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New forms of quantum statistics
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Abstract. We propose a new two-parameter deformation of the algebra of creation and
destruction operators, which allows the construction of a new family of Hillbert spaces with
positive definite inner product. This provides a continuous interpolation between two new
forms of statistics named orthofermi and orthobose statistics. Positivity of the inner product
‘over the two-parameter region is discussed.

Keywords. Quantum statistics; g-deformation; Heisenberg algebra.

PACS Nos 03-70; 05-30

Recently, attention has been devoted to the interpolation between Bose and Fermi
statistics using g-deformation of the Heisenberg algebra of the creation and destruction
operators (Greenberg 1991; Fivel 1990; Mohapatra 1990; Chaturvedi et al 1991). In
this note we propose a new two-parameter generalization of the algebra leading to
two new forms of quantum statistics named orthofermi and orthobose statistics. A
new family of Hilbert spaces with a positive-definite metric is constructed which
interpolates analytically between the Fock spaces representing orthofermi and
orthobose particles.
The generalized commutation relation which we propose is

ckacLﬁ — (g, — Q2)C,t.pcka —da 5aﬁz crtrycky'= Oiem Oup )
Y

where ¢ and c' are destruction and creation operators and q, and g, are real
parameters. In a physical problem, the latin indices k,m... and the greek indices
®,B,7... may correspond to space and spin indices respectively and so we may call
them accordingly. In general, for arbitrary q, and g, there is no commutation rule
on cc or cfc. " :

For ¢, =0 and g, = F 1, the above reduces to Fermi and Bose statistics. The
case q; =g, = — 1 corresponds to the orthofermi statistics introduced in an earlier
paper (Mishra and Rajasekaran 1991) and the case ¢, =g, = + 1 can be called the
orthobose statistics. These four cases of Fermi, Bose, orthofermi and orthobose
statistics are the four corners of a parallelogram in {a1,49,} space (see figure 1) such
that on the two diagonals of the parallelogram, we have two' families of algebras for
which Hilbert-spaces with positive definite metric exist, one interpolating between Fermi
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and Bose statistics and the other interpolating between orthofermi and orthobose
statistics. The former was studied in earlier literature (Greenberg 1991; Fivel 1990)
and the latter is a new one.

We assume the existence of a vacuum state |0) annihilated by all the annihilators:

€10 =0. 2

The Fock space is constructed in the obvious way. We consider the set of states which
are linear combinations with complex coefficients of the monomials cf,cl,...clI0)
and their duals <0|c,,...Cns. Their inner product (0|Cm,...cj*p10> or in fact the
vacuum to vacuum matrix element of any polynomial in the ¢’s and ¢Ps arbitrarily
ordered, can be calculated using (1) and (2). No commutation rule on cc or c'c' is
required for this.

We must enquire into the restrictions imposed by the positivity of the inner product.
We first do this for the two-particle sector. Consider the two-particle states with
distinct space labels (k # m) and distinct spin labels (a # f). (If these are not distinct,
we get only weaker conditions). There are four states:

11y = 4105, 125 = chclyl0),
13> = cf",,c,ta|0>, 14> = clpcfnuIO).

We compute the inner product between these four states and their duals and write
the result as a 4 x 4 matrix:

1> 2> 13> 14>

1 1 42 41— 92 0
Q2| qs 1 0 g1 —4qx
Gl 1414 0 1 q2
4 0 g1—4d2 942 1

The eigenvectors of this matrix are

1 1 1 1
1 1] |—1 -1
R Y O and e
1 -1 1 —1

with corresponding eigenvalues (1 +g¢,), (1 — gy +24,); (1 —q,) and (1 + q; — 2q;)
respectively. The form of these eigenvalues leads to the following consequences:

(a) All the four eigenvalues are positive inside the parallelogram BCFG depicted in
figure 1. On each of the four boundaries of the parallelogram given by the straight lines:
g;=—1,q,=%(q,—1), g, =1 and g, =3(q, + 1), one of the eigenvalues vanishes.
Outside the parallelogram, one or more eigenvalues becomes negative. Hence the
parallelogram demarcates the boundaries of the parameter space for which two particle
vector space with positive definite metric exists.

