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Abstract. A general analysis of bilinear algebras of creation and destruction operators is
performed. Generalizing the earlier -work on the single-parameter g-deformation of the
Heisenberg algebra, we study two-parameter and four-parameter algebras. Two new forms of
quantum statistics called orthofermi and orthobose statistics and a g-deformation interpolating
between them have been found. In the Fock representation, quadratic relations among
destruction operators, wherever they are allowed, are shown to follow from the bilinear algebra
of creation and destruction operators. Postitivity of the Hilbert space for the four-parameter
algebra has been studied in the two-particle sector, but for the two-parameter algebra, results
are presented up to the four-particle sector.
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1. Introduction

Recently, g-deformation of the Heisenberg algebra of the annihilation and creation
operators has been used to study the interpolation between Bose and Fermi statistics
[1-3]: In this paper, we undertake a more general analysis of the algebras of the
annihilation and creation operators (c and ¢'). We construct the most general bilinear
algebra of ¢ and c' with two types of indices (called space and spin) which is invariant
under unitary transformations in these two indices. Such an algebra contains several
nontrivial parameters.

One can study various special cases of the general algebra. A two-parameter
algebra [4] is analysed in detail and then the analysis is extended to a four-parameter
algebra. One of the main results that emerges is the existence of two new forms of
statistics called orthofermi and orthobose statistics and a q-deformatlon which
provides an interpolation between them.

Most of our analysis is performed within the framework of Fock space. We find
that positivity of the metric in the Fock space provides powerful restrictions on
the possible forms of algebras. There exist a number of single-parameter algebras
that lead to Fock spaces of positive definite metric, but proof of positivity for two-
parameter algebras has not been possible.

Various forms of bilinear algebras are introduced in §2. Section 3 is devoted to
the two-parameter algebra. The metric is shown to be positive definite in the two-
particle sector inside a square in the two-parameter space, but the region of positivity
shrinks as the number of particles increases. However, positivity for arbitrary number
of particles is preserved along the two diagonals of the square. One of these diagonals
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interpolates between Bose and Fermi statistics while the other interpolates between
orthobose and orthofermi statistics.

In §4 we continue with the two parameter algebra and take up the question of the
existence of quadratic relations among annihilation operators and show that these

exist only at the four corners of the squares which correspond to the familiar Bose
and Fermi statistics and the new orthobose and orthofermi statistics.

In §5, the two-parameter algebra of a system with a single index is taken up for
special study. We point out the close connection of this algebra (for a particular point
in parameter space) with Greenberg’s “infinite statistics” and determine the enlarged
region of positivity up to the three-particle sector.

We then return to the two-indexed system and analyze the full four-parameter
algebra in §6 and show that positivity of the metric in the two-particle sector leads

. to a tetrahedron in the three-parameter projection of the four-parameter space.

A few miscellaneous points deserving brief mention are treated in § 7. Factorization
of the two-indexed algebra and its relation to Cuntz algebra [5] are pointed out and
number operators are given. The final section is devoted to discussion.

Some of the detailed calculations are presented in Appendices 1-3. In Appendix 1
we show that a nine-parameter algebra can be reduced to a four-parameter algebra
in general, apart from a few exceptional cases. Appendices 2 and 3 are devoted to
the inner product for the two-parameter algebra. Some general features of the inner
product in the multiparticle sector are discussed in Appendix 2 while the determination
of the boundary of the region of positivity in the three and four particle sectors is
described in Appendix 3.

2. General bilinear algebras of ¢’s and c’s

We consider the general bilinear algebra
‘ckuc:rng — 4 CInﬁ Cra — 42 54;32 CLy Cry — 43 5kmz: ciﬂ Cpe
. ] P

km aﬁchy py km aﬁ (1)

where ¢ and c' are destruction and creation operators and ¢,,4,,95 and g, are real
parameters. In a physical problem, the Latin indices k,m, p---and the Greek indices
«, B,y---may correspond to space (or orbital) and spin indices respectively and so we
may call them accordingly. But our results are not in any way dependent on this

interpretation and in fact more interesting interpretations will be pointed out in the
last section.

‘The algebra described by eq. (1) is mvanant under the unitary transformations on
the space indices: :

d,=2 U, cs UU=UU=1 | 2
p
as well as similar unitary transformations on the spin indices:

€ =§ Viays Viv=vvi=L 3)
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Invariance under such unitary transformations is an important requirement on a
quantum system in the general context; for instance, a system can be described either
by position space or momentum space wave function and these are related by the
unitary transformation U. Similarly, spin can be described by equivalent sets of ortho-
normal states related by V. However, it must be noted that for g, #0, g5 # 0, eq. (1) is
not invariant under the enlarged unitary transformation involving both the space
and spin indices.

It is possible to show under certain conditions, that (1) is the most general bilinear
algebra of creation and destruction operators with two indices, which is invariant
under the two unitar- transformations U and V defined in (2) and (3). First, by taking

hermitian conjugate of (1) and comparing, all the coefficients ¢,, g,, g5 and g, are.

seen to be real. Also, there is no loss of generality in choosing the coefficients of
Cro € mﬂ and §,,,9,, to be unity (unless one or both of these coefficients vanish and such
special cases will be considered later), since (1) can be divided by one of these
coefficients and the other can be absorbed by a suitable redefinition of ¢ and c'. Next,
one can consider the possibly more general algebra obtained by adding three more
terms:

ckacmﬂ 41 cmﬂ ko qz af Z cmy cky ds 5km Z cpﬂ pa
~ 4000 ap Zcpv py T P2 aﬂzckv my T p35kmcha P8

+ P00y 0 ap Z Coy€ pv aﬁ : )

Although this 7-parameter algebra also is invariant under the unitary transformations
(2) and (3), in Appendix 1 we show that eq. (4) can be rewritten in the form of eq. (1) with
‘a redefinition of the 4 parameters ¢,,q,,q; and q,, apart from a few exceptional
cases. Thus, under certain conditions, the 4-parameter algebra of (1) can be taken to
be the most general bilinear algebra of ¢ and ¢! with two indices k and a.

It is easy to see that if the system is characterized by more number of indices, and
if we demand invariance under unitary transformations involving each type of index
separately, then even more terms can be added to (1). However, in this paper, we
shall restrict ourselves to systems with two indices (§§3 4 and 6) and with a single
index (§5).

We shall begin our analysis in the next section with the simpler two-parameter
algebra obtained by putting g5 = g, = 0 in eq. (1). In fact, this two-parameter algebra
turns out to be sufficiently rich in terms of novel features and nontrivial complications

so that most of our work (§§3, 4 and 5) will be devoted to it. The pattern obtained

in this analysis, will guide us in our study of the more general four-parameter algebra
which will be takcn up in a later section (§6).

3. The two-parameter algebra

In this section we shall study the two-parameter algebra defined by
ClaCng = 4161 5Cha = 42045 2. €L Cly = 1Orp- (5)
b .
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We assume the existence of a vacuum state |0) annihilated by all the annihilators:
€100 =0. (6)

The Fock space is constructed in the obvious way. We consider the set of states
which are linear combinations with complex coefficients of the monomials ¢] c} ;-
¢! |0) and their duals <0|c,, --c,,,. Their inner product {0lc, ---c!,|0) or in fact the
vacuum matrix element of any polynomial in the ¢’s and c!’s arbitrarily ordered, can
be calculated using eqs (5) and (6). No commutation rule on cc or ctel is required
for this. ‘

The following properties of the matrix clements can be easily established:

(a) The matrix element Olcc--cct---c¢7|0) vanishes if n # m, where n is the number
of ¢’s and m is the number of ¢’s. Hence, calling c'c'---ct|0) with n number of s
as the n-particle state, we see that states with different number of particles are
orthogonal.

