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Abstract. We construct the algebra of the creation and destruction operators for spin %
particles obeying a new exclusion principle which is “more exclusive” than Pauli’s exclusion
principle: an orbital state shall not contain more than one particle, whether spin up or spin
down. The consequences of this algebra are studied and applications to the Hubbard model
in condensed matter physics are indicated.
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1. Introduction

Pauli’s exclusion principle plays a fundamental role in present-day physics. In this
paper, we envisage a quantum-mechanical system of spin % particles satisfying a new
exclusion principle which is more exclusive than Pauli’s principle and which allows
the occupation of a single particle (either spin up or down) in any orbital state but
forbids the occupation of both spin up and down in the same orbital state. Is it

possible to describe such a system consistently using creation and destruction

operators? What is the algebra satisfied by such operators? We show that the answer
to the first question is in the affirmative and obtain the algebra satisfied by the new
creation and destruction operators.

Our work was originally motivated by the Hubbard model in the U — co limit,
which has become a focal point of interest in recent work on high T, superconductivity.
Hubbard model is described by the Hamiltonian

H=—t _}_—: c}acia‘*_ Uzc'lra'ci:rc;'rﬁci&
24,0 ‘

where ¢;, and ¢, are the annihilation and creation operators for electrons at site i
and spin « (either spin up o or spin down &). The second term with positive U describes
the Coulomb repulsion of the electrons on the same site and in the limit of infinite
U it forbids more than one electron on the same site. Although this is the motivation
for the new exclusion principle, it will become clear that our results may be of more
general interest.

*To whom all correspondence should be addressed
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Section 2 contains the main result of this paper namely the new algebra. Subsequent
sections are devoted to the various ramifications of this algebra and show how the
algebra describes the system of particles in a consistent manner although the particles
do have strange properties. Section 6 contains some physical applications while the
final section gives a summary and discussion. In Appendix 1 explicit representations
for the new creation and destruction operators are given while Appendix 2 gives the
complete set of rules for forming the normal product and the Wick expansion for the
operators of the new algebra.

2. The new algebra

We denote by ¢, and c,, the destruction operators for particles in the orbital state
k with spin up and down (¢ and ) and by their hermitian conjugates cf, and c;
the corresponding creation operators. Then, we obtain the following two types of
algebras satisfied by them:

Algebra 1
CrsCi + (1 = Opm) €15 Cho =0 : _ (1)
CeoChs 4+ (1 = Spm)ChiCia =0 )
CiaChio F ChioCho = Sem(1 — ClsCi) . )
{Chas Cme} =0 | @

together with all the relations obtained from these by interchanging ¢ and & or by
taking hermitian conjugate.

Algebra 11
ChoCrnis T CmaCiz =0 ()
CaCrs=0 : . (6)
CrChno F ChaCho & ChisCis = Oiom _ @)
{CkasCme} =0 8)

and all the relations obtained from these by interchanging ¢ and & or by taking
hermitian conjugate. Algebra II can also be written in the more compact form

CmaC;ﬂ = 5aﬂ(6mk - ; czycmy) ’ (9)

ckacmﬁ + Cmackﬂ =0 (10)

where «, 8, y go over o, G.

Either of these two algebras can be used to describe the system of spin % particles
obeying the super-exclusion principle or extended Pauli principle formulated above.
Whereas algebra I is inhomogeneous in the orbital indices k and m, algebra II is
homogeneous in these indices. One can see that these two algebras differ only for




Algebra for fermions with a new exclusion principle 539

k + m. If we consider oaly a single orbital state (whose label can be suppressed), both
these algebras reduce to the following common algebra:

;=0 (11)
¢t =0 (12)
c,ct=c,cl=1-clc,—cle, (13)
¢ ce =0 (14)

and all the relations obtained from these by interchanging ¢ and & or by taking
hermitian conjugate.

Let us first consider the simpler algebra given in eqs (11)~(14). The hermitian
conjugate of (14) implements the usual Pauli principle while the hermitian conjugate
of (11) implements the extended Pauli principle. The vector space here is 3-dimensional,
spanning the three independent ket vectors |0), [¢) and |5 which denote the vacuum
state, the particle state with spin ¢ and the particle state with spin & respectively.
Either using these kets and the corresponding bra vectors 0|, {a], (3| or by using
3 % 3 matrices, one can show that (11)-(14) follow (See Appendix 1). In fact, the explicit
construction of the 3 x 3 matrices proves the consistency and completeness* of the
algebra defined by egs (11)—(14).