(b) Since on each of the four sides BC, CF, FG and GB, one of the eigenvalues
becomes zero, the corresponding eigenvector can be regarded as a null vector since
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Figure 1. The parallelogram which bounds the allowed region in the parameter space for
the two-particle sector. The four corners B, F, C and G correspond to Bose-Einstein,
Fermi-Dirac, orthobose and orthofermi statistics respectively. The boundary of the allowed
region for the three-particle sector with the spin index taking two values is shown as dashed
line.

it has zero norm. These null vectors along FG, BC, BG and FC are respectively the
following:

(ct et mg T cmpcm + cmck/, + c ct 0> =0 (3)
(chuchs — chpch — chachy + clpch )10 =0 {4) .
(CZaCIm - CT cka + “mack[} - Ck/sc 2100 =0 | (5)
(ChyChp + Chpchy — ChaCls— clpct)10> =0. (6)

Thus, along each of the boundaries the vector space becomes three-dimensional.

(c) At each of the four corners B, C, F and G two of the eigenvalues vanish and
80 two eigenvectors become null vectors. Hence at the corners, the Hilbert space is
reduced to a two-dimensional one.

Note that although there is no commutation rule on cc or c'c' for any point
inside the parallelogram, weaker forms of such rules (3), (4), (5) and (6) get generated
on the four sides of the parallelogram, through the vanishing of the norms as explained
above. At each of the four corners of the parallelogram, two such rules corresponding
to the two sides meeting at that corner are simultaneously valid. Thus, for instance,
at F, both (3) and (6) are valid, which can be combined to give

(cka mp +c ,Bcka)|0> 0. (7)

Further, (7) can be replaced by the operator identity

b + —
cza ;rnﬁ' + Cm[}cza =0. . (8)
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Similar things occur at all the four corners, thus leading to the strong commutation
rules which we shall presently write down. We have however found that the
replacement of eqs (3), (4), (5) and (6) by the corresponding operator identities is not
possible and hence along the four sides, we have only the weaker conditions on the
state vectors. .

Let us now present the equations valid at the four corners of the parallelogram:

i) At the corner F (Fermi-Dirac statistics)

Ckaclt,s + c;rnﬁcka = OimOup 9)
Ck,,cmﬂ + cmBCka = 0 (10)

ii) At B (Bose-Einstein statistics)

ckacInﬂ - C;rnﬂcka = 5km 5aﬁ (1 1)
CkaCmp — CmpCra =0 (12)

iii) At G (Orthofermi statistics)

Cra CLB = 6km 5aﬁ - 501/3; c;fny cky (1 3)

Ckacmﬁ + Cmackﬁ = 0. (14)

iv) At C (Orthobose statistics)

Cra CI,ﬁ = Otn Oap + 5aﬁZ¢Lycky (15)
¥
ckacmﬂ - cmackﬂ =0. (16)

Orthofermi statistics was studied in an earlier paper (Mishra and Rajasekaran 1991)
and it is characterized by a new exclusion principle which is more “exclusive” than
Pauli’s exclusion principle: an orbital state shall not contain more than one particle,
whatever be the spin direction. Further, the wave function is antisymmetric in spatial
indices alone, with the order of the spin-indices frozen. Both these properties follow
from (14); the positions of ¢ and f in this equation must be particularly noted.
Orthobose statistics is the corresponding Bose-analogue; from (16), it follows that
the wave function is symmetric in spatial indices alone, with the order of the
spin-indices frozen. '

Thus, at the four corners of the parallelogram, we have four kinds of statistics
namely, Fermi-Dirac, Bose-Einstein, orthofermi and orthobose statistics which
respectively correspond to total antisymmetry, total symmetry, spatial antisymmetry
and spatial symmetry of the wave function.

