Detecting heavy charged Higgs bosons at the LHC with triple b-tagging

S. Moretti ${ }^{1,2}$ and D.P. Roy ${ }^{3}$
${ }^{1}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
${ }^{2}$ Dept. of Radiation Sciences, Uppsala University, P.O. Box 535, 75121 Uppsala, Sweden
${ }^{3}$ Tata Institute of Fundamental Research, Mumbai - 400 005, India

Abstract

We investigate the charged Higgs boson signal at the LHC using its dominant production and decay modes with triple b-tagging, i.e. $t H^{-} \rightarrow t \bar{t} b \rightarrow b \bar{b} b W^{+} W^{-}$, followed by leptonic decay of one W and hadronic decay of the other. We consider the continuum background from the associated production of $t \bar{t}$ with a b - or a light quark or gluon jet, which can be mis-tagged as b-jet. We reconstruct the top quark masses to identify the 3rd b-jet accompanying the $t \bar{t}$ pair, and use its p_{T} distribution to distinguish the signal from the background. Combining this with the reconstruction of the $H^{ \pm}$mass gives a viable signature over two interesting regions of the parameter space - i.e. $\tan \beta \sim 1$ and $\sim m_{t} / m_{b}$.

The Minimal Supersymmetric Standard Model (MSSM) contains two complex Higgs doublets, ϕ_{1} and ϕ_{2}, corresponding to eight scalar states. Three of these are absorbed as Goldstone bosons leaving five physical states - the two neutral scalars (h^{0}, H^{0}), a pseudoscalar $\left(A^{0}\right)$ and a pair of charged Higgs bosons $\left(H^{ \pm}\right)$. All the tree-level masses and couplings of these particles are given in terms of two parameters, $M_{H^{ \pm}}$and $\tan \beta$, the latter representing the ratio of the vacuum expectation values of ϕ_{1} and $\phi_{2}[1]$. While any one of the above neutral Higgs bosons may be hard to distinguish from that of the Standard Model, the $H^{ \pm}$ carries a distinctive signature of the Supersymmetric (SUSY) Higgs sector. Moreover the couplings of the $H^{ \pm}$are uniquely related to $\tan \beta$, since the physical charged Higgs boson corresponds to the combination

$$
\begin{equation*}
H^{ \pm}=-\phi_{1}^{ \pm} \sin \beta+\phi_{2}^{ \pm} \cos \beta \tag{1}
\end{equation*}
$$

Therefore the detection of $H^{ \pm}$and measurement of its mass and couplings are expected to play a very important role in probing the SUSY Higgs sector.

Unfortunately it is very hard to extend the $H^{ \pm}$search beyond the top quark mass at the Large Hadron Collider (LHC), because in this case the combination of dominant production and decay channels, $t H^{-} \rightarrow t \bar{t} b$, suffers from a large QCD background. The viability of a $H^{ \pm}$signal in this channel had been investigated in [2,3] assuming triple b-tagging. Recently it was shown that with four b-tags one can get a better signal/background ratio, but at the cost of a smaller signal size [4]. Similar conclusions were also found for the $H^{ \pm}$signal in its τ decay channel [5]. The charged Higgs boson signal at the LHC has also been investigated recently in subdominant production channels, $H^{ \pm} W^{\mp}[6]$ and $H^{ \pm} H^{\mp}$ [7], as well as the subdominant decay mode $H^{ \pm} \rightarrow W^{ \pm} h^{0}$ [8]. But it turns out to be at best marginal in each of these cases.