It may be noted that the operators cte, and clc, do not occur in the algebra
(eqs (11)—(14)). They are actually spin-flip operators and generate the SU(2) algebra.
Defining

sy =che, ' » (15)
s_=cle, - ' (16)
5. = 3(che, —cles 17

and using eqs (11)—(14), it is easy to verify the usual SU(2) algebra:
[s;,5_]=2s, (18)
[s:,8:1=F5%. (19)

Thus our modification of the usual fermionic anticommutation relations is consistent
with invariance under the spin rotations.

With the orbital states included, we get the two types of algebras I and II. These
algebras are obtained by extending the arguments of Appendix 1 to the case of two
or more number of sites. Algebra I results if we demand total antisymmetry of the
wave function for interchange of orbital and spin indices: Algebra II is obtained if
we require the validity of (11)~(14) for any linear combinations of orbital states. The
motivation for such a requirement is the resulting invariance under unitary transform-
ations discussed below.

* By completeness, we mean that the algebraic relations (11)~(14) define the operators ¢, and ¢; and
their hermitian conjugates completely. -
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Antisymmetrisation is obvious if we re-write (1)—(4) for k #m:

CiaCs + CmiCio =0 (20
CyChst ChaCe=0 ' 21
CiaCrme T CmaCrig =0 (22)
CkaCma + CmoCko = 0- (23)

Infact, for k #m, algebra I is idential to the usual algebra for fermions. In contrast,
algebra 1I for k # m reads:

CaCog T CoisCrc = 0 (24)
et =0 (25)
ChyCmo F CooChr F Cla g =0 (26)
CheCma  CimaCra = 0. (27)

The positions of ¢ and & in (24) must be particularly noted. Whereas (20) implies
total antisymmetry for the wave function, (24) implies antisymmetry in the spatial
labels only, with the order of the spin indices frozen.

The complete algebra I1 given in (5)-(8) is invariant under the unitary transformation:

dro =Y Ui | | (28)
k
d;=Y Uncy (29)
. k
where
UUt=U'U = 1. (30)

It is easily seen that the relations of algebra I (egs (1-4)) are not invariant under
these unitary transformations because of the terms inhomogeneous in the indices.
Homogeneity in the oribital indices and invariance under unitary mixing of the orbital
states are desirable in a general context and our algebra II has these properties, on
par with the usual fermionic or bosonic algebras.

Although algebra I is not invariant under unitary transformations in the orbital
or site index k, it is invariant under spin SU(2) transformations. We had already
derived the SU(2) algebra (egs (18) and (19)) for a single site. It is clear that this
algebra exists at each site. So, both algebras I and Il are invariant under spin rotations.

It is clear that the two algebras are applicable to different physical situations. For
applications to condensed matter physics where the lattice site plays a special role
(such as the infinite repulsion for electrons at the same site in the Hubbard model),
algebra 1 with the index k representing the lattice site may be relevant. For a more
general physical problem where different sets of wave functions reiated by unitary
transformations (for instance position space and momentum space wavefunctions)
must be treated in a uniform manner, algebra II may be relevant.

Recent literature on Hubbard model with infinite U contains results which are
closer to those expected from algebra I as well as algebra II (See Ruckenstein and
Schmitt-Rink 1989 as well as Ogata and Shiba 1990). It appears that the limit of
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infinite U does not lead to a unique model and the two algebras provide two possible
realizations of the Hubbard model in this limit.

We may also note that algebra II can be easily generalized to the case of an arbitrary
number of spin indices n by allowing «, § and y in egs (9) and (10) to go over 1 to
n. Further study of this generalized algebra will be taken up elsewhere and for the
present, we restrict ourselves to the case of n= 2.

Hereafter, for the sake of definiteness, we concentrate on algebra II. It is easier to
work with, since both the cases of k=m and k #m can be treated in a systematic
and uniform manner. Results for algebra I can be obtained by combining those of
algebra II for equal orbital indices and those of the usual fermionic algebra for different
orbital indices. In any case, it is algebra II which has more unfamiliar features (For
a further comment on algebra I see §6.3).