_(b) The matrix element {O|cc--cc'---cTc'|0) vanishes if every space index in the ¢
set is not matched by a space index in the c' set. Similarly for the spin index. Thus,
for the nonvanishing matrix elements, the indices for the ¢’s are some permutation
of those for the c's.

(c) For general values of g, and g, state vectors obtained by permuting the indices
are independent although non-orthogonal. For example, in the two-particle sector,
the four state vectots ¢, cf )10, ¢l ,cf |0, ¢l cf,10) and ¢t ¢! |0> areindependent.

. m B ) kp “me
We now wish to calculate the inner product in the n-particle sector:

0| o-~cwcmﬁckacllc;r”cl_v~--IO).

As already noted, this inner product is zero unless the space indices (p, s, q---) is some
permutation of (k,m,¢--) and similarly for the spin indices. The non-vanishing inner
products are in general some polynomials of g; and g, and these polynomials are
determined by the relative ordering of the indices in the c' set with respect to those
in the c set but are otherwise independent of the indices themselves.
We first consider the simpler algebra obtained by putting g, =0 in (5). For this

case it is easy to show

{0]---c,c ,c. cl.chch |0 =q], (7

ty “mpB ka pATspqv

where J is the number of inversions in the permutation:
(pA, s, qv+--)— (ka,mp,ty---) ' 8)

We assume the indices (p,s,g---) to be distinct and similarly for (4, ,v---). Number
of inversions is defined as the minimum number of transpositions of successive indices
required in this permutation (8). Note that in this particular permutation, the space
and spin indices go together. For other permutations, namely for those involving
independent exchanges of space and spin indices, the matrix element in (7) vanishes.

We next introduce an alternative mode of expressing the above result which turns
out to be more convenient for further generalization. Still considering the g, = 0 case
and also dropping the spin index, we write for the n-particle matrix element,

<0| e CCmeehelel |0
=I(I+q, Py, I +4,P,, +qu32P21)
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(I+4q, P,y +q1P43P32+q1P Py, P,y)

n—1
(1 +q1P"n 1 +q1Pnn—1Pn—1 n—-2+ ,_,q';"l I:[l P"+1—iil"i>’ (9) ”

where [ is the unit operator and P;; stand for exchange operators. The operator P,
for instance exchanges the indices in the first and second position of the initial state
"(p and s in the above example) and similarly for the other operators.
In eq. (9), the factors on the right side must be multiplied and expressed as a sum,
using IP,, = P,, etc. Thus, taking the three-particle state for instance,

Olc,Cm cchcTcT|O>=I(I+q1P21)(I+q1 P,,+4¢*P,,P,))

=1+q,Py +q1 Py +di P, Py +qiPy, Py + a3 P, Py, Py (10)
Then, each of the terms in (10), must be replaced as indicated below:
I= 5kp5ms5tq :
P, =6,0,,0,"
Pyy=10,,0,,0,""
P32P = 6ks5mq51p ’ (11)
etc.

Equation (9) is valid whether the indices (p,s,q---) are distinct or not.
The generalization of (9) to the g, # 0 case is obtained by the replacement

0, P—q, P'+q, P°. | (12)
Thus, ‘
0]---c,.c c,mc;:lc'r ct . ]0)

ty “mp s qv

={I+(q: Py + 4, P3)H{I + (@, Py, + 42 P3;)
+(q1Pt32 +QZP(3)2)(q1Pt21 +QZP21)} + oo

{‘I+(q1 nn— 1+q2 nn— 1)+(q1 nn— 1+QZ ;?n—l)

X(q1 n—1n-— 2+q2Pn 1n— 2)+ -+ ]_I ql n+1 in—i
b P} | (13

where the meaning of the symbols on the right hand side are similar to those as
explained for the g, = 0 case except that P' denotes total exchange i.e. exchange of
both space and spin indices while P° denotes exchange of space (also called orbital)
index omly. For instance,

I1=6_8 6 +8,0,0

kp~ms tq ar” pu yv “

21 = OkOmpOsg ' 05,0520, - (14)

ks mp tq o BA

P°-—555 0,0, 0

ks mp tq al fu yv “

We note that, for each inversion of both space and spin indices, there is a factor g,
while each inversion of space indices alone leads to a factor g, . If the matrix element
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involves the inversion of spin indices alone, then it vanishes. This is the complete set
of rules for the inner product based on the algebra of (5). More details following
from the expansion in (13) are given in Appendix 2. "

We now enquire into the restrictions imposed by the positivity of the inner product.
We first do this for the two-particle sector. There are four states:

11> = el s10, 12> =cf el 10
13 = chclgl0D, 14> =clycl, 0>

kB ma

(15)

(Weassume k # m and o # f; if the indices become equal, we get only weaker conditions).
The inner product between these four states and their duals written in the form of
4 x 4 matrix M, is

1y 12y (3> 14)
a1 4 42 O .
M,=2|} g 1 0 4z (16)

Bllg 0 1 g
4|10 q, g 1.

The eigenvalues of this matrix are 1+4¢;+4q,, 1—q;+4,, 1+4,—q,, and
1 — gy — q,. All these four eigenvalues are positive inside the square BCFG depicted
in figure 1. On each of the four sides of this square given by the straight lines:
1+q; +4,=0, one of the eigenvalues vanishes. Outside the square, one or more
eigenvalues become negative. Hence the square BCFG demarcates the boundaries

of the parameter space for which two-particle vector space with positive definite
metric exists.

Figure 1. The square FGBC which bounds the allowed region in the (g,,q5)
parameter space for the two-particle sector. The four corners B F, C and G
correspond to Bose-Einstein, Fermi-Dirac, orthobose and orthofermi statistics
respectively. The dotted curve indicates the boundary of the allowed region for
the three-particle sector with the spin index taking two values.
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Since on each of the four sides BC, CF, FG and GB one of the eigenvalues becomes
zero, the corresponding eigenvector can be regarded as a null vector since it has zero
norm. These null vectors along FG, BC, BG and FC are respectively the following:

(e}t s+ et pel, + chacty + chyet )10y =0, (17
(ChaClip = ChpChe = ChaClhy + clpch )IOY =0, )
(cltac;rnﬁ - C:rnﬂclta + CLapr - cltﬂc;rna)l()) =0, _ (19)
(€l Chg + Chpehy — chcly — clych )10 =0, (20)

Thus, although there is no commutation rule on cc or cct for any point inside the
square, weaker forms of such rules [eqs (17)—(20)] get generated on the four sides of
the square, through the vanishing of the norms.

At each of the four corners B, C, F and G two of the eigenvalues vanish and so
two eigenvectors become null vectors. Thus, for instance, at F, both (17) and (20) are
simultaneously valid, which can be combined to give

(chych g+ €l set)10> =0, 1)

Further, as shown in the next section, (21) can be replaced by the operator identity:

clychs+ el el =0. : (22)

Similar things occur at all the four corners, thus leading to the strong commutation
rules which we shall presently write down. However, the replacement of eqs (17)—(20)
by the corresponding operator identities is not possible. In fact, we prove in the next
section that cc relations exist only at the four corners B, C, F and G.