It is clear from the above discussion that the largest size of the $H^{ \pm}$signal is expected to come from its dominant production and decay channels with triple b-tagging. The purpose of this paper is to reinvestigate the $H^{ \pm}$signal in this channel in the light of the theoretical and experimental developments since the last analyses $[2,3]$. Several distinctions of the present study in comparison with those earlier ones are worth mentioning here.
i) The signal cross-section was calculated in [2] and [3] using the $2 \rightarrow 2$ and $2 \rightarrow 3$ processes respectively, i.e.

$$
\begin{equation*}
g b \rightarrow t H^{-}+\text {h.c. } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
g g \rightarrow t \bar{b} H^{-}+\text {h.c. } \tag{3}
\end{equation*}
$$

followed by the $H^{-} \rightarrow \bar{t} b$ decay. Here we shall instead combine the two cross-sections and subtract out the overlapping piece to avoid double counting, as suggested in [9,10].
ii) We shall use the p_{T} distribution of the 3rd b-tagged jet, accompanying the $t \bar{t}$ pair, for a better separation of the signal from the background.
iii) The actual value of top quark mass $(175 \mathrm{GeV})$ will be used here instead of the illustrative values used in [2,3].
iv) Besides we shall be using current estimates of the b-tagging efficiency and rapidity coverage for the LHC [11] along with more recent structure functions [12,13].

The cross-section for the $2 \rightarrow 2$ process (2) is simple to calculate, while analytic expressions for the $2 \rightarrow 3$ processes (3) can be found in [4]. The resulting signal cross-sections shall be obtained by convoluting these partonic cross-sections with the MRS-LO(05A) parton densities [12]. We have also checked that essentially identical results are obtained with the CTEQ4L parton densities [13]. It may be noted here that both these cross-sections are controlled by the Yukawa coupling of the $t b H$ vertex,

$$
\begin{equation*}
\frac{g}{\sqrt{2} M_{W}} H^{+}\left[\cot \beta m_{t} \bar{t} b_{L}+\tan \beta m_{b} \bar{t} b_{R}\right]+\text { h.c. } \tag{4}
\end{equation*}
$$

Consequently one gets fairly large values of the signal cross-section at the two ends of the MSSM allowed region,

$$
\begin{equation*}
\tan \beta \sim 1 \text { and } \tan \beta \sim m_{t} / m_{b} \tag{5}
\end{equation*}
$$

with a pronounced minimum at $\tan \beta=\sqrt{m_{t} / m_{b}}$.
The question of overlap between the two $H^{ \pm}$production processes (2) and (3) has been recently discussed in $[9,10]$. The b-quark in (2) comes from a gluon in the proton beam splitting into a collinear $b \bar{b}$ pair, resulting in a large factor of $\alpha_{S} \log \left(Q / m_{b}\right)$, where the factorisation scale is

$$
\begin{equation*}
Q \simeq m_{t}+M_{H^{ \pm}} \tag{6}
\end{equation*}
$$

This factor is then resummed to all orders, $\alpha_{S}^{n} \log ^{n}\left(Q / m_{b}\right)$, in evaluating the phenomenological b-quark structure function $[14,15]$. The 1 st order contribution to the structure function is given by the perturbative solution to the DGLAP equation,

$$
\begin{equation*}
b^{\prime}(x, Q)=\frac{\alpha_{S}}{\pi} \log \left(\frac{Q}{m_{b}}\right) \int_{x}^{1} \frac{d y}{y} P_{g b}\left(\frac{x}{y}\right) g(y, Q), \tag{7}
\end{equation*}
$$

where $P_{g b}(z)=\left(z^{2}+(1-z)^{2}\right) / 2$ is the gluon splitting function. The resulting contribution to $g b \rightarrow t H^{-}$is already accounted for by $g g \rightarrow t \bar{b} H^{-}$in the collinear limit. Thus while combining (2) and (3), the above contribution should be subtracted from the former to avoid double counting.

Fig. 1 shows the cross-sections for (2) and (3) at the LHC energy (14 TeV) against the $H^{ \pm}$mass at $\tan \beta=40$, using $m_{b}=4.5 \mathrm{GeV}$. It also shows their combined value, after subtracting out the $g b^{\prime}$ contribution from the former. While the cross-section for (2) is $2-3$ times larger than that for (3), the bulk of the former is accounted for by the $g b^{\prime}$ contribution. Hence the combined cross-section is larger than that of (3) by only a factor of about 1.6. We also have checked that detection efficiencies for the processes (2) and (3) are very similar, since the extra b-jet in the latter case is relatively soft (missing the $p_{T}>30$ selection cut discussed below over 70% of the time). We shall therefore simply multiply the cross-section for the $2 \rightarrow 3$ process (3) by the above mentioned factor of 1.6 in presenting the signal cross-sections.