3. Calculation of matrix elements

We shall now show how to calculate matrix elements of an arbitrary string of creation
and destruction operators in the new algebra II. We assume the existence of a unique
vacuum state annihilated by all the annihilators ¢,

€l 0 = 0. (31)

The relations (5)—(8) together with (31) allow the calculation of the vacuum-to-vacuum
matrix element of any polynomial in the ¢’s and ¢P’s. To calculate a matrix element
which is a monomial in ¢’s and c'’s, consider the rightmost c. If it acts on the vacuum
to the right, the matrix element vanishes, due to eq. (31). If not, it has one or more
¢' immediately to its right. In that case use (6) or (7) to replace cct by a zero or a
Kronecker & and c'c. Thus, we have pushed the rightmost ¢ to one step more to the
right. Continue this process until ¢ hits |0). Repeat the same for the rightmost ¢ in
the remaining matrix elements. It is clear that the process yields zero, unless the
number of ¢’s equals the number of ¢’s in which case the matrix element is a sum
of products of Kronecker &’s. This is similar to the calculation for Fermi operators,
except for some important differences described in this and following sections.

The above procedure shows the consistency and completeness of the defining
relations (5-8) in the sense that vacuum expectation values of all products of operators
can be calcuiated. In particular, note that one does not need to deal explicitly with
the operator products such as cf,c,; which does not occur in the defining algebra
(egs (5-8)).

Before proceeding further, we find it convenient to introduce a change in notation.
The spin up (o) and spin down (5) will be denoted by the absence or presence of a
bar above the orbital index k:

W=t =G &2
Consider the matrix element
1.1‘
<O|ckc,,---cﬁcqcl‘c}-ncfnc, 10>

where ¢,c, - c,¢, is a string of annihilators and ctct- chcl is a string of the same
number of creators. This matrix element vanishes unless the ordering of spins in the
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indices r5---ml matches exactly with the reverse ordering of spins in the indices kn---pq.
For example,

(O] cxencycoercicnei|0y #0 (33)
but,
cheleh,ct|0) =0. (34)

§

{Olegeqc5¢,

For the spin-matched product of operators, the vacuum matrix element is the

antisymmetrized sum of product of Kronecker &s in the orbital indices. For example,

{O0leechell 0 = Oy 0um — StmOni- (35)

nem

Thus, in contrast to Fermi operators, the spin labels in some sense decouple from
the orbital labels. The value of the matrix element depends only on the orbital labels;
however the spin labels do play a crucial role in dictating which of the matrix elements
are nonzero, namely only those with exact matching of the spin-order, as defined above.

The above results can be reexpressed in terms of the n-particle Fock-space state
vectors defined by:

|F§---ml) =cIc_§---cf,,cHO>}

36)
{m---5r] = 0lciCp - C5Cr (

We have the results:

a) All the state vectors which do not have precisely the same spin order are
orthogonal to each other.

b) The state |kS---mn) is antisymmetrical in the orbital labels alone.

<knpgqlqnpky =0 (37)

Examples: B _
|kpmn = ~— | pkmn) = | pknn). (38)

We see from (38) that, while the space labels can be interchanged by introducing a
minus sign for every interchange, the spin labels are frozen. This is a consequence of
the relation (24). In fact, the ordering of these frozen spin labels becomes an important
characteristic of the state vector. These are the peculiar properties of the particles
described by the new algebra IL

Many of the peculiarities of the new algebra II can be traced to the following two
equations: ‘

cer=0
cxcl = ek

Actually the above two are the first and the simplest members of the following infinite
sets of null operators and identical operators*.

*In Appendix 2, we shall enlarge the sets of null operators and identical operators further.

" .
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Null operators

ccf=0

Identical operators
¥t
GG = CrCy
Lot t .t
C1CkCmCr = CIC1CmC;

e e Chehel = ceicchelel

The above two sets of relations can be summarized by the following two rules for
the spin-matching of antinormal products (products of operators with all c’s standing
to the left of all c"s):

a) All unmatched antinormal products are zero.
b) All matched antinormal products are equal.

These rules are closely related to the properties of the vacuum matrix elements
already encountered above.

Number operators
Let us define

n,=cie,; np=cker (39)
It is easy to show that

[ Cm] = — OimCom — Ny (40)

[, c] = NiCp- (41)
These are to be contrasted with the corresponding relations for the usual Fermi
operators (distinguished by a ~)

(s E] = — Oinii | “2)

[figs &1 = O. 43)

As a consequence of the extra terms on the right of (40) and (41), n, and n; do not
have the usual meaning of number operator. However, the extra terms cancel if we
add these two equations and so the total number operator for spin up and down
(n, + ng) behaves as expected of number operators:

[(nk + nE)’ cm] = - 5kmcm' (44) »
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Further, taking a two-particle state |mk, one can verify the eigenvalue equations

n |mk> = |mk) _ (45)
nglmk) = 0. ‘ (46)

Thus, the eigenvalue of n, is unity while that of n; is zero, although the state appears
to have a particle of label k.