Let us now present the equations valid at the four corners of the square:

(i) At the corner F (Fermi-Dirac statistics)
ckacjnﬁ + CLp Cra=Okm 545’ (23)
CoxCmp T CompCaa = 0- | - (24)
(i) At B (Bose-Einstein statistics)
CaChs = €l 5Ca = OpmBaps . ’ (25)

ChaCmp — CmpCia = O- - (26)

(iii) At G (orthofermi statistics)
ckac;rnﬂ + 5¢ﬁ ; cltycky = 5km 5«#’ (27)
CiaCmp +cmckﬁ=0. (28)

(iv) At C (orthobose statistics)
ckac;rnﬂ - 51[3 % c;rnycky = 5km5aﬂ’ (29)
| ClaComp ~ CmaCrp =0- | (30)

Pramana — J. Phys., Vol. 40, No. 3, March 1993 - 155




A K Mishra and G Rajasekaran

Orthofermi statistics was studied in an earlier paper [6] and it is characterized by
a new exclusion principle which is more “exclusive” than Pauli’s exclusion principle: an
orbital state shall not contain more than one particle, whatever be the spin direction.
Further, the wave function is antisymmetric in spatial indices alone, with the order
of the spin-indices frozen. Both these properties follow from (28); the positions. of «
and f in this equation must be particularly noted. Orthobose statistics is the corres-
ponding Bose-analogue; from (30), it follows that the wave function is symmetric in
spatial indices alone, with the order of the spin-indices frozen. Statistical mechanics
based on orthostatistics is treated in [6, 8].

Thus, at the four corners of the square, we have four kinds of statistics namely,
Fermi-Dirac, Bose-Einstein, orthofermi and orthobose statistics which respectively
correspond to total antisymmetry, total symmetry, spatial antisymmetry and spatial
symmetry of the wave function.

What about the positivity of the inner product in the {q,, ¢, } plane? Do the sides
of the square continue to be the boundaries of the region of positivity for three and
more particles? We have found that the answer is in the negative. The relevant
calculations become much more complex since the total number of states increases
rapidly. The details are presented in Appendix 3, but the result for three particles
with the spin index taking two values is shown in figure 1. We see that the region
of positivity shrinks. How does the boundary of this region move as the number of
particles n increases further and what is the limiting boundary for n— co? These are
open questions for the present.

However, we have definite answers along the two diagonals. Along the diagonal
BF (g, =0), the algebra (5) reduces to the “g-mutator algebra” of Greenberg [1]:

Cka cllﬂ‘ — 4 c::ﬂcka = 0 Oyp> (31

for which the inner product is given in (7) and in this case Fivel [2] and Zagier [9]
have proved the positive-definiteness of the metric for the n-particle sector in the
interval — 1 < g, < 1. These are “g-ons” having orbital and spin indices.

Along the other diagonal CG (g, =0), we have the algebra:

Ckac;rnﬁ — 4> 5«zﬂ Z cz;lycky = 5km51ﬂ' (32)
Y
In this case, the inner product becomes (from eq. 13)

{0]---c,.c_,c, ct.ct el .0

ty “mp ~ka plcsu qv
=q§5a155u5?v--- (33)

where K is the number of inversions in the permutation of the space indices. We see
that the spin-ordering is frozen all along this diagonal CG and as for the space indices
the behaviour is exactly that of g-ons possessing only space index. Hence, the Fivel-
Zagier proof of positivity of the metric for arbitrary n-particle states is applicable

along this diagonal also, in the interval — 1 < g, < 1. This algebra of (32) interpolates
between orthofermi and orthobose statistics. '

4. Quadratic relations for destruction operators

It is an important fact which does not seem to be well recognized, that within the
framework of Fock space, quadratic relations among c’s are not required. For, given
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the vacuum state defined by eq. (6) and a rule for the commutation of ¢ and ¢! such
as (5), all matrix elements in Fock space can be computed. Hence, any cc relation
which is imposed will be either inconsistent with the cc' relation, or superfluous if
consistent. Nevertheless in the latter case, it is useful to know the explicit form of
the relation.

In this section, we shall show that appropriate cc relations follow from the corres-
ponding cc' relations at the four corners of the square BCFG, but no such relations
are possible anywhere else in the {q,,q,} plane.

(i Fermi-Dirac: From eq. (23), it is easy to show that the anticommutator {c,,,c,,}
commutes with any product of a string of creation operators:

{ckm’ Cmp} (CIWC;“CL o ) = (CﬁyCZaCIz ° '){cka’ Cmﬂ}‘ (34)

Applying this equation on [0}, we see that {cka,cmﬂ} acting on any Fock state gives
zero. Hence, we may write

{Cow Cng} = 0. (35)
(ii) Bose-Einstein: This is similar to the above. From (25), we have

[cka, Cpp] (c;f”clac;ft -.--) = (c;r,yczacL ) [Cir Emp - (36)
and hence

[Ches €mp] =0 (37

(iii) Orthofermi: In this case, the relevant combination of ¢’s does not commute with
c'. Instead, from (27) we get ‘

(CraCrmp T cmckﬁ)c’{,y = 5/” Y, czp(ckpcm + CppCra)- (38)
P .

The form-invariance of the expression (c;,¢,,; + €. 4) on being pushed to the right
of c;f,y is sufficient for our purpose. With one more c', we get

(CeaComp + cmckﬁ)c;fwcza =6,,0,, Y. c;pczt(cktcmp + CoeCip) (39)
psT

Applying egs (38) and (39) on |0}, we see that (¢, ¢, + CmaCip) AcCting On one and
two-particle states gives zero and this procedure can be extended to arbitrary number
of particles. Therefore we have

(ChoCmp T cmckﬁ) =0. ‘ (40)
(iv) Orthobose: From eq. (29) we get

(CaComp — cmckﬁ)c;f,y = d,, Y cL,(ckpcm — Cpup Ca)- (41)
p .

*

By the same argument as in the orthofermi case, we get
(ckacmﬂ - Cma ckﬂ) =0. . ' (42)
Thus, in the cases of all the four statistics including the familiar Fermi-Dirac and
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Bose-Einstein statistics, the cc relations follow from the corresponding cc' relations
and the existence of the vacuum state.
We shall now prove that cc relations do not exist anywhere in the {4:,9,} plane

except at B, C, F and G. We assume the algebra of (5) and try to commute a general

quadratic in ¢'s with ¢! . Defining
Qramp = WeioCong + XCppgCp +y ConaCicp T 2ChgCongo (43)
where w, x, y and z are arbitrary constants, we get

=qgcf + :
ka.mﬂc;t =43 cthka,mﬁ +4q; 92 50:1: Z cprky,mﬁ
Y

+q1q25ﬁt}:clf,kaam+A+B a (44)
> /

where

A=q? ; cj,y[éat(xcmckﬁ + 2€4,Crug)

+ 5ﬁt(wckvcm + ycmcku)] (45)
B=w+ yq, + Xq1)0,,,05.Cp + (X + 29, + Wq1)0,,04:Crup |
+ 0 +way +241)6,,8;.C,,,+ (2 + yq1 +Xq5)8,,,8,.0,. (46)

The same form of .Q is reproduced on the first three terms on the right side of (44),
but the 4 and B terms are different. In the absence of 4 and B, by applying the same

argument used earlier in this section, we can see that Q acting on any Fock state
would be zero.