It should also be mentioned here that the electroweak loop corrections to the $t b H$ vertex (4) have been estimated to give up to 20% reduction in the signal cross-section depending

Figure 1: Cross section of the $2 \rightarrow 2$ process $g b \rightarrow t H^{-}(2)$, of the $2 \rightarrow 3$ one $g g \rightarrow t \bar{b} H^{-}$(3) and of their sum after the subtraction of the $g b^{\prime}$ contribution, see eq. (7), for $\tan \beta=40$ (including the charged conjugated final states). The PDF set used was MRS-LO(05A) with renormalisation and factorisation scales set equal to $m_{t}+M_{H^{ \pm}}$. Normalisation is to the total cross sections without any branching ratios.
on $M_{H^{ \pm}}$and $\tan \beta$ [16]. The corresponding QCD corrections are expected to be larger, but not yet available. Note that higher-order QCD effects in the $H^{-} \rightarrow \bar{t} b$ decay are easily accounted for by using the running value of the b mass, $m_{b}\left(M_{H^{ \pm}}\right)$, in the $t b H$ coupling. We shall therefore use it in estimating the $H^{-} \rightarrow \bar{t} b$ decay rate. (Of course this has no significant impact on the signal since this branching fraction amounts to $\gtrsim 80 \%$ over most of the parameter space of our interest.) The effects of SUSY QCD corrections may be larger, depending on the SUSY parameters [17]. We shall neglect this by assuming a large SUSY mass scale $\sim 1 \mathrm{TeV}$.

The final state resulting from the above $2 \rightarrow 2(2 \rightarrow 3)$ signal process is

$$
\begin{equation*}
t H^{-}(\bar{b}) \rightarrow t \bar{t} b(\bar{b}) \rightarrow b \bar{b} b(\bar{b}) W^{+} W^{-} . \tag{8}
\end{equation*}
$$

We shall require leptonic decay of one W and hadronic decay of the other, resulting in a final state of

$$
\begin{equation*}
b \bar{b} b(\bar{b}) \ell \nu q \bar{q} \tag{9}
\end{equation*}
$$

The hard lepton (e, μ) will be required for triggering and suppression of multi-jet background, while the presence of only one ν will enable us to do mass reconstruction. As mentioned earlier, the extra b-quark coming from the $2 \rightarrow 3$ process (3) is expected to be too soft to pass our selection cuts or be tagged with a reasonable efficiency. We shall therefore require a minimum of $3 b$-tagged and 2 untagged jets along with a lepton and a missing- $p_{T}\left(\not y_{T}\right)$.

We shall consider the background to the final state (9) coming from

$$
\begin{equation*}
g b \rightarrow t \bar{t} b \rightarrow b \bar{b} b W^{+} W^{-} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
g g, q \bar{q} \rightarrow t \bar{t} g^{\star} \rightarrow b \bar{b} b \bar{b} W^{+} W^{-}, \tag{11}
\end{equation*}
$$

along with those from

$$
\begin{align*}
g g, q \bar{q} & \rightarrow t \bar{t} g \rightarrow b \bar{b} g W^{+} W^{-} \\
g q & \rightarrow t \bar{t} q \rightarrow b \bar{b} q W^{+} W^{-} \tag{12}
\end{align*}
$$

where the gluon or light quark jet (j) is mis-tagged as a b-jet. In fact (12) will turn out to be the largest background. The cross-sections for processes (10)-(12) are computed using MadGraph and HELAS [18,19].