These peculiarities of the number operators are related to the decoupling of the
space and spin indices and the freezing of the spin-order referred to earlier. Although
the label k nominally denotes the orbital state k with spin-up, it has the capacity of
manifesting as the spin-down state k also. By the same token, ¢, and ¢ also should
not be associated with unique spin directions. Spin indices get transmuted during
interchange of ¢ and ¢'.

4. Normal product and Wick expansion

Following the usual practice, we may define normal product as a re-ordering of
operators with all ¢’s standing to the right of all ¢"s, with a negative sign for every
interchange of operators. However, because of the peculiar spin-dependence of the
algebra I1, especially eq. (7), there is a transmutation of spin indices. Hence, consistency

requires the presence of more than one term in the definition of the normal product.
Thus, we have

N(e,ch) = —(chew + cliey) @7
N{c,c,ch) = (chem + chea)es : (48)
N(cwcheg) = — (chem + Chea)Cr (49)
N(cyeochcl) = cheiemea + chebeac, + chel ey + chetcacs. (50)

All these can be worked out by using egs (5-8) and discarding the Kronecker &’s. If
we keep the Kronecker &s, then we get the Wick expansion, namely the expansion
of any product in terms of normal products. For example,

CanCI CI = ankaml - 5nlémk - 5nk(c}.cm + C.}"C"-,)
+ 5mk(c1l‘cn + clicﬁ) + 6,,1(C£Cm + C};'C,ﬁ) - 5ml(c.;ccn + C.};‘Cﬁ)

+etelenc, + cheteqc, + chef e, e+ chehee; (51)

m-n mnt

On the right hand side we have only normal products. Also, we see explicitly the
reincarnation of the opposite spins.

Let us now consider Wick’s theorem which is usually stated in the following way:
any product of operators ABCD..... can be expanded into a sum of all possible

contractions between pairs of operators with the rest of the operator product replaced
by its normal product.

ABCD--- = ABCD + - + ABN(CD-) + -+ N(ABCD ) (52)

e

g
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where the contraction denoted by the symbol — is defined as the vacuum expectation
value:
AB= {0|AB|0). (53)

Such a theorem is still valid for the new algebra II. A straight-forward application
of (52) will yield the expansion of ¢,c¢, cc! given in (51). However in the general case,
the peculiar spin-behaviour contained in algebra II leads to a modified form of the
theorem. ‘

The full statement of the modified form of the Wick’s theorem and the complete
set of rules for forming the normal product can be worked out for algebra II. These
are given in Appendix 2.

5. Factorization

Our results on the calculation of matrix elements with the new algebra suggest the
possibility of a factorization of the orbital and spin indices. There are two alternatives
which will be considered in this section. In the first, the factors satisfy the usual
fermionic and bosonic algebras, but the composite operators do not form a closed
algebra. In the second, provided one of the factors satisfy a new algebra, we are able
to recover our algebra IL

5.1 Fermion-boson composite

We assume
Cw = fibey ®=0,0 (54)
[fxbal=[f1b.1=0 . (53)
m St} =6ms {fmfi}=0 | (56)
[y b} = 0ug; [basbpl =0 (57)

and ask what is the resulting algebra satisfied by the composite operators ¢, and '
cip- The answer is given by the following:

raep =0 6
{Ckas cmﬂ} =0 (59)
{ckm CL/}} = 5km5a[3 + 5kmb}‘3ba - fInfkaaﬂ' (60)

Equations (58) and (59) show that the new exclusion principle and the total
antisymmetry of the wave function are automatic consequences. Further, from eq. (60)
we note that the usual fermionic anticommutation relation is partially satisfied:

{ChosChp} =0 for k% m and o # B. (61)

These are the nice features. However, (60) contains operators other than ¢,, and cj
and thus we do not get a closed algebra.
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5.2 Factorization of algebra I1

In this second alternative, we assume
rd
).

Ca=fibyy @=0,0 (62)
[fk’ba] =[f;:ba] =0 ‘ (63)
{ S} =0ms {fmrSi} =0 (64)

and then ask what is the algebra satisfied by b, if we impose the algebra II (egs (9)
and (10)) on ¢,,. The answer is the following:

bebly = 6y (65)

Y bib,= 1. | (66)

o

Thus, factorization ansatz leads to a simple and elegant algebra in the spin indices
and the peculiar consequences of algebra II encountered in the earlier sections can
be given a more transparent meaning using this factorized algebra.

