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i Abstracts Weconsider spinior; séalar and vector fields with colour degrées of frecdom and’
.-+ ‘find the.classical solutions when the constrdint of vanishing colourcurrents:is-imposed.. We:
find that there are no non-trivial ¢-number solutions for spinor fields transforming as a triplet

under SU(3), although solutions exist for scalar and vector fields, We'also show that the colour
current of spinor fields coupled to an instanton is zero.
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1. Introduction = toiru e i i el

Some time ago, Amati and Testa (1974) proposed a model of quark confinement in
which one has coloured quarks which satisfy the constraint of vanishing colour
currents. This model was interpreted by them as the strong coupling limit of quantum
chromodynamics (qcp). Using functional methodsit has been shown that this model is
in fact equivalent to qocp and the equivalence was interpreted as due to the
compositeness of the gluons (Rajasekaran and Srinivasan 1978a)."! = %
 The model of colour confinement (for colour SU(2)) is defined by the equations;,
(iyuau - m)'l/ = 05 (1)
%’u’fil// =0, i= 1, 2, 3 S i g I (2)
Here y is the quark field whichisa doublet under the colour SU(2) group and 7’ are the
Pauli matrices. Interesting classical solutions of this ‘system .ha\\{e,;béen obtained
(Rajasekaran and Srinivasan 1978b). The plane wave, positive energy solutions are
given by: L e e T
e - Y

e v..;;‘. ‘v.\,~ 3 . ’ '_'—-.4‘ o a.p"" LY ' «:‘:’;3;\51»"“."' ril'.A LRI
o & |exp (=i %), Vo= 7o et exp( ip-x) (3)

FECE IS MRS et e

‘//1=

Here Y, and ¥, are the isospin up and down coxﬁbdne‘fit§ 'df"‘i//f':an‘aaé" and n are two-
component spinors which are :chosen to be mutually orthogonal and to have.equal
normalization h S ERTR A P P SR AL EU NI TS T T RN AT I it

gte=qty, Eq=nté=0 o (4)
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Negative energy solutions can be constructed similarly. The original eight-fold
~ multiplicity of the plane-wave solutions of (1) is reduced to a four-fold multiplicity
because of the constraint of vanishing colour densities (2). ,

In this paper, we first extend the work to scalar and vector fields transforming as
doublets or triplets under colour SU(2)and find the solutions of the free-field equations
when we impose the constraint of vanishing colour densities. We find that the
amplitudes for different colour components in a multiplet are related for plane wave
solutions. We next take up the case of SU(3) which is more interesting physically. We
find that there is no non-trivial solution to the model with Dirac fields transforming asa
triplet under SU(3). However, non-trivial solutions exist for scalar and vector fields.
These results are expected to play an important role in the quantized version of the

models.
We have one more interesting observation to make. The solutions of the Dirac

equation for massless quarks in the presence of instanton field configurations have been
obtained in some other context for SU(2) ('t Hooft 1976a). We find that for these
solutions too, the quark-part of the colour current vanishes.

2. Colour SU(2)

The colour-confinement solutions for the case of Dirac fields transforming as a SU(2)
doublet have been already given elsewhere (Rajasekaran and Srinivasan 1978b) and also
briefly described in the introduction. Here we shall restrict ourselves to the cases of
scalar and vector fields.

2.1 Scalar fields
The currents J* for a colour multiplet of scalar fields are given by
It = @)} Oushic | )

where 7 are the generators in the representation to which ¢; belong. So, we have to
solve for

(O+m*)¢; =0, (6)

and .
(Ti)jk ‘f’f ap O = 0. @)

2.2 Scalar doublet

For the doublet, T; = o; where o; are the Pauli matrices. Equation (7) would imply
91001 = $10ut; } )
¢’fau¢2 = ¢3 6“ ¢, =0.

It is easily seen that if one of the components is zero and the other is real, (8) is satisfied.
There are other solutions. Consider plane wave solutions of (6)

¢; = a; exp (ik - x) + b, exp (— ik - x), (k? = m?). (9)

g
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It can be easily verified that (8) will imply the following relations:
lag|? = 1b,|* = |a, > — b, |, | (10)
afa, = btb,.
The solution of these equations is given by
ay/by = ay /b, = expiy (11)

where x is an arbitrary phase factor.

2.3 Scalar triplet
For the triplet,

Ty = — L&, !
and we shall take the fields to be real. Then (8) will imply that:

Oy x¢p =0, (12)
where the cross product is in the colour space. Consider the plane-wave solutions,

¢ = Aexp (ik* x)+ A* exp (— ik - x). (13)
From (12) it follows that

AXA* =0, (14)

that is, the amplitude of positive and negative frequency components should be parallel
in the colour space.

