including the case g =0 which is the standard
representation), the canonical bosonic and fermionic algebras and Green’s trilinear
algebras for parabosons and parafermions are the covariant representatives living
respectively in the super Fock space, bosonic and fermionic Fock spaces and the
parabosonic and parafermionic Fock spaces. All the other algebras living in these three
categories of Fock spaces, although noncovariant, can be transformed to these
covariant algebras through equations such as (4.32). This is not the case for the algebra
of null statistics or the algebra of infinite statistics with Pauli principle living respective-
ly in the Fock space of frozen order and the super Fock space with Pauli principle. In
these Fock spaces, covariant algebras do not exist.

4. Quantum mechanics is sometimes viewed as a deformation of classical mechanics
since the commutator bracket of quantum mechanics can be related to the deformation
of the classical Poisson bracket, the Planck’s constant playing the role of the
deformation parameter. Relying on similar reasoning it has been proposed that
a deformation of canonical commutation relations will lead to fundamentally new
mathematical or physical structures {51-53]. The analysis presented in this paper
shows that nothing of this sort happens, if viewed within the framework of Fock space.
The transition from classical to quantum mechanics requires the replacement of
the notion of the phase space by that of the Hilbert space or Fock space. In contrast,
we have seen that all the deformations of commutation relations can be formulated
within the framework of Fock space. In fact most of the deformed structures proposed
in the literature exist within the time-honoured bosonic and fermionic Fock spaces
only. Even Greenberg’s infinite statistics lives within a Fock space, although an
enlarged one.

5. While remaining within the framework of quantum mechanics, the general theory of
Fock spaces presented here throws light on the enlarged framework within which the
familiar quantum field theory and statistical mechanics reside and hence may lead to
newer forms of quantum field theory and statistical mechanics. This is infact the main
motivation behind our work. Apart from earlier work on parastatistics [37], we may
mention as examples of new forms of quantum field theories, Greenberg’s construction
[13, 14, 54] of a non-relativistic quantum field theory based on infinite statistics and
our construction [47] of a local relativistic quantum field theory based on orthostatis-
tics. Many other forms of quantum field theories based on the generalized Fock spaces
may be possible. Their formulation and study is an agenda for the future.

6. One may not be able to construct local relativistic quantum field theories corre-
sponding to many of the newer forms of statistics and algebras, since admissible
statistics in relativistic systems is severely restricted by the axioms of local
quantum physics [55]. However, nonrelativistic quantum field theories based on such
‘inadmissible’ statistics are still possible. Condensed matter physics is a rich field where

!
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applications of such theories may be relevant. In fact there s no reason why the
quasiparticles encountered in condensed matter systems should be bosons or fermions
only. We have shown that any of the generalized Fock spaces provides a perfectly valid
quantum-mechanical framework for many-particle systems. Hence, quasiparticles
living'in a generalized F ock space offer an important field of study.

Appendix A

Generalised Fock Spaces for Two-indexed Systems

Here we consider only those two-indexed systems in which n_, do not exist. See §6.1.

The state vectors, inner products and orthonormal sets:

(n;,n;,...;n;,n;...;ylny,n,,...;n,,np...;v)

= 6n’,n,5n;n,,"'5n;n,5n;n," 'M,uv (Al)
g mye . snpng. . iy = ) Xoullgsmye o smpng. vy (A2)

((n;,n;,...;n;,n},...;ull LRI S PRSI

=8 O O B o208, (A3)
979 i ="z Hplig
M™t'=xxt (A4)
I= 3y ¥ Iing,n,,--;n,,n,,..;u>><<ng,n;.-.;n,,n,;---;MH (AS)
NgMh.. p
Ryung..
=3y ¥ lng,n,,...;na,nﬂ...;v)(M'l)v,l(ng---;n,---;il - (Af)
RgMh... A,v ‘
Ry,ng...

Projection operators:

P(ny,n,,...;na,nﬁ...)-

=2 gy smymy. iy gy My sy | (A7)
u
=Zlny,n,,...;na,np...;v>(M‘1)M<ng...;n,,...;iLI ‘ (A8)
AV
I= % POn,..;n,m,..) | (A9)
Hg, Mh...
Ra,ng...