Our analysis is based on simply a parton level Monte Carlo program. However we have tried to simulate detector resolution by a Gaussian smearing of all jet momenta with [2]

$$
\begin{equation*}
\left(\sigma\left(p_{T}\right) / p_{T}\right)^{2}=\left(0.6 / \sqrt{p_{T}}\right)^{2}+(0.04)^{2} \tag{13}
\end{equation*}
$$

and the lepton momentum with

$$
\begin{equation*}
\left(\sigma\left(p_{T}\right) / p_{T}\right)^{2}=\left(0.12 / \sqrt{p_{T}}\right)^{2}+(0.01)^{2} \tag{14}
\end{equation*}
$$

The p_{T} is obtained by vector addition of all the p_{T} 's after resolution smearing.
As a basic set of selection cuts we require

$$
\begin{equation*}
p_{T}>30 \mathrm{GeV} \text { and }|\eta|<2.5 \tag{15}
\end{equation*}
$$

for all the jets and the lepton, where η denotes pseudorapidity and the p_{T}-cut is applied to the p_{T} as well. We also require a minimum separation of (ϕ is the azimuthal angle)

$$
\begin{equation*}
\Delta R=\left[(\Delta \phi)^{2}+(\Delta \eta)^{2}\right]^{1 / 2}>0.4 \tag{16}
\end{equation*}
$$

between the lepton and the jets as well as each pair of jets.
To improve the signal/background ratio and to estimate the $H^{ \pm}$mass we follow a strategy similar to that in [2], except for the step (e) below, which is new.
(a) The invariant mass of two untagged jets is required be consistent with $M_{W} \pm 15 \mathrm{GeV}$.
(b) The neutrino momentum is reconstructed by equating p_{ν}^{T} with p_{T} and fixing p_{ν}^{L} within a quadratic ambiguity via $m(\ell \nu)=M_{W}$.
(c) The invariant mass of the above untagged jet pair with one of the $3 b$-tagged jets is required to be consistent with $m_{t} \pm 25 \mathrm{GeV}$. If several b-tagged jets satisfy this, the one giving the best agreement with m_{t} is selected.
(d) The invariant mass of the ℓ and ν with one of the 2 remaining b-jets is required to be consistent with $m_{t} \pm 25 \mathrm{GeV}$. In case of several combinations satisfying this, the one giving best agreement with m_{t} is selected along with the corresponding b-jet and p_{ν}^{L}.
(e) The remaining (3rd) b-jet is the one accompanying the $t \bar{t}$ pair in the signal (8) or in the backgrounds (10)-(12) \mathbb{I}. For the signal it mainly comes from the $H^{-} \rightarrow \bar{t} b$ decay and is therefore quite hard, while it is expected to be very soft for the background processes. Hence the p_{T}-distribution of this b-jet shall be used to improve the signal/background ratio.
(f) Finally we combine each of the top (anti)quarks in the reconstructed $t \bar{t}$ pair with the 3rd b-jet. Thus we obtain 2 entries per event in the $M_{b t}$ invariant mass plot, one of which would correspond to the $H^{ \pm}$mass peak for the signal.

Figure 2: Differential distributions in transverse momentum of the b-quark accompanying the reconstructed $t \bar{t}$ pair in the signal (2)-(3), for four selected values of $M_{H^{ \pm}}$in the heavy mass range, with $\tan \beta=40$, after the acceptance and selection cuts described in the text: i.e. eqs. (15)-(16) and steps (a)-(d). The PDF set used was MRS-LO(05A) with renormalisation and factorisation scales set equal to $m_{t}+M_{H^{ \pm}}$. The (fine-dotted)[long-dashed]\{dot-dashed\} curve represents the shape of the background process $((10))[(11)]\{(12)\}$. Normalisation is to unity.

Fig. 2 shows the p_{T} distribution of the 3 rd b-jet accompanying the reconstructed $t \bar{t}$ pair as discussed above in step (e). We clearly see a harder p_{T} distribution for the signal compared to the background processes for a $H^{ \pm}$mass $\geq 300 \mathrm{GeV}$. Thus we can improve the signal/background ratio over this mass range by imposing a

$$
\begin{equation*}
p_{T}>80 \mathrm{GeV} \tag{17}
\end{equation*}
$$

cut on this 3 rd b-jet.
The top of Fig. 3 shows the signal cross-section along with those of the background processes (10)-(12) after applying the selection cuts (15)-(16) and the mass constraints of

[^0]