We may also note that if we define the spin operators (raising, lowering and the
diagonal operators) as

s_=hblb, (68)
Sz "_"'—%(bzba'— b;b&)’. (69)

then, the SU(2) algebra (18)—(19) is satisfied as a consequence of (65).
We have already mentioned that algebra II can be generalized to the case of n spin
indices. A similar generalization of the factorized algebra can be made by allowing

« and B in (65)-(66) to go over 1 to n. Correspondingly, the SU(2) algebra will be
replaced by SU(n). : ,

Greenberg (1990) has recently considered a new kind of statistics called infinite
statistics which involves all the representations of the permutation group and leads
to Boltzmann statistics at the quantum level. He shows that the corresponding algebra
of the creation and annihilation operators a}, and a; where « and § go over 1 to oo,
is given by

) = 04p. v (70)

This is identical to our (65) if we consider the n— co limit of our algebra. However,
our algebra requires (66) in addition. Hence, for infinite number of spin indices, our
factorized algebra is equivalent to taking the one-particle sector of the Greenberg

system and forming composites of the Greenberg operators with the usual fermionic

operators.

" In spite of these formal niceties of the factorization ansatz, we must remark that,
from a dynamical point of view, the use of the composite operators may be problematic.
Our original set of operators ¢, are intended to describe physical particles, albeit
with strange or unfamiliar properties. What do the factors f, and b, describe? There
are no physical particles described by these operators in the original system. To ensure

T
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the absence of such particles or excitations described by these “fictitious™ operators
“in the physical spectrum, one may have to impose extra constraints with its attendant
problems.

6. Towards physical applications

This paper is mainly concerned with the algebra following from the new exclusion
principle; physical applications are outside its scope. However a brief view of some
preliminary applications and a comparison with other approaches is offered in this
section.

6.1 Partition function and distribution function

Consider the system of free particles obeying the new exclusion principle. Such a
system may be described by the Hamiltonian*

H=Y &m, | (71)

where n;, is the number operator ¢!, ¢, and c;, and cf, obey our new algebra. Let us
define the partition function Z and the distribution function {n; > (the average number
of particles in the orbital state i) in the usual way:

Z = Trexp(— pH) (72)
1
)y =L{n,+ng)= ‘Z‘Tr((nia +n,;)exp(— BH)). (73)

It is easy to work out Z and {n;) for the “new” fermions (fermions satisfying the new
exclusion principle):

Z =Tt +2exp(— fe;)) ' (74)
{n> =2(2+expPe) (75)

These are to be compared with the corresponding expressions for the “old” fermions
(fermions satisfying Pauli principle):

Z=T](1 + exp(— Beo))* 5 76)

() =2(1+exp fe;) . (77)

The above results (74)—(75) are valid for both algebras I and II. In fact the algebra
is not used; elementary counting of states is enough.

* Throughout this § 6 as in § 5 we indicate the spin indices o and & explicitly.
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6.2 Green’s function

We now calculate the single-particle Green’s function for the Hamiltonian of (71)
where n;, = chc;, and ¢, cf, obey algebra T or II. The Green’s function is defined by

Go(t) = — () Y1 {cls 0), cio 0} 1Y) (78)

where the time-dependent operators are defined in the Heisenberg picture and |y
denotes the ground state of the system. Differentiating with respect to t and using
the equation of motion for c;,(t), we get

":% G(1) = 5(2) W1 {cL, (0), cip (O} 19 — 1B() P 1 {clo(0), Lewo (2), HI} Y

= 5(2)(1 — <y ) + G0, (79)
Here we have used the relations
{c},(0),c;,(0)} =1—n; -~ (80)
and ‘
[eio (D), (1) + 15(1))] = 65¢,(2) (81)

both of which are valid in algebra I as well as algebra IT and we have defined
gy = W ing Y. (82)
Equation (79) leads to the following result for the Fourier transform of the Green’s
function: '
1—<n,,
67 =2, )
W — &
We may now compare this result with that following from the conventional approach.
For this purpose we consider the Hamiltonian

H= Z &My + UZ flig P (84)

where fi;, are the usual number operators &l &, with the &, and &, satisfying the usual
fermionic algebra:

{E}‘m Ejﬁ} = 5ij5aﬁ (85)

all other anticommutators being zero. We define the Green’s function by the same

expression as in (78). The Green’s function for this model is known to be (Hubbard
(1963), Jones and March (1973)):

1=y P

G%(w) = .
() w—g w—g—U

(86)

Taking the limit U — oo we recover the form of the Green’s function obtained with
the new algebra (83).
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We thus see that the conventional dynamics of infinite repulsion at the same site
and our new algebra describing particles without double occupation yield identical
results at least in the truncated model considered above. Hence it is hoped that this
simplification achieved by the reduction of dynamics to an algebra may lead to a
better understanding of the full-fledged Hubbard-model in the limit of infinite U.