There are two possibilities, the first being that both 4 and B vanish which implies

g, =0, 47)

w+yq, +xq, =0
x+zq, +wqg, =0

48
y+wg,+zq, =0 48)
z2+xq, +yq, =0 .
The set of equatidns (48) can be recast in the form:
w
x
M 2 = 03 ’ (49)
y
z

where M, is precisely the same 4 x 4 matrix (eq. (16)) encountered earlier, namely
the inner product matrix in the 2-particle sector. For nontrivial solutions of (49) the
determinant of M, must vanish, which, as we know already, occurs only along the

four sides of the square BCFG. But, in addition, we want (47) to be satisfied, and -

thus, the corners B and-F alone are picked out.
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The other possibility requires
(@ x=z=0 ' (50)

(or) .
(b) w=y=0. , (51)

It can be shown that either (a) or (b) leads to same consequences. Let us choose (a)
and also put

W+ yq, =0,
wqy =0=

y+wq,=0, 62
¥4, =0.

Equations (50) and (52) together make B vanish, but A does not vanish. However,
in view of eqs (43) and (50), A takes the form

qigczycﬁp,%,ma (53)

which implies that the commutation of Q by c' preserves the form of Q and con-
sequently, Q as an operator in Fock space becomes a null operator. For nontrivial
solution of w and y, eq. (52) requires q; =0, g, = + 1. These are the corners C and
G. The proof is complete.

5. Systems with single index

Consider the two-parameter algebra (5) for the same latin index (k = m) which is then
suppressed. We get

c,,c‘;-~qlc;c,—qzéach’;cyzéaﬂ. (54)
-7
In fact, this is the most general bilinear algebra of creation and destruction operators
with a single index, which is invariant under the unitary transformations ¥ defined
in § 2. This single-indexed system, being a simpler one, deserves special study.
Referring to the (q,,q,) plane represented by figure 1, let us first consider the four

points B, F, C and G. The points B and F respectively correspond to Bose or Fermi
_ statistics in the Greek indices. What about C and G? At C, (54) becomes

cech— 5aﬁzylc‘;c7=6aﬂ. | | ' (55)
Let us define the total number operator

N=3 e, | (56)
¥

which satisfies

IN,c,]= —c, 57
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as can be verified using (55). In Fock space, (1 + N) is a positive-definite diagonal
operator. So, one is allowed to define new annihilation and creation operators by

ce=(1+N)"a,; cl=al(1+N)> (58a)
or,
a,=(1+N)""2¢,; al=cl(1+N)"12 (58b)

so that (55) can be cast into the form:
aaa; =0, A (59)

Equation (59) is Greenberg’s algebra [10] leading to “infinite statistics”. Thus, the
point C corresponds to infinite statistics and (55) provides merely a different algebraic
representation for the same. One also notes that N is a simple quadratic expression
of ¢ and c' whereas, in terms of a and a', it is known to be an infinite series:

N=3dla,+ ) alalaa+ - | (60)
4 B :

We shall say more on the number operator in §7.
At the point G, we have

Clh+3,0cle, =6, (61)
Y

Although N can still be defined by (56), the transformation corresponding to (58a)
will now involve the operator (1 — N) which is not positive definite and hence one

cannot obtain a and a' from ¢ and ¢'. So, it is best to leave (61) as it stands. Further,
there exists a relation at G:

¢, =0 (62)

which follows from eq. (28) by putting k =m and then suppressing the Latin index.
(Note that such a relation does not exist at the point C; the corresponding eq. (30)
is trivially satisfied for k = m.) As a consequence of eq. (62), the eigenvalues of N are
restricted to 0 and 1 only. The algebra defined by (61) and (62) has been used to

construct a generalization of supersymmetric quantum mechanics named orthosuper-
symmetric quantum mechanics [11].

Let us now consider the algebra on the line GC(g, =0}
CaCh— 416, ; cle, =6, (63)

The n-particle inner product for this case is given by

€0]+-c,cpe chctct -0y

=[0+a)1+a+q) (1 +g+ g2+ + ¢ 1)] x 5a15,,“5yv--(-64)

The g,-dependent factor on the right side of (64) is positive for g, > — 1. We thus
see that Fock space with positive-definite metric exists all along the line ¢, =0,

gz 2 — 1,ie. the infinite line GC starting with G and extending beyond C to g, —» + o0
(figure 1).
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Gz

-1

G

Figure 2. The region of positivity in the two and three particle sectors for the
single-indexed system with the index taking only two values. This is the triangular
region lying above and bounded by the straight lines GF and GB both extended
to infinity.

For the discussion of positivity in the full {g,,9,} plane, we shall consider the
particular case when the Greek index ranges over only two values. Straightforward
calculations lead to the following results for this single-indexed algebra. The metric
in the two particle sector is positive in the infinite triangular region bounded by the
straight lines GF(1 + q, + g, =0) and GB(1 + g, — g, =0) (see figure 2). For the
three particle sector, we have checked the positivity in the same region numerically.
Thus in the contrast to the case of the two-indexed algebra, the positivity of the metric
in the three-particle sector is preserved over the whole region for which the metric
in the two-particle sector was positive.

We also see that positivity extends to a much larger region than for the two-indexed
algebra studied in § 3. Here we have an example of a general result that the region
of positivity is enlarged if the range of indices is reduced. Note that the single-indexed
algebra can be obtained from the two-indexed algebra by reducing the range of one
of the indices to unity.

Finally we would like to make a remark on the dimension of the Fock space. In
-general, ¢ and ¢’ can be expressed as infinite-dimensional matrices. However, for two
special cases ¢ and c' become finite-dimensional. These correspond to the Fermi-Dirac
and orthofermi points, F and G respectively. For the single-indexed algebra with the
index a ranging over 1 and 2 only, c;, ¢,, ¢} and ¢} can be represented by 4 x 4 and
3 x 3 matrices at F and G respectively. However, it is interesting to note that along
the line FG connecting these two points, finite-dimensional representation of the
algebra is not possible. One may ask whether there exists an algebra which can
interpolate between the Fermi-Dirac and orthofermi points via finite-dimensional
matrices. The answer turns out to be in the affirmative, but one has to go beyond
the bilinear algebra and'include biquadratic terms in ¢ and ¢' [12].

Pramana — J. Phys., Vol. 40, No. 3, March 1993 161




A K Mishra and G Rajasekaran

6. The four parameter algebra and the tetrahedron

We now take up the four-parameter algebra of eq. (1) and consider the two-particle
sector comprising the same four states.given in (15). The 4 x 4 matrix of inner products
of eq. (16) is now replaced by

1+4q, q 92 qs
MI —_ ql 1 +q0 q3 q2 (65)
2 q> q3 144, q: ? -

q3 42 qg; 1+qo

We see that at the two-particle level, the rules for the inner product are the following:
(a) Diagonal term = 1 + g, (b) Inversion of space and spin indices:q, (c) Inversion of
space indices alone:q, (d) Inversion of spin indices alone:q;.

The matrix M, has the following eigenvectors and corresponding eigenvalues:

1 1 1 1
1 1 —1 -1
1 -1 1 -1
1 -1 —1 1

with their respective eigenvalues 1 + gy + g, + g, + 43, 1 + o+ 4y — g2 — g3, 1 + qo —
91 +42— 493, 1 + 90— q; — g5 +4g3. As before, equating these eigenvalues to zero, we
get the equations of the manifolds which will be the boundaries of the region of
positivity for the matrix of inner products:

I+go+4q1+92+93=0

1+90+91—9,—93=0

(66)
1+go—91+q,—q5=0
l1+40—91—9.+g3=0.
It is convenient to consider a fixed value of g, first. Defining
we have
q1+4:+4q3+(=0
— g, — =0
ql q2 q3 + é (68)

=41+ 4y —q3+E=0
41 —q,+43+¢=0.