P(ng,n,,...;nz,nﬂ...)l]n;,n;...;n;,n;,...;u)) ~

= 5,,’";...5,,;";...ling...;nz...;p» (A10)
Pn,...;n,.. Mo snl )
=5n’"‘ S MRSV | TS TREYT) (Al1)
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Number operators:
N.= > mPn,...n..;n,..)

Ng...Nk...
By

Ny= 3 ngP(n,...;n,n,...)

S
Nilng...n. g, ng s iy =mllng...m...ngn T
Nyln,...m...;n,,np ..;u)=nk|ng...nk...;na,nﬁ...;u)
Nﬂllng...nk...;na,nﬂ...;u»=nﬂ]|ng...nk...;na,nﬂ...;,u»
Nylng...m s, e 0D =gl My SRy Ry )

[N.N;1=[N,,N;]=[N,,N,1=0 forany k,jand any o, B

Total number operator is
N=2Ni= LN,
Creation and destruction operators:
cp= Y ZAM ny+ 1) on,ng+ 150>

Hg.j.. ;lv
Ay, np...

®<n,.. o3y Mg Y
[c]p: N = - cjﬁéik
[c}ss NI = = €0y
For some particular g,
13,5204 10 =111, 14 1> = (c;a)z CTﬂ(CIm)2|O>

Cjﬁlng...nj...,na,nﬁ...,l>=|\1jﬂ;ng... - a,nﬂ A>
ng..."j+1 Shenpt 1

g e

g 1 - ot g« 1 °
= ZA;Lvai.ln (n1+1) n +1 a,u',>
u'v
Z Au’val = 5;1’1
A=M"1

c}a= y Z(M")Mlljd;ng...nj...;n_a...n,...;A)
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Hy . Mg

@ Mye . Mo My Mg 3 V]

Pramana — J. Phys., Vol. 45, No. 2, August 1995

(A12)

(A13)

(Al4)
(A15)
(A16)
(A17)
(A18)

(A19)

(A20)
(A21)
(A22)

(A23)
(A24)

(A25)

(A26)
(A27)

(A28)

(A29)

137



A K Mishra and G Rajasekaran

References

[1] L C Biedenharn, J. Phys. A22, L873 (1989)

[2] A J Mcfarlane, J. Phys. A22, 4581 (1989)

[3] K Odaka, T Kishi and S Kamefuchi, J. Phys. A24, 1591 (1991)

[4] R N Mohapatra, Phys. Lett. B242, 407 (1990)

[5] M Arik and D D Coon, J. Math. Phys. 17, 705 (1976)

[6] S Chaturvedi and V Srinivasan, Phys. Rev. Add4, 8024 (1992) :

[7] S Chaturvedi, A K Kapoor, R Sandhya, V Srinivasan and R Simon, Phys. Rev. A43, 4555
(1991)

[8] R Parthasarathy and K S Viswanathan, J. Phys. A24, 613 (1991)

[9]1 K S Viswanathan, R Parthasarathy and R Jagannathan, J. Phys. A25,1.335 (1992)

[10] M Arik, Z. Phys. C51, 627 (1991)

[11] T Brzezinski, I L Egusquiza and A J Macfarlane, Phys. Lett. B311, 202 (1993)

[12] R Chakrabarti and R Jagannathan, J. Phys. A25, 6393 (1992)

[13] O W Greenberg, Phys. Rev. Lett. 64, 407 (1990)

[14] O W Greenberg, Phys. Rev. D43, 4111 (1991)

[15] DI Fivel, Phys. Rev. Lett. 65, 3361 (1990)

[16] D Zagier, Commun. Math. Phys. 147, 210 (1992)

[17] S Stanciu, Commun. Math. Phys. 147, 147 (1992)

[18] A K Mishra and G Rajasekaran, Pramana — J. Phys. 38, 1411 (1992)

[19] AKX Mishraand G Rajasekaran, Pramana — J. Phys. 40, 149 (1993); Phys. Lett. A188, 210
(1994)

[20] R F Werner, Phys. Rev. D48, 2929-(1993)