24 Vector fields
The expression for the colour current for a complex multiplet A,; of vector fields is
iven by:
BYER DY gt = — D@ Ay — 4% v o as
— (0" A} — D’ A AY).
The vector fields satisfy

(O4+m*)Aar =0, 3,4*=0. (16)
The constraint equation is
@l Ay — A 4, 17)

— (0“4} - APAY] =0,
Consider the plané wave solutiens of (16):
Ay =&, expik- x+e&,; exp(—ik - x). (18)
We will now take the case of the doublet and triplet representations separately.
2.5 Vector doublet
In this case, (17) will imply the foilowing relations between the polarization vectors:

Tkt ok~ T RaT ko

Eur Eu1 —Euy Eu1 = €y Eup — €27 Eya, (19)
Fokot k-
Ear* el = Ep*Epn.
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These conditions aresimilar to:(10)for the scalarfields. A particularsolution would be:
gy € = exp (i) ;. et e (20)‘
2.6 Vector triplet ST e

We shall take the fields to be real for this représentation. Therefore = =7

vl gtk = ok
l SM—“E# __.8#.

Then the constraints will imply that
g, X a:'; =, RTINS +(21)

~ where ¢ indicates a vector in colour space. That is, the positive and negative frequency.

components of the polarization should be parallel in colour space, after taking the
scalar product in space t1me components |

!‘_‘,:.l ,2{,
3. Colour SU(3) co e N
R R E L TN AT R DA FO R SL T CE TP AR SRS ¥ SR S UCHERL IS £ S U A R S NS ST PRl B APEEaE

3.1: Dirac triplet

This is the physically important case of quarks. The constramts of vamshmg colour
curents are ,

Y W}’Mla‘/’ =0, ‘:i‘a‘\'f‘"?‘1_'.‘[',1’.‘5.‘-;,85'4 R RPAAL TR T HEN SRR ' TN VR i (22)

where 1, are the 3 x 3 matrices corresponding to the generators of SU(3) and y/is a
colour triplet. We will show that, in contrast to the SU(2) case, there are nonon- tr1v1a1 e-
number solutions to these 8 equations.

- We. mtr.od,,uce,,t,hqlno‘tat,;on.,‘. R E LM AN EeS BN LT B TRIR I RIS SOSTRE T RS

Y=Y J =123 o e e T @3y

where J refers to the colour index and consider the followmg set: of 12 four-component

Sp]ﬂOI‘S \“k .’: S S
vl own iyl Freotn 0 e T

S Wi ¥i oy,
v Wk u3 vl -
Using the explicit form of the A, matrices and the general propertles of the Dirac y,
matrices, it is easily shown that the constraints in (22) take the followmg form

YTyt = (1 not summed),’ B O (243)
l//?”!/fj=sk5,-j (k=1,2,3, e (24b)

where #'and'’s, are arbitrary numbers,

Ouraimis to find a set of 12 four-component objects y/# satisfying the orthogonahty-v
cum-normalization conditions in (24). It turns out that these conditions are too strong;
there is not enough room. in, the-four-dimensional linear vector ‘space to. admit 12,
vectors with these properties. We proceed to demonstrate thls ,

“Without loss of generality, we may choose the normalization constant rin (24) to be
unity. Since all the 12 vectors have equal norm according to (24a), it is clear that none of
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them can be taken to be the null vector. Since (24a) also implies that /¢, /2 and ¥ are
mutually orthogonal, we may choose these three as basis vectors. Let ¢ be the fourth
basis vector which is orthogonal to these three. In terms of these four basis vectors, we
can now write down, the remaining 9 vectors y¥. Since y/* is orthogonal to 9 and 9
according to (24b), its most general form is

Vi = at +x,9. (25a)
Similarly, we have

i = by + i, (25b)

Vi = cdd+ 29, (25¢)
where a,, by, ¢, X, y, and z, are some numbers. But, according to (24a)

Yityk=0  for i#j (knotsummed). (26)

This requires
“XE Yk = Yz, = z¥x, =0 (k not summed), 27

which implies that for a given k, at least two of the three numbers (x,, y,, z,) should be
zero. Let us choose for instance

xlﬁéo’ y1=0’ Zl=0
X2=0, y,#0, 2z,=0 (28)
JC3=0, y3=0, 237&0.

Then using (25)

Vi =b1y3 } | (29)
‘l/% = ba'//g- ‘

In view of the definitions of ¥ given in (23), (29) implies that ¢J is a simultaneous
eigenfunction of the Dirac matrices %' and 3% which contradicts the anti-
commutation relations of these matrices. Any other choice of (x,, y,, z;) consistent with
(27) leads to a similar result. Hence it follows that there are no non-trivial c-number
solutions § to (22). ,

The above argument can be easily extended to any SU(n) for n > 3. So, c-number
spinor functions with vanishing current densities do not exist for SU(n) (n =3).