For fixed g,,¢ is a constant. In the three-dimensional {41,92,93} space, the four
equations in (68) denote the four faces of a regular tetrahedron STUV (see figure 3).
The region of positivity of the inner products in the two-particle sector is thus
identified to be inside the tetrahedron STUYV.

Consider the points F, C, B, G, C’ and G’ which are the mid points of the six edges
of the tetrahedron STUYV in figure 3. Then the three mutually orthogonal planes
FCBG, FC'BG' and GC'CG’ shown in figure 3 as cutting each other and cutting
the tetrahedron are respectively the planes described by the equations g; =0, g, =0
and ¢, = 0. Further, each-of these quadrilaterals FCBG, FC'BG’ and GC'CG’ is
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Figure 3. The regular tetrahedron STUV which bounds the allowed region in
the (¢4, 45, g;) parameter space, at fixed g, for the two-particle sector. The centre
of the tetrahedron corresponds to g, = ¢, = g5 = 0. The three mutually orthogonal
planes FCBG, FC'BG’ and GC'CG’ correspond to g3 =0, ;=0 and ¢, =0
respectively. The three cartesian coordinate axes for g, g, and g, which are not
shown in the figure, are perpendicular to these three planes. The coordinates of
the four vertices U, T, V, S of the tetrahedron are respectively g, = g, = g5 = (1 + qo);

fG1=—q= —q3=(0+q) —q1=q2=—q3=(1+4q0) —q1=—-q2=¢q5=
(1+40)~ .

actually a square. The three cartesian coordinate axes for ¢,, g, and ¢, which are
not shown in the figure, are perpendicular to these three planes.

Let us now consider the algebras valid in these three planes. For simplicity, let us
first put g, =0. Then, in eqs (68), ¢ is replaced by unity. In this case, the algebra of
c and ¢! in the plane FCBG (g, = 0) of figure 3 is our two-parameter algebra described
by (5) and treated in detail in § 3 and FCBG is precisely the same boundary shown
in figure 1.

Similarly, in the plane FC'BG/, the two-parameter algebra is

Ckac:r"ﬂ —4q; CLﬁ Cra = 93 0m Z Clﬁcpa = 5km5aﬂ , (69)
, P

and all the conclusions drawn in §3 are valid for this algebra, but with the roles of
space and spin indices interchanged. The square FC'BG’ (see figure 3) is the boundary
of the positivity of the norm in the two-particle sector. At G’ and C' we have another
version of orthofermi and orthobose statistics:

At G' (orthofermi statistics):

ckacjnﬂ + 5km Z C;ﬂcpa = 5km(s
p

af? (70)
ckacmﬂ + ckﬂcma = 0 ) : (71)
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At C' (orthobose statistics):

Ckac:rn,e ~ Ot % c;ﬂcpa = 0ym0up> (72)

CaCmp ~— CxpComa = O- (73)

A description of these versions of statistics analogous to that of the earlier orthostatistics
can be given. Along the diagonal C'G’ (see figure 3), we have

‘Ckuc;rnﬂ — 439, ; C;r;/scpa = 0m0yp: - (74)

Along the two diagonals FB and C'G/, positivity of the norm can be proved for
arbitrary number of particles. Elsewhere, the boundary shrinks for larger number of
particles. Exactly the same dotted curve as in figure 1, but now drawn inside the
square FC' BG’ will be the boundary for three particle sector.

Finally, the algebra valid in the plane GC'CG’ is

T t — t —
Ckacmﬂ qzaaﬁ Z cmyck'y 93 5km Z Cpﬁcpa - 6kmaaﬁ‘
¥ p

The square GC'CG’ shown in figure 3 is the boundary of positivity of the norm in
the two-particle sector. The boundary for larger number of particles is not known.
However, along the two diagonals CG and G'C’ complete Fock spaces with positive
definite metric exist.

Let us now come back to the tetrahedron (figure 3). The six edges of the tetrahedron
are given by the following six pairs of equations:

4 +E=0; gy+43=0, 73)
©+¢=0 g¢3+4,=0, (76)
43+¢=0; q;+4,=0, (77)
g1—¢=0; g,—q3=0, | (78)
92—8=0 g3—q,=0, (79
43—&=0; g, —4q,=0, | (80)

while the four vertices are given by the points:

.=—¢, q=-¢ a3=+¢ (81)
@=+¢ qy=-¢ g3=-¢ ~ (82)
n=-& @m=f g=-¢ | (83)
=%  a=¢ g;=¢ (84)

The full extent of the region of positivity of norm (at least for the two-particle sector)
is revealed by the coordinates in (81-84). Again putting g, = 0, note for instance that

when q; was zero the point g, =g, =1 was not in the allowed region (see figure 1),
but for g; =1 this becomes an allowed point.

Finally, consider the four-dimensional parameter space {qq,q;,4,,43 }. The region
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of positivity of the norm in the two-particle sector is given by a four-dimensional
object whose cross section at fixed g, is the three dimensional tetrahedron STUV
considered so far. Since the size of the tetrahedron is determined by £ =1 + ¢4, we

see that the size of the tetrahedron contracts to zero for g, = — 1 but expands to
infinite extent for g, — + co. The four-dimensional object is of infinite length in the
q, direction extending between g, = — 1 and g, = + 0.

It is interesting to note that by taking g, positive and sufficiently large, the region
of positivity of the norm can be enlarged to an arbitrarily large extent. The results
presented in this section are for two-particle sector, except for the three-particle
boundaries given for the algebras with two parameters {q,,q,} or {q,,q5}. It appears
that positivity of the metric for three and more particles in the cases of the three and
four parameter algebras will lead to complex shapes and boundaries. However, all
of these will be enclosed within the above four-dimensional object.

The particular case of the (g,4,q,) algebra:

ckacjrtﬁ - Q1c;rnﬂcka — 4o 5km5aﬂ Z clycp'y = 5km6aﬂ | (85)
Py

is of special interest. For, this reduces to the single-indexed algebra studied in §5,
namely eq. (54), by the mapping

(k)= A4; q1-4q1; go— 4 (86)

where A stands for a collection of indices and hence all the results of §5 are applicable
for the algebra of (85). In particular, we see that the complete Fock space with positive
definite metric exists all along the line:

—1<gy<o0; qy=q,=q;3=0. (87)

In the two-parameter plane (g4, g, ) as well as for the other two-parameter algebras
characterized by the pairs (¢,,q,) and (qo,43), we have only the two-particle results
which are contained in the two-dimensional sections of the four-dimensional figure
already described. For the sake of clarity, we may restate the results explicitly. For
(90-91): (40> 9>) and (qo, q3) algebras, positivity of the metric in the two-particle sector
allows the triangular region depicted in figure 2, but with the y-axis replaced by g,
and the x-axis replaced by ¢, g, and g5 respectively.