6.3 Comparison with Gutzwiller projection and Hubbard algebra

In the literature on the Hubbard model with infinite U, a different approach has been
considered (Gutzwiller 1965; and see for instance, Ruckenstein and Schmitt-Rink

.

1989). To avoid double occupancy at any site, one defines the Gutzwiller projection:
g, =Gl — &5Ci) (87)

where &, and &}, are the usual fermionic operators satisfying the usual anticommutation
relation (85). It is easy to verify that the Gutzwiller operators satisfy

Groms + (1 = i) Insis = 0 . (88)
gkag:m" +(1- 6km)gjn&gka =0 o (89)
oG + Gno ks = Otm(l — Elsis) (90)
{ko>Gma} =0 (91)

and all the relations obtained from these by interchanging ¢ and & or by taking
hermitian conjugate. On comparing this set of relations with (1)—(4) of algebra I, we
see that they are identical except for (90) which involves ¢ and ¢! in addition to the
Gutzwiller operators. Thus, in contrast to algebra I, the algebra of Gutzwiller operators
is not closed.

Let us next define the set of operators X}":

Ooa __ . 06 __
X =c X; “Ci&}

XP=d,; XP=c} (92)
X0 =c;,cf, = ¢l

X{"= clsCins X7 = C:éci& (93)
X;'Té =c,cs XI'= clici

where the ¢ and ¢’ obey our algebra I. Then, using the algebra I (eqs (1-4)), it is easy
to derive the following relations:

Y X=1 (94)
. .

XP X} =6, X1 3
(X%, X#7], =0 for i #] (96)

where the Greek indices u, v, 4, p go over 0, ¢ and & and in the last relation (96),
anticommutator (+ sign) is to be used if both the operators are of the fermionic type
(X%, X% X?° and X®) and commutator (-~ sign) is to be used otherwise. This set

.of equations (94)—(96) which may be called Hubbard algebra (Hubbard 1965; Foerster
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1989; Ruckenstein and Schmitt-Rink 1989)*, is exactly equivalent to our algebra I
However, the following points must be made.

i) In contrast to our algebra I which contains the irreducible set of relations, the
Hubbard algebra includes relations which are derivable from the former. In fact, as
we have shown, the new creation and destruction operators ¢ and ¢ are the primary
operators and all other operators can be consistently expressed in terms of them.

ii) Whereas the single-site relation (95) follows from the identification** (Hubbard
1965)

Xp=ip> Civl, 97)

the multi-site (i # j) relation (96) does not follow. If one uses the Gutzwiller-projection
in terms of usual fermionic operators (Ruckenstein and Schmitt-Rink 1989):

XP7 = g;, =&, (1 — i), >

the multisite relation (96) can be obtained, but then some of the single-site relations
will be altered, as shown in (90) above. So, in the literature, an ambiguous attitude
towards the derivation of Hubbard algebra seems to have been adopted. Actually,
the multisite relation cannot be derived, without further assumptions. With suitable
assumptions, which were already mentioned in §2, one can get either algebra I or IL

Thus, our procedure of expressing everything in terms of new ¢ and ¢ obeying new
algebras provides a unified framework which facilitates comparison between various
approaches.

7. Su.mma’ry and discussion

We have found the algebra for fermions obeying a new exclusion principle for spin
which forbids the occupation of more than a single particle in any orbital state. Many
of the peculiarities following from this algebra have been elucidated through the
calculation of typical matrix elements as well as through the normal order operation
and the Wick expansion of operator products. Factorized version of the algebra also
has been discussed. Some preliminary applications have been indicated.

It may be useful to compare the statistics corresponding to the new algebra II with
the well-known parastatistics (Green 1953; Greenberg and Messiah 1964). In
para-fermistatistics of order n, at most n para fermions can occupy the same state.
In contrast, for the algebra IT given by (9)—(10) with &, B going over 1 to n, at most
one fermion occupies the set of n states all having the same (orbital) index. To
emphasize this contrast with parastatistics, one may call the new statistics implied
by algebra II as orthostatistics and the new particles as orthofermions.

We must stress that algebra II leads to antisymmetry of the wavefunction in the
~ orbital indices alone (just as for spinless fermions). By superposition of the states

*In some of these references, the algebra is stated in a form which is either incomplete or ambiguous.
Specifically, note that from eq. (95) both commutation and anticommutation relations can be derived for
all pairs of X operators at a single site, be they of fermionic or bosonic type.