Figure 3: Production cross section for the signal (2)-(3) as a function of $M_{H^{ \pm}}$in the heavy mass range, after the acceptance and selection cuts described in the text: i.e. eqs. (15)-(16) and steps (a)-(d) (top plot) as well as the transverse momentum cut (17) on the b-jet accompanying the top-antitop pair (bottom plot). The PDF set used was MRS-LO(05A) with renormalisation and factorisation scales set equal to $m_{t}+M_{H^{ \pm}}$. The arrows represent the size of the backgrounds (10)(12), the last of which has been divided by 100 (for readability). No b-tagging efficiency/rejection is included.
steps (a)-(d). No b-tagging efficiency or rejection factor has been applied yet. The effect of imposing the p_{T}-cut (17) on the 3 rd b-jet is presented in the bottom plot. It is clearly shown to suppress the backgrounds significantly: in particular the dominant one from $t t j$ (12) is reduced by a factor of 2.5 or so. In contrast the signal cross-section is essentially unaffected for a $H^{ \pm}$mass $\geq 400 \mathrm{GeV}$.

Finally, Fig. 4 shows the signal and background cross-sections against the reconstructed
bt invariant mass as discussed in step (f). Here we have included a b-tagging efficiency of 40% and a probability of 1% for mis-tagging a light quark or gluon jet (j) as b-jet [11]. The top figure shows the signal and background cross-sections separately while the bottom one shows their sum for different $H^{ \pm}$masses at $\tan \beta=40$. The signal peaks are clearly visible in the latter. One gets similar results for $\tan \beta=1.5$.

Figure 4: (Top plot) Differential distribution (two entries per each event generated) in the reconstructed charged Higgs mass for the signal (2)-(3), corresponding to four selected values of $M_{H^{ \pm}}$ in the heavy mass range, for $\tan \beta=40$, after the acceptance and selection cuts described in the text: i.e. eqs. (15)-(16) and steps (a)-(d) as well as the transverse momentum cut (17) on the b-jet accompanying the top-antitop pair. The PDF set used was MRS-LO(05A) with renormalisation and factorisation scales set equal to $m_{t}+M_{H^{ \pm}}$. The (fine-dotted)[long-dashed]\{dot-dashed\} curve represents the shape of the background process ((10))[(11)]\{(12)\}. (Bottom plot) As above, after summing each signal to all backgrounds. Tagging efficiencies have been included here, in both plots.

Tab. 1 lists the number of signal and background events over a 80 GeV bin around the $H^{ \pm}$mass for an annual luminosity of $100 \mathrm{fb}^{-1}$, expected from the high luminosity run of the LHC. The corresponding values of S / \sqrt{B} are also shown. We see a better than $5(3) \sigma$ signal up to a $H^{ \pm}$mass of $400(600) \mathrm{GeV}$ at $\tan \beta=40$. It may be noted that both the signal size and the S / \sqrt{B} ratio are better here in comparison with the $4 b$-tagged channel [4] for $\epsilon_{b}=40 \%$ and p_{T} cut of 30 GeV . But the S / B ratio is better in the latter case. Similar results hold for $\tan \beta=1.5$.

Number of events per year				
$M_{H^{ \pm}} \pm 40 \mathrm{GeV}$	S	B	S / \sqrt{B}	
310	133	443	6.2	
407	111	403	5.6	
506	73	266	4.5	
605	43	156	3.4	
MRS-LO $\left[Q=\mu=m_{t}+M_{H^{ \pm}}\right]$				
$3 b+n$ jets $+\ell^{ \pm}+p_{\text {miss }}^{T}($ with $n=2,3)$	After all cuts			

Table 1: Number of events from the signal (2)-(3), S, and the sum of the backgrounds (10)(12), B, along with the statistical significance, S / \sqrt{B}, per 100 inverse femtobarns of integrated luminosity, in a window of 80 GeV around four selected values of $M_{H^{ \pm}}$(given in GeV) in the heavy mass range, for $\tan \beta=40$. At least three b-jets are assumed to be tagged, each with efficiency $\epsilon_{b}=40 \%$, whereas the rejection factor against light jets is $\epsilon_{j=q, g}=1 \%$. All cuts discussed in the text, i.e. eqs. (15)-(16), steps (a)-(d) as well as the transverse momentum cut (17) on the b-jet accompanying the top-antitop pair, have been enforced. The PDF set used was MRS-LO(05A) with renormalisation and factorisation scales set equal to $m_{t}+M_{H^{ \pm}}$.