For the sake of completeness and clarity, we may here write down all the single
parameter algebras with the corresponding domain of the parameter space for which
complete Fock spaces of positive definite metric exist:

@) Ceplhy— 1€l 0= 8,nbups (88)
—-1<q, <1, » (89)

®) cpchy— 420, g ¢l Cey=OmOups | (90)
| —1<q,<1, (91)
(©)  CoyChip— 430m g CliCr = OmOups | (92)
—I'<gy<1, (93)

Pramana — J. Phys., Vol. 40, No. 3, March 1993 165



A K Mishra and G Rajasekaran
(d) Cra€ mﬂ qo&km aﬂchv pyo km aﬂ’ (94)

—1<q,< 0. 95)

cc relations: What are the allowed cc relations, corresponding to the 4-parameter cc’
algebra of (1)? To answer this, one can again take Q, the general quadratic in ¢ given
by (43) and try to commute it with CL using (1). We do not give here the resulting
equation which is much longer than (44). But pursuing the same kind of arguments
as in §4, we find that apart from the already identified points B, F, C, G, C' and G’
(see figure 3) where the cc relations already discussed exist, only one more point in
the {g0,4:, 42,493} space is allowed, namely

go=—1 q1=¢,=¢3=0 (96)
and the corresponding cc relation is

=0, 97)

Ckaz Cmﬁ

At this point the cc™ algebra (1) becomes -

Ckac;rnﬁ + 5km af Z cpy Dy 5km6aﬁ . - (98)

Equations (98) and (97) can be respectively mapped into (61) and (62) .of §5. This
algebra does not allow more than a single particle in the system and hence does not
lead to any new statistics.

7. Miscellaneous

7.1 Factorization

It is possible to factorize the algebra of (5) into two independent algebras, one involving
the space and the other, the spin indices:

Cu=fibo | 99)

feba—bofi=fb,~ b fl =0, - (100)
St —af} fi="6, (101)

buby =0, (102) .
Q1b2ba+q25aﬁ;bzby=q5¢ﬁy ' (103)

where g is another arbitrary real parameter. It is easy to show that by substituting
(99) into (5) and using (100) and (101), the egs (102) and (103) follow. Thus, we have
two commuting sets of operators f; and b,, the former satisfying the g-mutator algebra
of (101) and the latter satisfies the algebra defined by (102) and (103).

The above is valid for arbitrary values of g. If we put g =g, and also restrict
ourselves to the diagonal GC(g, = 0), eq. (103) becomes

Ybib,=1. | (104)
Y
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Equations (102) and (104) together constitute Cuntz algebra [5]. Our general factori-
zation thus involves a g-generalization [(102) and (103)] of Cuntz algebra.

In spite of the elegance of the above result, it must be pointed out that Cuntz
algebra and factorization are inconsistent with Fock representation as can be seen
by applying the vacuum state |0 on (103) or (104).on the right.

7.2 Number operator

The properties of the matrix elements following from the algebra of (5) were stated at
the beginning of § 3. These already lead to the concept of particle number and in fact

~ we have implicitly used this in our discussion so far. Nevertheless it is useful to have

an explicit expression for the number operator.
A special case of the unitary transformations of (2) and (3) is the phase transformation.
Equation (5) is invariant under the following phase transformations:

Crp— € Cpp (105)
Cp = €7 Cp (106)
= €02, (107)

where ¢ is independent of k and «, while ¢, and ¢, respectively depend on k and «.
As a consequence, the total number operator N, as well as the number operators for
a definite space index or spin index N, and N, exist. However, the algebra of (5) is
not invariant under the phase transformation:

Cp = €Pc,, ‘ (108)
where ¢ depends on both k and o. Hence, the number operator N,, for a definite k
and o does not exist. The difficulty of defining N,, with usual commutation relations
was already pointed out earlier [6,7].

For the case of orthofermi and orthobose statistics, explicit expressions for N and
N, are easy to write down:

N= Z cIacka’ (109)
k,a

Ny=Y.c ¢, (110)

One can verify

[N: C]m] =- cka’ (111)
[N Cod = — Bm€ | (112)

km*~me*

On the other hand, N, is generally an infinite series in ¢’ and ¢ just as in the case
of Greenberg’s algebra for “infinite statistics” [1,13,14]. Consider the case of the
orthofermi statistics with the spin index taking only two values denoted by ¢ and 4.
Then, the first few terms (up to biquadratic termsin c' and c) for N, are the following;

+
NU = ;cla’ckc + kz: Ckiclmcmacki— Z czo‘c;acmacka t (113)
; m

k,m

N; is obtained by the replacement g« . We have not obtained the complete series.

Pramana — J. Phys., Vol. 40, No. 3, March 1993 167




A K Mishra and G Rajasekaran

8. Discussion

Annihilation and creation operators are the basic elements out of which, quantum
fields are built, at least at the perturbative level. Thus, a general study of ¢ and ¢!
throws light on the enlarged framework within which the familiar quantum field
theory and statistical mechanics reside. This is the main motivation behind our work.

Our study encompasses the general bilinear algebras of annihilation and creation
operators which are possible under the sole constraint of invariance under unitary
transformations of the indices. Our main departure from earlier studies is the
distinction between the two types of indices which we have introduced and the
requirement of invariance under separate unitary transformations on these two types
of indices. We have analyzed the general algebraic constraints that result from con-
sistency requirements as well as the constraints arising from the positivity of the
norm of the corresponding Fock spaces. The positivity constraints prove to be very
strong. Although we do not have the complete solution of the problem of defining
the regions of positivity in the multiparameter-space, we have already found some
restricted regions of the parameter space for which nontrivial algebras with positive
definite Fock spaces exist. These algebras lead to interesting consequences such as
orthostatistics. :

Considering orthostatistics, we may ask whether there exist examples of this exotic
form of statistics in nature. Condensed matter physics is a rich field where such
possibilities may be relevant. In an earlier paper [6] we have already pointed out
the connection of orthofermi statistics to the Hubbard model of strongly coupled
electrons in condensed matter systems. In fact, this was our original motivation for
the construction of orthofermi statistics. Even more exciting possibilities may be
contemplated in high energy physics. Let the Latin index in our algebra of (5) be re-
interpreted to denote collectively all the indices (space, spin and other internal
quantum numbers) which are known to characterize a particle and let the Greek
index denote a new degree of freedom which may be excited at some higher energy
scale. Then orthofermions and orthobosons will obey usual Fermi-Dirac and Bose-
Finstein statistics as far as all the conventional degrees of freedom are concerned,
but the new statistics will manifest itself in the new degree of freedom.
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Appendix 1. More general algebras
The nine-parameter algebra: We consider the nine-parameter algebra

P Ckac:rn,a + P2 5aﬂka + p35kaaﬂ + poakméaﬂR — 4 C:rnﬂcka
- qzéaﬂ T, — 430, T,,— 5105km5aﬁ T=sb, o (A1)

“km“ap

where
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> ckacIa =R chacka

k,u

chacj;ta km Z C cka m (A2)
a

E’;ckaclﬁ =R, ; ; Crplha = Tpa

As mentioned in §2, the parameters p; and s can be easily eliminated by suitable
redefinition of ¢ and ¢!, in which case (A1) will reduce to the 7-parameter algebra of
(4), but we start with (A1) for the sake of greater generality. Let n, and n, be the
number of spin (Greek) and space (Latin) indices respectively, both taken to be finite
numbers at first and s, p; and g; are real parameters. We shall show that for general
values of the parameters the algebra (A1) can be reduced to the four-parameter algebra
of §2. There will be a few exceptional cases which we shall consider separately. The
limiting case of infinite n, also will be taken up subsequently.