The non-existence of solutions except for SU(2) has a simple physical interpretation.
For the SU(2) case, the spin—up and spin-down Dirac wave functions turned out to be
the colour isospin up and down components required for the SU(2). doublet
(Rajesekaran and Srinivasan 1978b). No more kinematic degree of freedom is available
fora spin 1/2 field to accommodate the larger number of colour-components necessary
for SU(r) (n = 3).

3.2 Scalar triplet
For plane wave solutions

¢: = a;expik  x+ b exp (— ik - x), (30)

§ However, it is pbssible to find solutions in terms of Grassmann numbers.

P—2 i
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the constraint (7) will yield the relations .
|ay|* =]y |* = |az | = [b2|* = |a5]* = [ b ]*
a?aZ = b:sz,

afa3 = bilkb3’

a¥a; = b%bs, (31)
The solution of these relations is given by
ay/by = ay /b, = a3 /by = expiy, (32)

where y is an arbitrary phase factor. This solution is very similar to the SU(2) doublet
solution.
3.3 Vector triplet

In this case also, the solutions are a straightforward extension of the SU(2) doublet case.
For plane wave solutions

Ay = ¢ expik - x+e; exp(—ik- x), (33)

the polarization vectors satisfy the relations

+osk T ~ Ko~ otk pt ok
8#1 8#1—“8#1 8#1 —8u2 8#2 8#2 3#2

= 3:3* 8:3 —&,3%8,3. (39)
+i*8+ pu uj = 0 i %J
As in the SU(2) doublet case, a particular solution would be
& = exXpi¢ £ (35)

4. Solutions in the presence of an instanton

Consider a doublet of Dirac fields coupled to SU(2) colour gauge fields 45 in Euclidean
space-time. The equations of motion are

[l'yn(a,u - IgAu - m] ‘f’ = 0» (36)
and |
,rﬂ
DﬂFflV = _—u;'yv? * . (37)
Consider the instanton solution of SU(2) gauge theory in Euclidean space-time*
4 Mg ¥,p’
Al = S 38
LT g (P pPxt G9)

where 77,,, is a fully antisymmetric object defined by

Naij = €aijy  Ma0i = — i

* Our notation follows that of Carlitz (1978), with the rotation parameter Q set equal to zero.
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and p is a parameter associated with the size of the instanton; here the instanton is
located at the origin. Note that A, 1s a gauge transform of the usual instanton solution
(Belavin et al 1975)

2 ”a VxV
Ap=-—3" 2
g x“+p , ‘
It has been shown ('t Hooft 1976a) that the solution of the Dirac equation in the
presence of the instanton field is given by

Y= 2\/gpx;yuxz 372 (39)
n(x?)' 12 (x? 4 p2)3/
with
1 : 1 i . _ 40
XX = 5( +vs)[z+ﬁnmr mv], (40)

Consider the colour current of the Dirac field

%?ﬁy#ﬂ// = % Tr [TW%’;J, (41)

where the trace is over both internal and Dirac components.
Now, from (39),

Tr [W’Wu] =

From (40) the right side of this equation vanishes as it involves the trace of an odd
number of Dirac matrices.

Hence
Yyt =0 (43)

Thus we have shown that the colour-current of spinor fields coupled to the instanton is
zero. Further, (43) implies that (37) is also satisfied, as the instantons are solutions of

D,F2, =0,

Therefore the fields in (38) and (39) simultaneously solve (36) and (37).

To conclude, when the earlier authors solved the Dirac equation in the instanton
background field, they did not refer to the equation of motion of the gauge field with the
source term. We have shown that this equation of motions is, in fact, satisfied.

For a colour multiplet of scalar fields, the equation of motion is

2, 92,0 =0, (44)

2p%x;x,

D2+ Tr (192 xTv0YsV0¥u)- (42)

where
D, = (6u -—igT"Az),

T* being the generators in the representation of the scalars. But (43) has only a trivial
solution, when A4y is an instanton field configuration ("t Hooft 1976a).

5. Discussion

We have looked for the classical solutions of free field equations for SU(2) and SU(3)
colour multiplets of spinor, scalar and vector fields when the additional constraint of
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vanishing colour currents is imposed. We have found that for the physically interesting
case of a spinor triplet of SU(3) there are no non-trivial c-number solutions. This result
may have important implications for the Amati-Testa model of quark confinement.
There are non-trivial solutions for other cases, and these are exhibited. We have also
considered the solution for a massless Dirac field in the presence of an instanton field
and have shown that the colour current vanishes in this case. It would be interesting to
study the significance of these results in the quantized version of the models considered

above,
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