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Recent Kerr relaxation experiments by Gottkeet al. @J. Chem. Phys.116, 360 ~2002!; 116, 6339
~2002!# have revealed the existence of a pronouncedtemporal power lawdecay in the orientational
relaxation near the isotropic–nematic phase transition~INPT! of nematogens of rather small aspect
ratio,k (k.3 – 4). We have carried out very long~50 ns! molecular dynamics simulations of model
~Gay–Berne! prolate ellipsoids with aspect ratio 3 in order to investigate the origin of this power
law. The model chosen is known to undergo an isotropic to nematic phase transition for a range of
density and temperature. The distance dependence of the calculated angular pair correlation function
correctly shows the emergence of a long range correlation as the INPT is approached along the
density axis. In the vicinity of INPT, thesingle particlesecond rank orientational time correlation
function exhibits power law decay, (t2a) with exponenta;2/3. More importantly, we find the
sudden appearance of a pronounced power-law decay in thecollective part of the second rank
orientational time correlation function at short times when the density is very close to the transition
density. The power law has an exponent close to unity, that is,the correlation function decays almost
linearly with time. At long times, the decay isexponential-like, as predicted by Landau–de Gennes
mean field theory. Since Kerr relaxation experiments measure the time derivative of the collective
second rank orientational pair correlation function, the simulations recover the near independence of
the signal on time observed in experiments. In order to capture the microscopic essence of the
dynamics of pseudonematic domains inside the isotropic phase, we introduce and calculate a
dynamic orientational pair correlation function~DOPCF! obtained from the coefficients in the
expansion of the distinct part of orientational van Hove time correlation function in terms of
spherical harmonics. The DOPCF exhibits power law relaxation when the pair separation length is
below certain critical length. The orientational relaxation of alocal director, defined in terms of the
sum of unit vectors of all the ellipsoidal molecules, is also found to show slow power law relaxation
over a long time scale. These results have been interpreted in terms of a newly developed mode
coupling theory of orientational dynamics near the INPT. In the present case, the difference between
the single particle and the collective orientational relaxation is huge which can be explained by the
frequency dependence of the memory kernel, calculated from the mode coupling theory. The
relationship of this power law with the one observed in a supercooled liquid near its glass transition
temperature is explored.
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I. INTRODUCTION

A system of elongated molecules is known to underg
phase transition at low temperatures from an orientation
disordered, isotropic phase to an orientationally order
nematic phase, if the aspect ratio is larger than certain crit
number. This isotropic to nematic phase transition~INPT! is
a weakly first order phase transition and is characterized
large growth of orientational pair correlation function ne
the transition point. However, the orientational pair corre
tion function does not diverge, because the impending di
gence is preempted by the first order phase transition.1–13

These equilibrium characteristics make the study of orien
tional dynamics~both single particle and collective! near
INPT highly interesting and theoretically challenging.

This paper addresses the origin of a recently observ
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highly interesting power law decay of orientational corre
tion function near the isotropic-nematic transition~INPT! of
several nematogens. Fayer and co-workers14–19 investigated
the dynamics of nematogens from very short~few picosec-
ond! to very long time scale~several hundred nanosecond!
as a function of temperature, using optical heterodyne
tected Kerr effect. The data obtained from these experime
are related to impulse response function of the system wh
is the timederivative of the polarizability–polarizability time
correlation function CP(t) @that is, the Kerr signal
}2 @dCP(t)/dt#]. The decay observed in this experimen
is exponential on the longest time scale~beyond 100 ns!,
which is well described by Landau–de Gennes theory.3,4 At
short times, the decay is again exponential. However, at
termediate times~10 ps–10 ns!, the data can be fitted to
temporal power law with an exponent, with a value less th
unity. The value of the exponent is found to be independ
of temperature, but to depend on the chemical identity of

http://dx.doi.org/10.1063/1.1742942
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nematogens~rather, on the aspect ratio!, signaling ~in the
strict sense! a lack of universality of the type observed nea
critical point. However, the values of exponent are all clo
to 2/3 and thus some sort general behavior appears to
present in the dynamics. Gottkeet al. also presented a mod
coupling theory analysis which explained the emergence
the power law behavior as a consequence of the grow
correlation length near I–N transition.16,17

Several computer simulation studies20–23have earlier at-
tempted to recover the power law in orientational relaxat
near INPT. One of the first simulations to calculate seco
ranksingle particleandcollectiveorientational time correla-
tion function ~OTCF! was performed by Allenet al.21 using
hard ellipsoids. They could observe the critical slowi
down of the dynamical correlation function near INPT, b
did not observe any power law decay. Pereraet al.22 have
done molecular dynamic simulation on a system of G
Berne ellipsoids. This model undergoes an isotropic to ne
atic phase transition at a reduced densityr* .0.315~where
r* 5rb3, r being the number density andb is the length of
the minor axis of the ellipsoid! and temperatureT* .1
~whereT* 5kbT/e0 , while kb is the Boltzmann constant,T
is the temperature ande0 is the energy constant used in th
Gay–Berne potential! for aspect ratio (k53). They found
second ranksingle particleandcollectiveOTCF slow down
appreciably near INPT. In another set of simulations of All
et al.23 calculated direct correlation functions of a system
Gay–Berne ellipsoids near INPT. Detailed molecular d
namic simulations of Ravichandranet al.22,24 found a sudden
appearance of power law behavior in the second ranksingle
particle OTCF near INPT. The value of power law expone
was close to 0.56. These simulations also looked into
translational and rotational diffusion coefficient of a syste
of Gay–Berne ellipsoids. Vasanthiet al.25 carried out mo-
lecular dynamics simulations to calculate diffusion of is
lated tagged spheres in a sea of Gay–Berne ellipsoids.
diffusion is isotropic well inside the isotropic region of nem
atic liquid crystal. In the vicinity of the INPT the parallel an
perpendicular component of (D i and D') diffusion coeffi-
cient decouples from each other. They proved that the an
ropy parameter (D i /D') obeys a power law of the form
(rc* 2r* )p.