*#* Hubbard’s definition of X' (eq. (97)) should be really understood as an appropriate direct product
of |iu) ¢iv| at site i and (local) identity operators at all other sites.
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with different spin-ordering, states symmetric in spin and hence totally antisymmetric
(in space and spin) can be constructed. But, the point is that this does not follow
from the algebra itself, in contrast to the case of the usual fermionic algebra from
which total antisymmetry follows. For algebra II, total antisymmetry has to be
imposed as an extra condition, if required.

In this context, one may naturally raise the question whether an algebra with the
following properties exists. It must incorporate the new exclusion principle, it must
be invariant under unitary transformations in the orbital indices, total antisymmetry
in the orbital and spin indices must follow from the algebra and it must be a closed

algebra involving only ¢ and ¢'. The answer to this question appears to be negative

and the result can possibly be proved. This, as well as the construction of a new
algebra which achieves total antisymmetry at the cost of involving a certain new class
of operators will be reported in a later publication.

Following are some interesting extensions, generalizations and apphcatlons

(a) Construction of-a relativistic quantum field theory based on the algebra I1.

(b) A detailed study of the algebra II for arbitrary number n of spin indices and
specially for n— oo.

(c) Extension of Grassmann calculus to incorporate the new exclusion principle.
(d) Symmetric or bosonic version of the algebras I and II.

(e) Possible connections between the algebra II on the one hand and other
mathematical constructs such as supersymmetry algebra, braid group and braid
statistics on the other hand.

(f) Physical applications of the new algebras to problems of condensed matter physics.

These may be taken up in the future.
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Appendix 1. Representation of the single-site operators

For the case of the single site, the complete orthonormal set of kets is |0), |¢) and
|6> which are the no-particle state, the spin-up particle state and the spin-down
particle state respectively. Thus it is easy to see that

=10>{al, cf =100}, - (AD
=105<8l, ct=15<0l. | (A2)

The completeness relation is
10><0] + |6><a| +15)<F| = 1. (A3)

e e R R e
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Using these equations and the orthonormality relations, our algebra (11)—(14) can be
derived. :
If we choose the basis vectors:

1 0 0
oy={ 0} lop=|1} 1>=|0} (Ad)
0 0 1 |

we get the matrix representations:

010 0 0 0)

c,,=(0 0 0} cf,—(l 0 0} : (AS)
0 00 0 0 0/
0 0 1 0 0 0)

c,=|0 0 0} k=10 0 0} (A6)
0 00 1 00

The above is to be contrasted with the case of the usual spin & fermions for which
the vector space is 4-dimensional and is a direct product: {|0,|0>}® {10y,16>}. It
is well-known that the creation and destruction operators for this usual case can be
built out of the SU(2)® SU(2) generators in the fundamental representation 7;®7T;
where T; are the Pauli matrices (one SU(2) for spin up and the other for spin down).
In contrast, the operators in (AS)—-(A6) are constructed out of the SU(3) generators
in the fundamental representation 3. Explicitly,

=0 i), E=Hi— i) (AP
o= dutiks), € =Hlha—iks) (A%)

where the A; are the Gell-Mann matrices of SU(3).

When the orbital or site label k=1...m is included, the operators ¢, and ¢,; can
be written as 3™ x 3™ matrices, which are generators of SU(3"). Thus, these new
operators are represented by odd-dimensional matrices in contrast to the usual
fermionic creation and destruction operators which are represented by even-
dimensional (4™ x 4™) matrices of SU@2M@SUER2™).

Appendix 2. Rules for normal product and Wick expansion

The rules for writing down the normal product and the Wick expansion for an
arbitrary operator product that follow from our algebra II are given here. These may
prove useful for calculations in any dynamical theory based on the new algebra.

Normal product

Step 1. From the given operator product expression, form all compact antinormal pairs.

Compact antinormal pair (CAP) is defined to be an antinormal pair between a ¢,
and a ¢ such that no unpaired ¢ or ¢ appears between c,, and ch. We shall denote
CAP by the symbol —. The compact antinormal pairing of all possible operators in
a given operator product is unique.
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Examples:

t + ot
Note that c,,c,c; and ¢,c,ckci are not CAP.

Step 2: 1If the spins on the ¢ and c' appearing in any of the CAP are not matched,
the given operator product vanishes and so does its normal product.

Examples:
crere, chelel =0
kb TSmSnspza

+ ta st t —
CCiCy c@f\l’f/icitcucvcw =0 (Ag)

t totatat =

ckw}cﬁ--- =0. (A10)
Note that this step enlarges the set of null operators introduced in §3, to operators
that are not in antinormal order. Operators with spin-unmatched CAP’s are null.