Put o = f§ in (A1) and sum over a«. We get

(py +p2n1)R,, + (P53 +Pon1)0, R — (1 +4211) T,y — (g3 +4don1)o,,, T |
= Sn15km. . _ (Ag)

Next, putting k= m in (A1) and summing over k, we get

(1 + P3nz)R 5+ (P2 + Pon2)d,,R — (@1 + qsn2) Ty, — (a2 +4on2)0,, T
=8Ny, (Ad)
Finally, we put k =m in (A3) and sum over k. This leads to ‘

(1 + pany + P3ny + Poniny)R—(q; + dyny + dany +qonyny) T= snl?/iS)
From these three equatlons (A3), (A4) and (A5), R, R, and R,c can be obtained in
terms of T, Ty, and T,

R,=S"1n2+(611+¢12"1+613n2+‘10"1"2) T, | (A6)
p1 +pang +pany +pohyhy
— 1 '
km (py +p2ny)
sny(py + pany) + {(gs + gon )01 +p2ny) —(Ps +pony )y +42n1)} T
- 5km
pi + Pahy + Pany + pony Ny
+(q; +4q214) mkila (A7)
1

- (py + p3n2)
‘lisnz(h +pany) + {(@z + gon2)(py +psny) — (P2 + Ponz)(gs + 4anz)} Té
Py + pany +Pany + pohy 2

ap
+(q1 + 43n2) Tﬁa]- (A8)
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Substitution of these results into (A1) and some straightforward manipulations yield:

’ /‘F ! Fo ] rt
Cka m,B ql mg Ckaz q2 5«111 Z cmvck)' q3 5km Z cPﬁ CPG
¥ P

- qoékm af z c,;ycpy km aﬂ ) (A9)
where we have defined
Coy = [s™'py + pany + psng + pony nz)]”zcka (A10)
, 41, , _ 92Pi—P24: ., _ 93P1—P3ds
Gi=—" Q= H=F— ——
P1 " pi(py + p2ny) p1(p; + p3ny)
‘1'o=[¢10p1 +q1{p2P3_PoP1 +P3(P2 +P0"z)}_‘12p1(ﬂ3 + Po"y)
Py +Dany py +Pp3n, p1+pahny
Py + PoMa) _ \
"‘qspl(pz Poltz ]{Pl(h + pafy + pany + ponyng)} (Al1)
Py +Dpan,

Thus, in general, the algebra deﬁned by (A1) is identical to the four-parameter algebra
(1) considered in § 2.

The exceptional cases: The exceptional cases are given by some special values of the
parameters which correspond to the vanishing of the denominators encountered in
the above manipulations. We consider a few of these cases:

) Py + P2ty + p3ny + ponyny = 0. (A12)
In this case, if R in (A6) is to be finite, we find
(@1 +gany +q3n, +qonyny) T=—snyn,. _ (A13)

This equation is not consistent with the existence of the vacuum state |0) and hence
is not possible in Fock representation. But as general algebras, such possibilities exist.
In fact, the Cuntz algebra referred to in § 7 belongs to this category. '

(i) py+pyn, =0. ‘ (A14)

Substitution of this into (A7) and the requirement of finiteness of R, , leads to the
condition:

r,=LT5 . | (A15)
n, .
(i) Py +psny =0. ' (A16)

This, along with the assumption of finiteness of R,; in (A8) gives

1
T =— Ta (A17)
1 .

Both (A15) and (A17) may lead to interesting comstraints on algebras, Finally we
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consider two more exceptional cases:

(iv) p.=0. v (A18)

If, in addition to this condition, p,, p3 and p, also vanish, then (A1) will be inconsistent
with the existence of |0); otherwise, it is a possibility.

V) s=0. | (A19)

In this case, one can verify that all matrix elements in Fock space are zero. So, Fock
representation does not exist.

Infinite sums: So far we assumed n, and n, to be finite; we now consider the limit of
infinite n,. The results will depend on whether R, T, R, and Tj, (defined in (A2))
which now involve infinite sums are finite or not. Let us first prove that all these
four quantities cannot be finite. This is proved by first assuming that they are finite
and obtaining a contradiction. Thus, for n, —» oo, with R, T, R, and T,, assumed
finite, eqs (A6—A8) become

_m +(@s+qon) T

R (A20)
P3 + Po1
' +qyn
R, =hTBlip (A21)
p1+ P2y ‘ ‘ /
sp3 +(qoP3 —Pods) T q3
= gt = Tpar (A22)
p3(p3 + poty) Ps3
‘Substituting these into (A1), we get
Ckac:rnﬂ - qll cjnﬂ Cra ™ q’2 6aﬂ 2 CTmycky =0, ‘ (A23)
Y

where ¢ and g, are the same as defined in (A11). This algebra (A23) is inconsistent
with the existence of the vacuum state. Hence within Fock space, the algebra of (A1)
with infinite sums over latin indices but finite R, T, R, and Ty, is not possible.

However other possibilities exist, if some of these quantities are allowed to become
infinite. The simplest one is to take the algebra of (Al) without R and R, ;. This
situation can be analyzed by putting p; = po =0 in (A6)—(A8). One finds that these
equations are consistent for infinite n, if R and R are infinite, but T and T, finite.
In this case, R,,, can still be expressed in terms of T,, and hence finally one gets
back the four-parameter algebra of (1) again.

Algebras defined by two equations: Let us now enquire whether an algebra can be
defined by more than one equation. Consider the algebra defined by the following two
equations which are taken to be simultaneously valid:

ckac:rnp —a c:rnﬂcka — 420,45 T — 43 Orm Tp

- ‘105km5ap T= 5km5aﬁ . (A24)
Ckac;rnﬂ — 1 c;rnﬁcka ) 5aﬁ ka —1I3 5km Tﬂa
1080y T= 140y (A25)
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where g, #ty; g2 #ta; 43 #1135 4o 7 Los La #1and T, T, and T}, are as defined in
(A2). Let n, and n, be the number of spin and space indices respectively. By straight-
forward manipulations on these two equations, it is possible to show .

g =  Simap: , (A26)
Cfnﬁcka = gékméaﬁ’ ) (A27)
where [ and g are known functions of g;, t;, 7, and n,. Thus, in general, the two

equations (A24) and (A25) reduce both the operator products ¢,, cfnﬁ and cfnﬁ c,, 10

trivial forms and further (A27) is inconsistent with vacuum state. Hence, we conclude
that, nontrivial algebras leading to Fock representation cannot be defined by giving
two general equations. However, for special values of the parameters, nontrivial
algebras are possible and these belong to the general class of algebras which include
‘the Cuntz algebra [51

Appendix 2. Inner product in the multiparticle sector
Multiplying the products of the operators on the right side of (13) explicitly, we have
the 3-particle matrix element:
0| cwcmﬂck‘acbc:nczvl()> |
=1+q, Py, +q,P5, +4q, Py, +‘12sz + qutuPtsz + 61313(2:'119(3)2
+ qquPtnsz +QI‘12P21P32 +q§Pt32Pt21 +q§P22P(2)1 +‘11‘12Pt32Pg1
+q1q2P§2Pt21 +q?Ptz1Pt32Pt21 + qi‘I2P121Pt32P(2)1 +‘ﬁ‘12‘{)(2)1P'321:’“21
+511q§.Pg1Pt32Pg1 + 24, q§P121P32P21 + ‘12(‘1? + qi)P(2)1Pg:éP21 (A28)

where we have used the identities

P, P3Py, =P Py, Py, (A29)
Pgng2P31=P’21szP'21. (A30)

These identities can be proved by decomposing the total exchange operators into
orbital and spin exchanges: :

P},= PO ps ’ (A31)

ijo i
and then using the commutativity of P° and P*:

[P°, P:]=0. (for any ij and kl). | (A32)

i

A few important features of the formula (A28) niay be noted.