However, all the simulations reported until now hav
failed to detect the temporal power law in the decay of c
lective orientational correlation function, which, as already
mentioned, is the experimental quantity one measure
Kerr relaxation experiments~actually one measures the tim
derivative of the second rank orientational time correlat
function!. Perhaps, the reason is that these early simulat
were limited in the duration of the trajectory obtained. O
may be, the intermolecular potential employed was in
equate. The nonobservance of the power law decay in si
lations has remained somewhat of a puzzle.

Theoretically, two limits of orientational relaxation ne
INPT are understood clearly. The long time decay is
pected to be given by the Landau–de Gennes theory w
predicts an exponential decay of the second rank orie
tional correlation function
e
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C20
LdG5exp~2t/tLdG!. ~1!

The Landau–de Gennes time constanttLdG shows a pro-
nounced increase near the I–N transition. The physical or
of this slow down in relaxation is easily understood from
mean-field theory which gives the following expression f
tLdG:

tLdG5
S220~k50!

6DR
, ~2!

where S220(k) is the wave number dependent orientation
structure factor in the intermolecular frame~with k parallel
to the Z axis! and where the subscript 220 denotes the o
entational correlation of spherical harmonics (Y,,m) of rank
,52 and azimuthal numberm50. DR is the long timerota-
tional diffusion coefficient of the nematogens in the isotrop
phase. As the I–N transition is approached,S220(k50) be-
comes very large, reflecting the appearance of long ra
orientational correlation near the phase transition. Note
S220(k50) does not actually diverge because of the interv
tion of the ~weakly! first order I–N phase transition.

While the Landau–de Gennes mean field theory is
pected to be valid in the long time~at times much larger than
6DR

21), the early short time decay of the orientational tim
correlation function should be dominated by the short ran
local forces. Here the decay rate should be close to 6DR

0 ,
whereDR

0 is the short time limit of the rotational diffusion
coefficient. This rate is, for the systems studied by Fayer
co-workers, is of the order of 1011 s21 or so. Note that the
short time rotational diffusion coefficientDR

0 is expected to
be much larger than the long time diffusion coefficient, b
cause the former is determined by the local interactio
while the latter contains the effects of slow density fluctu
tions. The long time Landau–de Gennes exponential deca
expected to set at times~much! longer than ns. It is the
intermediate time range between, say, 10 ps and 10 ns, w
is of interest in this study. In this time range, the simp
mean-filed theory is not expected to be valid because
memory function or the rotational friction should be a stro
function of frequency. Mode coupling theory predicts inte
esting dynamical behavior at such intermediate times. It s
gests that due to rapid increase in the static two part
orientational correlation as the I–N transition is approach
the friction on individual rotors also increases rapidly. Th
effect is felt at intermediate times when the singular part
the friction is found to behave as16,17

Gsing~ t !'A0 /At. ~3!

Orientational time correlation function is given as16,17

C20~ t !'exp~a2t !erfc~aAt ! ~4!

where erfc is a complementary error function and the qu
tity a is determined by a combination of orientational stru
ture factor and rotational diffusion coefficient. As mention
earlier, the above expression is predicted to be valid in
time window which is short compared totLdG but long com-
pared to (6DR)21. Complementary error function has th
following asymptotic expansion:
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1

2x2 1
1.3

~2x2!2 1
1.3.5

~2x2!3 1¯ D . ~5!

Thus, the leading term in the expansion varies ast21/2. As
shown by Gottkeet al., MCT prediction@Eq. ~4!# seems ca-
pable of describing the experimentally observed decay o
two orders of magnitude but not over the entire range of
observed slow decay.16,17

Therefore, not only does the MCT predict a weak tim
dependence at intermediate times, it also gives a clear ph
cal picture of the origin of this slow decay. At short times,
the order of 1–10 ps or less, orientational relaxation is
termined by local dynamics. But at somewhat longer tim
~that is, beyond 10 ps or so!, orientational relaxation require
relaxation of the nearest neighbors. In quantitative terms,
implies that the friction on rotational motion is coupled
the isotropic and orientational density fluctuations of d
mains. However, fluctuations of these domains are slow
relax, especially near the INPT. As a consequence, the
tion due to the presence of the nonlocal, pseudonematic
sity fluctuations increases with time, that is with lowerin
frequency. The increase in friction at intermediate times
sufficiently fast to slow down the relaxation to a great exte
After certain time, when the increase of friction slows dow
the relaxation occurs with constant friction and we get ba
the exponential decay. This last stage is the Landau
Gennes regime. Thus, MCT predictstwo crossover regions—
one from a fast, short time exponential decay to a power-
regime of slow decay and a second one from power law
even slower but exponential decay. The duration of the w
time dependence in the intermediate time is predicted to
pend on the duration of the growth of the friction. This d
ration of the growth of the friction is correlated with th
length of the long range correlation present in the syst
Thus, we expect the duration of the persistence of the po
law to increase as the INPT is approached. Note thattLdG

also increases simultaneously becauseS220(k'0) becomes
very large. In addition, since the Kerr relaxation experime
measure the time derivative of the polarizability
polarizability time correlation function, a very weak tim
dependence in experiments implies a nearlylinear time de-
pendence of the second rank, collective, orientational co
lation function.