Step 3: In case the spins in each CAP match, find out the rank of the operator product,
the rank being defined as the total number of the CAP links. If the rank is m, write
the 2™ terms of the normal product, each with a different matched spin-order as shown
in the example below.

If no unpaired ¢ or ¢' remains, multiply the result by (— 1)” where P is the number
of interchanges of the various operators. This is the complete answer.

Example:

i t t
N(ei c,wc:',) = —(c]ctexe, + clchege, + chchee, + cheiere;). (A11)

Since m = 2, the number of spin-transmuted terms on the right is four.
Step 4: If there remain unpaired ¢ or ¢' after the formation of all CAP’s, shift all such

unpaired ¢ or ¢ to the extreme right or left respectively with their spins intact. For
the rest, use step 3. Finally multiply the answer by (—1)".

Examples:
N(cqe,cecl) = Nlaelese, | (A12)
N(c;“,,c\,lg}cg;cq) = \N(c,cleche, : (A13)
N(c\,,.,/c}}c}c,cpch) =cfN(cache,ch)e. (A14)

The N product occurring on the right side can be evaluated using step 3. The point
of the step 4 is that there is no spin transmutation for the operators not linked by CAP.

Wick expansion
Step 1: Form all the compact antinormal pairs (CAP) already defined. Let us assume

that all of them are spin-matched, otherwise the whole expression is zero. If there
remain unpaired ¢ or c' note their spins as well as the order in which they occur.
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Step 2: Write the usual Wick expansion with all possible contractions, even including
contractions between spin-unmatched ¢ and ¢". Assign the following values for the
contractions: :

et = cpch = cpch = ¢,Cj = i (A15)
]

it (K gm k&

All other contractions are zero.

Step 3: The uncontracted operatorsare to be left in the normal ordered form. However, -

this normal ordering is, in general, different from the normal product defined through
the rules given earlier in this appendix. Spin-transmutation must be used for all the
pairs except for the unpaired operators identified in step 1. We shall distinguish this
normal ordering by the symbol M.

Step 4: Rewrite the spins of the unpaired ¢ or ¢' such that it corresponds to the
spin-ordering noted in step 1. Every term must have the sign (— 1)F. This is the
complete answer. _

Examples:

a) CReICyC) = M(czeic,C) + M(g;c&ﬁ}:) + M(cgec,ch) + N(cgee,cl) - (AL6)

I mop m&n
— \ \
= 5mnCECl - 6lncf\7cm + 5knclTCm - (C Cyt C-C,ﬁ)CECI. (A17)

n-m n

The unpaired operators in the given expression are czc,and these dictate the spin-order
of ¢ ¢ occurring in each term of the Wick expansion.

t t_ t t t t
b) cég,c,ﬁc,,gzsq—M(cﬁe,c-ccc +M(qh£,c-ccc

ACnGaSa wGnSeSad
+ M(cL,fjc,ﬁc,,cpc};) + M(ckc;rc,,,c,,cch)‘+ M(cﬁ_cJ}cmcncpcI,)

+ M(cc) cmcnq,JZ) + M(ckc{c,,,cﬂ_cfﬁz)

+ M(cyclepac,ych) + N(cpcl Cacncych): (A18)
= 8110 g CiiCn — Okt OngCiCp + 0110mgCiCp '

+ Sglciem + che)CaC, — 5kl(c};cp +cles)eqc,

— épq(chk +chep)eqc, + Ol + ctep)eqc,

— Ol + ciep)cic, + N (ciCl caCaCyeh)- (A19)

In particular, it must be pointed out that

menpYq

M(ciclegc,c,ch) # N (cicac,c,): (A20)

According to our earlier rules on N product, there is no spin-transmutation in
N(c]c,c,c,) since there is no CAP in this N product:

- N(cleac,e,) = cicqe,c (A21)

m-n-p*

But, spin-transmutation does occur in the M product for one pair as specified in
step 3 of the Wick expansion and hence

M(C,;.C‘{ C”—IC"CPC;) = 5kq(c; Cm + C-Ilcm)cﬁcr (A22)
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Finally, we note that, as a consequence of these rules for the Wick expansion and
the normal product, the set of identical operators introduced in § 3 gets enlarged. All
the operator products differing only in their spin-order are identical to each other,
provided they contain no unpaired operators after all the CAP links are formed. For
example, :

+

t t_ SIPRBC I |
CuCiCkCiChCe = CaCrCiCiCpCyr (A23)
\_/ v
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