[21] SL Woronowicz, Commun. Math. Phys. 111 613 (1987); Publ. RIMS Kyoto University 23,
117 (1987) 4

[22] W Pusz and S L Woronowicz, Rep. Math. Phys. 27, 231 (1989)

[23] W Pusz, Rep. Math. Phys. 27, 349 (1989)

[24] M Chaichian, P Kulish and J Lukierski, Phys. Lett. B262, 43 (1991)

[25] M Chaichian and P Kulish, in N onperturbative methods in low-dimensional quantum field
theories (Proc. 14th John Hopkins Workshop on Current Problems in Particle T heory,
Debrecen, Hungary, 1990) (World Sci. Pub. Co., River Edge, NJ, 1991) p. 213

[26] R Jagannathan,R Sridhar, R Vasudevan, S Chaturvedi, M Krishnakumari, P Santha and
V Srinivasan, J. Phys. A25, 6429 (1992) -

[27] E G Floratos, J. Phys. A24, 4739 (1991)

[28] SK Soni, J. Phys. A24, L169 (1991)

[29] A Schirrmacher, Z. Phys. C50, 321-(1991)

[30] B Zumino, preprint (1991) LBL-30120, UCB-PTH-91/1

[31] A Shirrmacher, J Wess and B Zumino, Z. Phys. C49, 317 (1991)

[32] L Hlavaty, Czek. J. Phys. 42, 1331 (1992)

[33] D B Fairlie and C K Zachos, Phys. Lett. B256, 43 (1991)

[34] A K Mishra and G Rajasekaran, Preprint IMSc/20-1993

[34a] Eq.(2.13)isanalogous to the relation between the metric tensor and the vierbien in general
relativity.

[35] H S Green, Phys. Rev. 90, 270 (1953)

[36] O W Greenbergand AM L Messiah, Phys. Rev. B136, 248 (1964) ,

[37] Y Ohnuki and S Kamefuchi, Quantum field theory and parastatistics, (Springer-Verlag,
Berlin—Heidelberg-New York, 1982)

[38] J Cuntz, Commun. Math. Phys. 51, 173 (1977)

[38a] Onapplying both sides of (4.14) on the vacuum state, the left hand side vanishes and so for
_ consistency, ¢(—1) =0

[39] J M Leinass and J Myrheim, Nuovo Cimento. B37, 1 (1977)

[40] F Wilczek, Phys. Rev. Lett. 48, 1144 (1982); 49, 957 (1982)

[41] G S Agarwal and S Chaturvedi, Mod. Phys. Lett. A7, 2407 (1992)

[42] CR Lee and J P Yu, Phys. Lett. A150, 63 (1990)

138 Pramana - J. Phys., Vol. 45, No. 2, Angust 1995




Generalized Fock spaces, statistics and algebras

[43] J Hubbard, Proc. R. Soc. (London) A276, 238 (1963)

[44] J Hubbard, Proc. R. Soc. (London) A285, 542 (1965)

[45] M Ogata and H Shiba, Phys. Rev. B41, 2326 (1990)

[46] A K Mishra and G Rajasekaran, Pramana — J. Phys. 36, 537 (1991); 37, 455 (E) (1991)

[47] A K Mishra and G Rajasekaran, Mod. Phys. Lett. A7, 3525 (1992)

[48] T W Goodison and D J Toms, Phys. Rev. Lett. 71, 3240 (1993)

[49] Non-perturbative quantum field theory: mathematical aspects and applications (Selected
papers of Jiirg Frohlich), Advanced Series in Mathematical Physics 15, (World Scientific
1992)

[50] K Fredenhagen, M Gaberdiel, S M Riiger, Scattering states of plektons (particles with
braid group statistics) in 2 4+ 1 dim. QFT, preprint Hamburg University and DAMTP
Cambridge, 1994

[51] SV Shabanov, Preprint BuTP-92/94

[52] SIida, Phys. Rev. Lett. 69, 1833 (1992)

[53] T Suzuki, J. Math. Phys. 34, 3453 (1993)

[54] O W Greenberg, Physica A180, 419 (1992)

[55] R Haag, Local quantum physics (Springer, Berlin 1992)

Pramana - J. Phys., Vol. 45, No. 2, August 1995 139