In this work we carried outvery long time~approxi-
mately 50 ns in real time unit! molecular dynamics simula
tions of larger systems~than attempted earlier! to calculate
the second rankcollectiveOTCF of a system of Gay–Bern
ellipsoids. We find that just prior to INPT, the relaxation
second rankcollectiveOTCF @C2

c(t)# @defined in Eq.~10!#,
abruptly changesits decay behavior from exponential to
pronounced power law decay which ranges from short
intermediate times. The decay again changes over to
exponential-like decay at longer times.

In order to gain a microscopic understanding of t
power law decay near the INPT, we have looked into
study of two other time correlation functions. First, we i
vestigated the relaxation of the dynamic orientational p
correlation function~DOPCF! and, second we studied th
OTCF of a local director. The DOPCF can probe orienta
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tional dynamics of apair of ellipsoids at different length
scales; this gives a more detailed description of the re
ation of the orientational order than thecollectiveOTCF. The
DOPCF shows critical slowing down of relaxation and t
emergence of power law relaxation near INPT. The em
gence of power law relaxation is also evident in the OTCF
the local director that is discussed in the appendix. Prese
simulations also explore the divergence of various equi
rium angular pair correlation functions which measure
growth of correlation length near INPT.

The next section of this paper defines various static
dynamical correlation functions. Section III gives the deta
of the molecular dynamics simulations. Results obtain
from the simulations are discussed in Sec. IV. Conclud
remarks are given in Sec. V.

II. STATIC AND DYNAMIC ORIENTATIONAL
CORRELATION FUNCTIONS

The radial distribution function for nonspherical mo
ecules in a laboratory fixed frame can be expressed in te
of average over delta functions as26,27

g~r ,V,V8!5
1

Nr K (
i

N

(
j

N8
d~r1r j2r i !d~V2Vi !

3d~V82Vj !L ~6!

~the prime over the summation signifies that termsi 5 j are
excluded from the sum!, wherer i is the translational coordi-
nate in the arbitrary reference system andVi is the polar
angle for thei th linear molecule in the laboratory fixed re
erence frame. This pair correlation function can be con
niently represented in an intermolecular reference fra
wherez axis passes through the center of mass of two el
soids. The pair correlation function in this reference frame
given asg(r ,v,v8). It gives the joint probability to find any
two ellipsoids separated by a distancer and with angular
coordinatesv andv8. This orientational correlation function
can be expanded in spherical harmonics26,27

g~r ,v,v8!5 (
l 1 ,l 2 ,m

gl 1l 2m~r !Yl 1 ,m~v!Yl 2 ,mI ~v8!, ~7!

i.e., thev5(u,f) andv85(u8,f8) are the angular coordi
nates in the intermolecular frame.u defines the angle an
ellipsoid makes with thez axis of the intermolecular frame
andf defines the angle an ellipsoid makes with thex axis in
the x–y plane of the intermolecular frame. The angular p
correlation functions are obtained from the total pair cor
lation function using the orthogonal properties of the sphe
cal harmonics.26 These angular pair correlation functions c
be calculated from simulation using the expression26

gl 1l 2m~r !516p2^g~r ,v,v8!Yl 1 ,m* ~v!Yl 2 ,mI* ~v8!&. ~8!

The distance dependence of angular pair correlation func
gives the range of orientational order in among the molecu
in a system of nematogens.

Time dependent orientational correlation function giv
a measure of the temporal decay of the memory of orien
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tional order and one needs to define several such function
describe various aspects of complex orientational dynam
The single particleOTCF gives a temporal measure of lo
of a single molecule’s memoryof its orientation in the ran-
dom potential created by the surrounding molecules in
liquid environment. Thesingle particleOTCF of the rankl is
defined as21,22,24,28,29

Cl
s~ t !5

^( i Pl~ êi~0!•êi~ t !!&

^( i Pl~ êi~0!•êi~0!!&
, ~9!

where theêi is the unit vector or director associated withi th
ellipsoid along the major axis of the ellipsoid andPl is l th
rank Legendre polynomial. The quantity measured in lig
scattering experiments is thecollectiveOTCF.30 The collec-
tive OTCF is defined as21,22,27–29

Cl
c~ t !5

^( i( j Pl~ êi~0!•êj~ t !!&

^( i( j Pl~ êi~0!•êj~0!!&
. ~10!

This is a limiting case of the more general wave numberk)
dependent orientational correlation functionCl

c(k,t) defined
as

Cl
c~k,t !5

^( i( je
ik"r i j Pl~ êi~0!•êj~ t !!&

^( i( je
ik"r i j Pl~ êi~0!•êj~0!!&

. ~11!