(i) Among the 36 possible states obtained by permuting the space and spin indices

(. s, q; 4, u,v) of the 3-particle state, there exist nonvanishing inner products only for
the 19 permutations explicitly written down in (A28). All other permutations lead to
vanishing inner products, since they lead to pure spin exchanges.

(ii) The operators on the right of (A28) have been written in the standard form arising
from the products in (13); but there are other equivalent forms for some of the terms.
For instance, note

P, PY, Py =Py, P Py, ‘ (A33)
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(iii) The matrix element is a monomial of the form g’ g¥ except when identities [15]

of the type (A29) or (A30) connect terms occurring in the standard form to other
terms also occurring in the standard form. In these exceptional cases, either the
monomial ¢] g5 acquires a numerical coefficient larger than unity or is replaced by
a polynomial of more than a single term. Examples are the last two terms on the
right of (A28): 2¢, 4% and q,(4} + 43)-

In the n-particle sector, the expansion in eq. (13) contains

[=]1 @ —1)

terms which is smaller than the total number of permutations of space and spin
"indices which is (n!)2. This actual number of distinct nonvanishing matrix elements
is further reduced because of the identities of the type (A29) or (A30). For 3 particles,
there were only two; for 4 particles, there are more than 60 identities.

Appendix 3. Positivity of the metric in the three and four particle sectors

The three-particle sector with distinct space indices k, m, p and distinct spin indices
«, B, y consists of 36 states. We consider the smaller problem in which the space
indices are distinct, but the spin index ranges over only two values (denoted by o
and &) so that the total number of states is only 18.

As already pointed out in §4, the region of positivity is larger if the range of indices
is smaller. So, for the two-parameter algebra with the space index ranging over 1 to
o0, the largest region of positivity is likely to occur when the range of the spin index
is two. (If the range of the spin index is one, the two-parameter algebra is reduced
to a one-parameter algebra). .

We introduce a convenient notation. The spin indices ¢ and & will not be explicitly
written but will be indicated respectively by the absence or presence of the bar above
the spatial index. Thus.

lkmp)y =c} cfnc; 0> = c{ac:fmc;& 10> (A34)
{kmp| = 0] cscmCr z?<0|cp&cmacka. - (A35)

The 18 x 18 matrix of inner products in this three-particle sector is given below:
|kmp) |lafip) _|kmp)
_ <kmp| A D E
7 (kmp| | DT B F
Kkmp| | ET FT C
where A, B, C, D, E and F are 6 x 6 matrices given below and the superscript T
denotes transpose:

(A36)

A= |123) 1132) 1312 1321) |231> 1213)
<12§| 1 g, (91+42)49: X (@ +492)92 d1+42
132 1 4y +4;. (@1+42)42 x (91 +42)492
(312] 1 2 (@t X
321 - 1 qi+4x @1+492)4:
{231] ' ‘ 1 q,
{213 1
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B=

{123
{132
(312
(321}
(231
{213}

C=

(123
(132}
(312
(321
(231]
13

123> |132) |312) 3215 231) ]213)

1 g 4 vy & a0
1 qs q§ y q%
1 g a vy
1 9 4
1 P
1
123> (132> 1312) 321> 231> 213>
1 qy+4q; (91 +92)92 z (91 +42)9> 92
1 qs (g1 +42)92 z (g, +42)492
1 g1 +92 (41 +42)4; z
1 q> (4: +42)42
1 q, + 4,
1

A, B and C are symmetric matrices and we have defined

174

D=

{123
{132]
(312
(321
{231
213

E=
{123]
{137
(312
(321
{231]
(213
F=

(123]
(132]
(312
(321
{231]
(213

x=q,(q} + 43+ 4192)

y=0;+919:+4;

z=(qy +4,)°q,

[123) |132) |312) |321) [231) |213)
0 q:1 419, U v 0
qd: 0 0 v u 4,49,
v 0 0 41 414 U
u 19, ¢ 0 0 v

q:q; U v 0 0 q
0 v U 4149 494 0

11235 [132) (312> (321> 231> [213)

0 0 ¢ w 0 0
0 0 0 0 w g
0 0 0 0 ¢ w
w ¢ 0 0 0 0
¢ w 0 0 0 0
0 0 w ¢ 0 0
123y 132> 312y (321> (231> [213)

0 0 4192 4qpv v q1

0 0 s v 42V 4192

v q 0 0 4142  qav
q;v 419> 0 0 g1 v
q:4; q,v v q: 0 0
g1 v g2 4142 O 0
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where
u=q,4,(q, +24,)
v=q;(q, +92)
w= 41%(‘11 -+ CIz)

By a series of straightforward but tedious manipulations, we have reduced the
determinant of the above 18 x 18 matrix to the following product of factors:

det M, = (det Z,)(det X)) (det X 7)(det Y)? (A37)
where
d3t23={1_(Q1+QZ)6}{1“(‘11+512)2}6- (A38)

Actually, Z, is the 6 x 6 matrix of inner products in the three-particle sector for the
g-mutator algebra:

cect — (g, + q2)ch e =0 (A39)

Further, X(*) and X() are 2 x 2 matrices while Y is a 4 x 4 matrix. Their matrix
elements are given below:

X = _ g +3¢2) F(g—q° — 392 — 243 — 495+ 307 a2),
X =(1—¢’— 2 +490) F(—a+ 0~ 2 +99;—30°43)
X5 =240 —23) F(—a+ @ + & +244; 3¢ 02)
X = F(gq2 — a2,
where A
q=4:+ 42
Y, =1+ @ +(1-2g,)9:9,—[1+ (1-42)92142,
Y, = —[1—gq; —2¢21a, — @} + (1 — 4}z,
Y,,=—[1—(1—q1—42){qs —42)141,
Y,,=—-[2—41)4: +49314:
Y, = —(1+41)4:,
Y,,=1+[q,+ (1 +24:)0:10: — 4} + (1 — 42 — 5392,
Y,y= —(1—24:)ds.
Y, =[1—(1—4g:)q: — (1 +42)92191,
Y, =—(Q+q + 43)41
Y;,= —(1“241—Q§)Q1a
Yy, =1+(1—q;)a? — (1 —245)d:42 — (1 + 42— 43z
Yy, =[1—(1—41):19: — 24,45 + (1 — 432
Y, = —2(1+41)4:>
Y,,=(1+q,+41)41,
Y,,=(1+41)4;,
=14+ —(1+24,)q:92 + (1 — 42— 43)42-
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The boundary of the positivity of M5 is determined by the zeros of det M; which
lie closest to the origin g, = g, = 0 in figure 1. The first factor det Z; on the right of
(A37) has real zeros only for q; + ¢, = * 1, which correspond to the straight lines
BC and FG in figure 1; det X'* has real zeros along the lines BG and GF while the
real zeros of det X~ occur along the lines FC and BC. It is the last factor det Y
which is found to have zeros not only along the boundaries of the square BCFG but
also along the curved lines lying inside BCFG shown in figure 1. Thus, these curved
lines become the boundary of the region of positivity for the three-particle sector.

We have also done the calculations for the three-particle sector with spin index
taking three values and for the four-particle sector with spin index taking two values
which lead to 36 x 36 and 144 x 144 matrices respectively. Our numerical results
show that the boundary of the region of positivity shrinks further.
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