In summary, the isolated lepton + multi-jet channel with triple b-tagging - supplemented by a transverse momentum cut on the third b-jet - offers a promising signature for $H^{ \pm}$ searches at the LHC up to $M_{H^{ \pm}} \approx 600 \mathrm{GeV}$ at $\tan \beta \gtrsim 40$ and $\lesssim 1.5$, thus extending the reach of previous similar analyses [2,3]. Hence it calls for a more detailed study, including hadronisation, jet identification and detector effects.

Acknowledgements: This work was started at the Les Houches Workshop on Physics at TeV Colliders, organised by LAPP, Annecy. We thank the organisers, Patrick Aurenche and Fawzi Boudjema, for a very stimulating environment. The work of DPR was partly supported by the IFCPAR under project No. 1701-1. SM acknowledges financial support from the UK-PPARC.

References

[1] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, "The Higgs Hunters' Guide" (Addison-Wesley, Reading, MA, 1990).
[2] V. Barger, R.J.N. Phillips and D.P. Roy, Phys. Lett. B324 (1994) 236.
[3] J.F. Gunion, Phys. Lett. B322 (1994) 125.
[4] D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, hep-ph/9906230.
[5] K. Odagiri, hep-ph/9901432; D.P. Roy, Phys. Lett. B459 (1999) 607.
[6] A.A. Barrientos Bendezú and B.A. Kniehl, Phys. Rev. D59 (1999) 015009; S. Moretti and K. Odagiri, Phys. Rev. D59 (1999) 055008.
[7] A.A. Barrientos Bendezú and B.A. Kniehl, hep-ph/9908385.
[8] M. Drees, M. Guchait and D.P. Roy, hep-ph/9909266; S. Moretti and K. Odagiri, in preparation.
[9] F. Borzumati, J.-L. Kneur and N. Polonsky, hep-ph/9905443.
[10] D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. D59 (1999) 094016.
[11] E. Richter-Was and M. Sapinski, ATLAS note (ATL-PHYS-98-132); V. Drollinger, T. Mueller and R. Kinnunen, CMS note (1999/001).
[12] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Phys. Lett. B443 (1998) 301.
[13] H.L. Lai et al., Phys. Rev. D55 (1997) 1280.
[14] R. Barnett, H. Haber and D. Soper, Nucl. Phys. B306 (1988) 697; F. Olness and W.K. Tung, Nucl. Phys. B308 (1988) 813; M. Aivazis, J. Collins, F. Olness and W.-K. Tung, Phys. Rev. D50 (1994) 3085; Phys. Rev. D50 (1994) 3102.
[15] A.D. Martin, R.G. Roberts, M.G. Ryskin and W.J. Stirling, Eur. Phys. J. C2 (1998) 287; H.L. Lai and W.K. Tung, Z. Phys. C74 (1997) 463; M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Eur. Phys. J. C1 (1998) 301; Phys. Lett. B411 (1997) 211.
[16] L.G. Jin, C.S. Li, R.J. Oakes and S.H. Zhu, hep-ph/9907482.
[17] J.A. Coarasa, D. Garcia, J. Guasch, R.A. Jiménez and J. Solà, Eur. Phys. J. C2 (1998) 373.
[18] T. Stelzer and W.F. Long, Comp. Phys. Comm. 81, 357 (1994).
[19] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity Amplitude Subroutines for Feynman Diagram Evaluations, KEK Report 91-11, January 1992.

[^0]: ${ }^{1}$ In case of a 4 th b-jet surviving the $p_{T}>30 \mathrm{GeV}$ cut the harder of the two b-jets accompanying the $t \bar{t}$ pair is selected.