A wealth of information about the space dependence
orientational relaxation can be obtained by studying the
particle correlation functions, such as molecular van Hov27

correlation function. In order to study the orientational d
namics of a pair of particles we have defined a DOP
Orientational pair correlation function is obtained from t
distinct part of Van Hove correlation function by expandi
it in terms of spherical harmonics. Van Hove correlati
function for a molecular liquid can be defined as

Gd~r ,V,V8,t !5
1

N K (
i

N

(
j

N8
d~r1r j~0!2r i~ t !!

3d~V2Vi~0!!d~V82Vj~ t !!L .

~12!

In a system of linear molecules, the van Hove correlat
function can be represented in intermolecular refere
frame asGd(r ,v,v8,t). This correlation function can be ex
panded in terms of spherical harmonics to get DOPCF,

Gd~r ,v,v8,t !5 (
l 1 ,l 2 ,m

rGl 1l 2m~r ,t !Yl 1 ,m~v!Yl 2 ,mI ~v8!.

~13!

The DOPCF gives a direct measure of relaxation of orien
tional order at different shells around a linear molecule. T
DOPCF can be calculated from the simulation using the
pression

Gl 1l 2m~r ,t !516p2^Gd~r ,v,v8,t !Yl 1 ,m* ~v!Yl 2 ,mI* ~v8!&/r.

~14!

In order to study the orientational relaxation of differe
cages, we can define orientational correlation function
terms of DOPCF. Let
to
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Cp~ t !5
Gl 1l 2m~r ,t !2Gl 1l 2m~r ,t5`!

Gl 1l 2m~r ,t50!2Gl 1l 2m~r ,t5`! U
r 5R

, ~15!

whereR is a fixed distance at which the relaxation is me
sured.

III. DETAILS OF MOLECULAR
DYNAMICS SIMULATIONS

Long molecular dynamics simulations have been carr
out for a system of 576 Gay–Berne ellipsoids31 in a micro-
Canonical ensemble. The form of the modified intermole
lar Gay–Berne potential is22,24,25,32

U54e~ r̂ ,uW i ,uW j !F S ss

r 2s~ r̂ ,uW i ,uW j !1ss
D 12

2S ss

r 2s~ r̂ ,uW i ,uW j !1ss
D 6G , ~16!

where r̂ is the unit vector that passes through the center
mass of a pair of molecules,uW i and uW j unit vectors that
passes through the major axis of a pair of ellipsoidal m
ecules.e ands give the strength and range of interaction,

s~ r̂ ,uW i ,uW j !5ssF12
x

2 S ~uW i• r̂ 1uW j• r̂ !2

11x~uW i•uW j !

1
~uW i• r̂ 2uW j• r̂ !2

12x~uW i•uj !
D G , ~17!

ss is double of the minor axisb, k gives molecular elonga
tion ~aspect ratio!, which is the ratio of end-to-end to side
to-side diameters,k5se /ss . we have worked with aspec
ratio is 3. In the expression fors, x can be given in terms o
k asx5 (k221)/(k211),

e~ r̂ ,uW i ,uW j !5e0@12x2~uW i•uW j !#
2 1/2F1

2
x8

2 S ~uW i• r̂ 1uW j• r̂ !2

11x~uW i•uW j !
1

~uW i• r̂ 2uW j• r̂ !2

12x~uW i•uj !
D G2

,

~18!

wheree0 is the energy parameter andx85 (Ak821)/(Ak8
11) (k85es /ee gives the strength of interaction which
side-to-side to end-to-end well depths!. The value ofk8 used
in the simulation is 5.24 The scaling used for moment o
inertia isI * 5I /ms0

2. The density is scaled in the simulatio
as r* 5rs0

2 and the temperature is scaled asT* 5kbT/e0 .
The equation of motion is integrated with reduced time@ t*
5(ms0

2/e0)1/2# steps withDt50.002t* .
The simulation starts from an equilibrated configurati

of ellipsoids. Initial configuration of the ellipsoids is gene
ated from a cubic lattice and then the simulation is run
200 000 steps to obtain the equilibrium configuration. Duri
the equilibration steps the temperature is scaled so that
system is in equilibrium at this particular temperature. T
production steps starts from this equilibrated configurati
The production steps are run for 15 million steps to calcul
statistically averagedsingle particleandcollectivestatic33–35

and dynamic orientational correlation functions. When tra
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lated into argon units, this corresponds to a run time of 75
We found that such long runs are indeed necessary to s
decay of collective orientational correlation near the INP

The ellipsoid used in the simulation has minor axisb
50.5 and major axisa51.5 ~in reduced units!. The order
parameter of the system can be written in terms of th
orthogonal vectorsa, b, c associated with the molecule. The
the tensorial order parameter of INPT is defined as4,6

Si j
ab5 1

2^3i a j b2dabd i j &,

where a,b5x,y,z are indices referring to the laborator
frame, while i , j 5a,b,c, and dab and d i j are Kronecker
delta symbols. HereSi j

ab is diagonalized and it is the highe
absolute value that is taken as the order parameter (S).