One peculiarity of the new forms of statistics concerns the number operator. It was
already pointed out in the earlier work (Mishra and Rajasekaran 1991) that, for
orthofermi statistics, the total number operator for specific spatial index defined as

Nk = ana = chacka ' (17)
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has the usual commutation relation with Cmp but the number operator n,, for specific
spatial and spin index does not have the expected commutation relation with Cmp-
Exactly the same situation prevails in the case of the orthobose statistics too. For
general ¢, and gq,, number operators bilinear in ¢ and ¢' do not exist. At g, =4, =0,
the number operator can be expressed as an infinite series in powers of ¢ and c'
(Greenberg 1990). For g, =0 and for arbitrary q, the form of this infinite series is
known only for the case of a single mode system (Chaturvedi et al 1991; Chakrabarti
and Jagannathan 1991). .

We now come to the diagonals. Along the diagonal BF, (g, =0), the algebra (1)
reduces to the g-mutator algebra of Greenberg (1991):

cltacrt;ﬁ —4q; CrTnﬁcka = 5km5aﬂ (18)
for which Fivel (1990) and Zagier (as quoted by Greenberg (1991)) have already
proved the positive-definiteness of the metric for the n-particle sector in the region

—1<q, < 1. These are ‘q-ons’ having orbital and spin indices.
Along the other diagonal CG (q, = g,), we have the algebra:

Ckacfn,e —4; 5aﬂch1:qrcky = Gy 5ap- (19)
¥
In this case, the inner product in the n-particle sector is ,
C0l.... CyCmpCrachiclicl. 10> = q58,,84,0,,. .. (20)

where (p,s,q...) is some permutation of (k,m,t...) and P is the number of inversions*
in this permutation of orbital indices. We see that the spin-ordering is frozen and as
for the orbital indices the behaviour is exactly that of g-ons possessing only orbital
index. Hence, the Fivel-Zagier proof of positivity of the metric for arbitrary n-particle
states is applicable along this diagonal also, for — 1< g, <1. This algebra (19)
interpolates between orthofermi and orthobose statistics.

The result (20) also suggests the possibility of factorization between the orbital and
spin indices. We assume

. Cra =fkbu (21)
Jiby = b, fi=flb,—b,f]=0 | (22)
fmfz—qz.fltfm:ékm (23)

and ask what is the algebra satisfied by b, if we impose the algebra (19) on Cre- The
answer is the following:

bab} = 0p : (24)
Yblb,=1. . (25)
- ,

Equations (24) and (25) define an algebra originally studied by Cuntz (1977). Thus,
on the diagonal CG, the factorization ansatz leads to an elegant decomposition of
Ckq I0tO g-mutator algebra in orbital indices and Cuntz algebra in the spin indices.

* Number of inversions is defined as the minimum number of transpositions of successive indices necessary
to bring (k,m,t...) into (p,s,q,...) (Greenberg 1991).
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What about the positivity of the inner product in the two-dimensional region? Do
the sides of the parallelogram continue to be the boundaries of the region of positivity
for three and more particles? We have found that the answer is in the negative. The
relevant calculations become much more complex since the total number of states
increases rapidly. The details will be presented in a longer paper, but the result for
three particles (with spin indices taking only two values) is shown in figure 1. Thus
the region of positivity shrinks. How does the boundary of this region move as the
number of particles n increases further and what is the limiting boundary for n— c0?
These are open questions for the present. However, we know that complete Hilbert
spaces with positive-definite metric exist along the two diagonals and the final answers
must be consistent with this fact.

Finally we may mention that the algebra described by eq. (1) is invariant under
the unitary transformations on the space indices:

da=Y UppCps UU=UU"=1 (26)
p
as well as similar unitary transformations on the spin indices:
=3 VuCus VIV=VV=1- (27)
A

Invariance under such unitary transformations is an important requirement on a
quantum system in the general context as we have already discussed earlier (Mishra
and Rajasekaran 1991). It is this requirement which dictates the form of the term
420.4Z,ch.ci, in eq. (1). Further, it is easily seen that more terms such as g38,, %,
e and 440,05, €1 ¢, can be added to eq. (1) and the equation will still be
invariant under the above unitary transformations. These more general algebras as
well as related issues will be discussed elsewhere.
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