The simulations are done at the state points near
pretransition region of phase diagram, shown in Fig. 1 wh
the variation in temperature and the density employed
shown by arrows. The translational and rotational motio
are solved using leap-frog algorithm. The calculated or
parameter is shown in Fig. 2 where the order paramete
plotted against the density near INPT at three temperatu
The order parameter changes dramatically after density
creases beyond 0.3. This is in accord with previo
simulations.22–25

IV. RESULTS AND DISCUSSIONS

A. Static pair correlation functions

As already mentioned, the INPT occurs nearr* > 0.3
for all temperatures used in this simulation. Figures 3~a!,
3~b!, and 3~c! show the distance dependence of angular p
correlation functions plotted against position for a system
Gay–Berne ellipsoids at temperature 1.0 for different nu
ber densities,r* 50.285– 0.315. The angular correlatio
function g200(r ) @plotted in Fig. 3~a!# shows the sharpenin

FIG. 1. A region of phase diagram of the Gay–Berne ellipsoids taken f
Fig. 10 of Ref. 32 near INPT where simulations presented here are d
Shaded portion are the phase coexistence regions. The region betwe
dotted lines are the region of the phase diagram between densityr* 50.3
and r* 50.315 where the pretransition effects were found. Arrows den
temperatures at which density has been varied toward the transition.
s.
dy

e

e
e
is
s
r
is
s.

n-
s

ir
f
-

of the peaks as the INPT is approached. This angular
correlation function correlates angular distribution of elli
soids around a test sphere. Since the orientation of only
of the ellipsoid is taken into consideration in the calculati
of g200(r ), this angular pair correlation function does n
diverge even in the nematic phase. But the sharpening
peaks of this correlation function shows the building up
orientational order when the nematic phase is approac
along the density axis. The angular pair correlation funct
g220(r ) which measures the correlation between a pair
ellipsoids separated by a distancer , shows divergence in the

e.
the

e

FIG. 2. The variation of order parameter@S(r* )# with densityr* at differ-
ent temperatures is shown in this figure. The continuous line gives
S(r* ) at T* 51.0, the dashed line gives theS(r* ) at T* 51.1 and the
dashed-dotted line givesS(r* ) T* 51.2.

FIG. 3. Three angular pair correlation functions are plotted at differ
densities against distance of separation atT* 51.0. ~a! showsg200(r ) angu-
lar pair correlation function.~b! gives theg220(r ) angular pair correlation
function. This is the first angular pair correlation function which sho
significant divergence near INPT. The angular pair correlation funct
g440(r ) is shown in~c!.
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vicinity of INPT as depicted in Fig. 3~b!. The divergence in
angular pair correlation function is also evident in high
order correlation functions, as shown in the Fig. 3~c!. Note
that these higher order correlations have non-negligible c
tribution in the series expansions of total angular correlat
function g(r ,v,v8) @Eq. ~7!#. Therefore, the truncation o
the series expansion of angular pair correlation can cr
non-negligible error in the total angular pair correlation fun
tion. Also note that for the system sizes simulated here,
correlation length of angular correlation is comparable to
size of the system.As the system approaches INPT who
system starts to behave like a single pseudonematic dom.

B. Dynamics

We now turn to dynamics of orientational relaxatio
The log–log plot of secondrank single particle OTCF
against reduced time at different densitiesr* 50.285 to
0.315 is shown in Fig. 4. The power law relaxation emerg
in the correlation function when the reduced density
creases beyondr* 50.3. In this region, the decay of th
correlation function in the intermediate times can be rep
sented by the function of the formX(t).bt2a, wherea and
b are constants. At higher densities the fast and slow re
ation processes are clearly separated by intermediate p
law as indicated by the linear region of the curve~between
20 and 100 in reduced unit!. In Fig. 4 the linear region of the
log–log plot is fitted to a straight line,

ln~X~ t !!5b2a ln~ t !, ~19!

the exponent obtained from the fit isa50.70. As the density
increases thesingle particleorientational relaxation become
slower due to the strong coupling of rotational motion w
the surrounding ellipsoids or due to an orientational cag
effect of the ellipsoids. The formation of orientational ca
or pseudonematic region surrounding an ellipsoid gives it
memory of the previous orientation resulting in the slow
laxation process. Thecollective relaxation of the ellipsoids

FIG. 4. The log–log plot ofsingle particleOTCF @C2
s(t)# @Eq. ~9!#, at

different densities is shown here. The linear region of the relaxation func
signifies the emergence of a power law relaxation afterr* 50.3. The linear
portion of theC2

s(t) is fitted to a straight line at densityr* 50.305.
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that form an pseudonematic domain is important near
state point~near 0.3 of the phase diagram shown in t
Fig. 1!.

The collective OTCF function at densitiesr* ranging
from 0.285 to 0.315 are plotted in Fig. 5. The collecti
OTCF also showssignificant lengtheningin the time scale of
relaxation. The change in the time scale of the relaxation
of the order of hundreds when density changes from 0.28
0.315. At very close to the INPT, the nature of the decay
collectiveorientational relaxation function changes abrupt
We note that this observation of slow down of the of rela
ation of thecollectiveorientational relaxation is in genera
agreement with Landau–de Gennes mean field theory
longer time scale. The emergence of the power law is evid
in this correlation function at densitiesr* 50.31 ~the value
of the exponent obtained is 0.58! andr* 50.315 ~the value
of the exponent obtained is 0.85! from the power law fit at
the initial part of these correlation functions.

In Fig. 6 we have plotted the logarithm of the time d
rivative of the second rank collective orientational corre
tion function~the experimentally measured quantity! against
logarithm of time to further our comparison with the o
served behavior. The derivative has been plotted for two d
sities in the transition region. This figure brings out t
crossover from the power law to the exponential decay
long times rather nicely. Also, this figure can be compa
with Fig. 5 of Canget al.19 Over more than two orders o
magnitude, the similarity is rather remarkable.

We have earlier discussed the explanation put forw
by using the mode coupling theory of relaxation near
INPT. According to this interpretation, the power law dec
arises because of the rapid increase in the rotational mem
function as the frequency decreases. In other words, su
quent to the initial relaxation within the cage, any collecti
~or single particle! relaxation becomes coupled to the orie
tational density fluctuation which becomes very slow ne

n

FIG. 5. The second rankcollective OTCF, @C2
c(t), Eq. ~10!# is plotted

against time at different densities and at constant temperatureT* 51. As the
density approaches INPT this correlation function shows power law re
ation. The regions where power law relaxation is dominant are fitted w
the functiony51.120.014t0.58 at r* 50.31 andy51.020.0016t0.85 at r*
50.315.
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the INPT because of the emergence of the long range or
tational pair correlation. Thus, the reason for the power
decay in the collective and the single particle decay is ne
the same. However, the time scales of the two decay
vastly different—the former is much slower. The reason c
be understood from the mean-field theory itself. Unlike t
single particle dynamics, the collective orientation occurs
a collective many-body potential. For small density fluctu
tion, this potential can be approximated as a harmonic o
As the INPT is approached, the frequency of the harmo
potential decreases rapidly, slowing down relaxation in
well.

In many aspects orientational relaxation near INPT loo
similar to that in the supercooled liquid near the gla
transition.16,17As discussed earlier, the reasons are also s
lar. Both is a reflection of a rapid increase in the memo
function at low frequency. However, the reason for this ra
increase is different in the two cases. Now it is interesting
look into the orientational relaxation within various shel
This gives a close picture of the dynamics at varying len
scales. Such information can be obtained from the dyna
pair correlation function. Figure 7 shows the behavior
DOPCF G220(r ,t) at three densities at three different tim
scales. This gives a picture of slowing down of orientatio
relaxation near INPT. Note that in the top figure DOPCF
time t50 converge to zero at large distance, signifying t
absence of long-range orientational order. The picture of
laxation changes at higher densities. Atr* 50.315, the
DOPCF is nonzero at timet50 even at long distance. At thi
density the slow orientation relaxation can be identified fr
the widely separated dashed–dotted~time scale of tens! lines
and dashed lines~time scale separated by hundreds!. The
orientation relaxation at the first peak of DOPCF is deno
by Cp(t) @Eq. ~15!#. In Fig. 8 theCp(t) is plotted atR equal
to first peak of DOPCF. When density is at 0.305 the sud
appearance of the power law is observed. In Fig. 8 the lin
portion of theCp(t) is fitted to a straight line. The exponen

FIG. 6. The log of negative of the time derivative of second rankcollective
OTCF, @C2

c(t) of Eq. ~10!#, is plotted for densitiesr* 50.31 ~dashed line!
andr* 50.315~continuous line! against log of time atT* 51.0. The linear
portion of the plot gives power law observed in the intermediate time s
of the experiment.
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of the power law obtained from the slope of the fit is 0.7
The observation of power law in the first shell of the rela
ation confirms that decay of pseudonematic regions of siz
first nearest neighbor distance also shows power law re
ation.

le

FIG. 7. The dynamic orientational pair correlation function~DOPCF! @Eq.
~14!# is plotted at three different densities. In these figure continuous li
starting from the top are plotted at time step of 1 in the time interval 1–
Then dotted–dashed lines are plotted at a time step of 10 in the time inte
20–100. Finally the dashed lines are plotted at a time step of 100 in
interval 200–1000. All the lines arranged from top to bottom in the incre
ing order of time. The top subfigure is at densityr* 50.295, middle sub-
figure is at densityr* 50.305, and bottom subfigure is at densityr*
50.315.

FIG. 8. The log of pair time correlation functionCp(t) defined by Eq.~15!
is plotted against logarithm of time at separationR equal to the first peak of
DOPCF. The emergence of power is evident atr* 50.305. In this figure
linear portion of lnCp(t) vs ln t curve at densityr* 50.305 is fitted to a
straight line.
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V. TEMPERATURE DEPENDENCE OF RELAXATION

In Fig. 9, the log–log plot ofsingle particleOTCF is
shown at three different temperatures (T* 51.0, 1.1, and
1.2!. At all temperatures this OTCF slows down significan
and takes long time to relax. The emergence of the po
law is indicated by the linear region of the second ra
OTCF. Note that when temperature increases the slope o
linear region of the second ranksingle particleOTCF de-
creases, showing the temperature dependence of powe
exponent. In Fig. 10, the log–log plot ofcollectiveOTCF is
plotted at three different temperatures (T* 51.0, 1.1, and
1.2!. Note that even at the high temperature 1.2 the deca

FIG. 9. The log–log plot of the second ranksingle particleOTCF @C2
s(t) in

Eq. ~9!# at different temperatures and at constant densityr* 50.315 are
shown here. The continuous line givesC2

s(t) at T* 51.0, dashed–dotted line
gives C2

s(t) at T* 51.1 and the dashed line givesC2
s(t) at T* 51.2. The

slope of the linear region varies with temperature showing temperature
pendence of power law.

FIG. 10. This figure shows the time dependence ofcollectivesecond rank
OTCF @C2

c(t), defined in Eq.~10!# at different temperatures and at consta
densityr* 50.315. The continuous line givesC2

c(t) at T* 51.0, dashed–
dotted line givesC2

c(t) at T* 51.1 and the dashed line givesC2
c(t) at T*

51.2.
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this correlation function is slow. This also points toward t
fact that even the long time simulation used here is in
equate to probe the full decay of this correlation function
is also evident from the phase diagram~Fig. 1! that transition
point has only a small variation due to change of tempe
ture. The log of the pair time correlation functionCp(t) in a
system of densityr* 50.305 is plotted against log of time a
three different temperatures in Fig. 11.

VI. CONCLUDING REMARKS

In this paper extensive and long molecular dynam
simulations of orientational relaxation of model nematoge
have been carried out in a system of Gay–Berne ellipsoid
an attempt to understand the origin of the experimenta
observed temporal power law decay of the second rank
entational order parameter in the isotropic phase of a nem
liquid crystal. We have observed the well-known divergen
of the angular pair correlation functions as the system g
toward INPT along the density axis. This divergence giv
evidence of the formation of nematic domains inside the i
tropic phase. Thesingle particlesecond rank orientationa
time correlation function~OTCF! shows the emergence of
power law in the relaxation beyond the density 0.3. T
power law exponent obtained from the linear fit of the se
ond ranksingle particleOTCF is;0.7.

Perhaps the most important result of this work is t
finding that the second rankcollective OTCF showsan
abrupt emergence of a power law decayvery close to the
isotropic–nematic phase transition. In fact, over a substan
part of its short time decay, the correlation function deca
almost linearly with time, predicting a very weak time de
pendence of the derivative ofC2

c(t)—it is the time derivative
is that measured in experiments. In the very long time,
decay becomes exponential-like, in agreement with
Landau–de Gennes mean-field theory~which describes re-
laxation in terms of randomization of pseudonematic d

e-

FIG. 11. The log of the pair time correlation functionCp(t) @Eq. ~15!# is
plotted against log of time at three different temperature at densityr*
50.305. The dashed–dotted line givesCp(t) at T* 51.0, the dashed line
givesCp(t) at densityT* 51.1 and theCp(t) at T* 51.2 is given by con-
tinuous line.
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mains!. It is certainly heartening to observe the appeara
of the power law in the decay of the collective correlati
function. Note that all the earlier studies have failed to o
serve this power law decay because these early simula
were all limited to rather short times. In fact, the power la
was found in the single particle correlation function beca
the latter decays on a much shorter time scale.

Mode coupling theory analysis of this problem~pre-
sented earlier! suggests that not only the orientational p
correlation function must grow rapidly~with temperature or
density! as the INPT is approached, but also the long wa
number part of the Fourier transformed static pair correlat
function must become very large to make a dominant con
bution to the memory function.28,31 This happens at very
small wave number. Thus, the success in capturing in si
lations of many aspects of the interesting dynamical beha
near the isotropic–nematic transition should be attributed
the carrying out of very long simulations.

Another notable new result is the observed slow rel
ation in the orientationalpair correlation function. Over a
limited range of time, this relaxation function can be fitted
a power law decay when the separation between the pai
equal to the first maximum in the static pair correlation fun
tion. The existence of power law at the level of pair corre
tion function shows that even two particle relaxation slo
down at nearest neighbor level. Further work is required
fully understand the nature of these time correlation fu
tions.

As noted earlier, there are certain striking similariti
between relaxation near INPT~in the isotropic phase! of a
liquid crystalline system and that in supercooled liquids.17,19

It has been found that the same functional form can desc
relaxation in both supercooled liquids and in isotropic liqu
of liquid crystals. The nature of the relaxation function
similar in both the systems—a short time decay, followed
a pronounced power law which is again followed by a sl
exponential-like decay. As the temperature is lowered tow
the glass transition temperature~for supercooled liquids! or
toward the INPT, the duration of the power law increase19

While the dynamics appear to be quite similar, there are a
some differences, especially in the origin of the behavior
the case of liquid crystals, the behavior is certainly due to
rapid growth in the equilibrium orientational pair correlatio
function which is reflected in the rapid increase in thelong
wave numberlimit of the orientational structure factor. Thi
is reflected in the large growth ofS220(k50) near the INPT.
This growth also gives rise to slow down of the mean-fie
Landau–de Gennes relaxation time,tLdG, as given by Eq.
~2! and discussed earlier. In the case of supercooled liq
however, the slow down of relaxation at intermediate wa
numbers, when the wave numberk'2p/s, wheres is the
molecular diameter. The mean-field theory again gives a
cay at intermediate wave numbers given byS(k)/D where
S(k) is the static structure factor at intermediate wave nu
bers while D is the self-diffusion coefficient. The larg
growth in relaxation time in supercooled liquid is due to
feedback mechanism36–39where slow down of density relax
ation increases friction and the increase of friction cau
further slowdown of the density relaxation. This feedba
e
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mechanism is included through a self-consistent solut
which gives rise to the well-known power laws and the eve
tual divergence of the relaxation time in the mode coupl
theory. It should also be noted here that the mode coup
theory breaks down completely at low temperatures beca
it predicts a critical point~and divergence of viscosity an
relaxation time! at a temperature which is about 30–50
above the true glass transition temperature. However, prio
this breakdown, MCT is known to provide a satisfactory d
scription of the relaxation behavior. Therefore, it is clear th
while the power law relaxation near INPT has a thermod
namic origin, the ones in the supercooled liquid has a d
namic origin ~note that MCT predicts a dynamic transitio
only!.

Nevertheless, experiments have unequivocally sho
that the two relaxation are quite similar. The reason may
that the basic features simply cannot be too different. B
must have an initial fast decay~due to short range interac
tions!, followed by a slow power-law decay~due to different
reasons though! and both have a long time exponential-lik
decay. Thus, the basic features of relaxations are the s
and, therefore, can be described by the same functional fo
Even with these observations, experimental observation
the similarity is indeed revealing.

We have already discussed the mode coupling the
interpretation of the slow decay. It seems that the basic c
clusions of MCT is in agreement with the simulation resul
It will be interesting to use the two particle correlation fun
tions directly from simulations and perform a more detail
comparison between theory and simulation results. In ad
tion, we need a fully self-consistent MCT, which is not a
tempted yet. Work in this direction is under progress.

Also, even with our very long MD simulations, it is har
to study the crossover regions with definitive conclusio
For that to occur, we need to simulate much larger syste
~may be something of the order of 5000 particles! for simi-
larly long times. Also, we have not addressed the aspect r
dependence of the power law behavior. We hope to add
these issues in future.
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APPENDIX: ORIENTATIONAL RELAXATION
OF A LOCAL DIRECTOR

The definition of yet another OTCF can be done in ter
of the local director the ellipsoids. This definition is impo
tant in the case of experiments where a small fraction
molecules are excited and the observation of thecollective
orientational relaxation of this fraction of molecules b
probe pulse. Let there be a unit vector associated with e
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ellipsoid along the major axis. In a system of ellipsoids it
possible to define a local director in terms of the sum of
unit vectors. Since there is no asymmetry along the axis
the interacting potential sum of unit vectors that initially h
a direction will vanish due to the rotation of the directo
This rotational diffusion of the ellipsoid can be modeled
terms of a symmetric double well potential. The arbitra
initial direction of the ellipsoid is in the first well of this
symmetric double-well potential and a rotation ofp from the
initial direction, which is indistinguishable from this initia
direction is the other well of the symmetric double-well p
tential. For thep rotation the ellipsoid has to over come th
potential barrier that is created by it is neighbors. Correlat
time can be defined in terms of the relaxation time of
initial direction of the resultant vector. This can also be d
fined in terms of principle of conservation of angular velo
ity in the system. The resultant orientation of the system
given by

Û5
( i 51

N êi

u( i 51
N êi u

. ~A1!

Hence thel th rank OTCF is defined as

Cl
d~ t !5

^Pl~Û~ t !•Û~0!!&

^Pl~Û~0!•Û~0!!&
. ~A2!

The angular velocityvW is conserved locally in a system a
equilibrium, so( i 51

N vW i5constant. In a simulation to avoi
the rotational flows in the box this constant is equal to ze
In the isotropic region all the ellipsoids are free to rota
individually, hence the direction of the resultant unit vector
changing fast. But near INPT the rotational motion of t
individual ellipsoids are restricted by the formation of pseu
onematic regions. Hence the orientational relaxation of

FIG. 12. The log–log plot of second rank OTCF of thelocal director,
@C2

d(t), Eq. ~A2!# vs time at different densities and at constant tempera
T* 51 is shown in this figure. The linear portion of the curve found af
r* 50.3 shows the emergence of power law. The linear fit of the sec
rank OTCF of thelocal director @C2

d(t)# at r* 50.315 is shown in the
figure.
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resultant unit vectorÛ slows down. Note that in the nemati
region the molecules are aligned in one direction due to
restricted individual rotations. Therefore, the relaxation
each arbitrarily assigned unit vector associated with the
lipsoid also slows down, which results in the delay in t
relaxation time the local directorÛ. The long tail of the
Cl

d(t) due to the forbidden rotation by formation of the nem
atic alignment which follows after the initial decay, results
power law behavior. We believe that the power law rela
ation of this second rank orientational time correlation fun
tion of the local director may be related to the experimen
results,16,17 as follows. Here for measuring the relaxation
local director, the ellipsoids are given an arbitrary initial d
rection. The relaxation time during which this average dire
tor loses the memory of the initial direction depends on
relaxation time of individual ellipsoids. It can be consider
as loss of polarizability of a small region of the system
molecules due to random rotation.

The log–log plot of second rank OTCF of the local d
rector of a system of ellipsoids at different densitiesr*
50.285 to 0.315 atT* 51 near INPT is shown in Fig. 12
This figure shows that the relaxation of the second ra
OTCF of thelocal directorexhibits a pronounced power law
decay over a rather long time interval. At higher densit
~beyondr* 50.305) a long tail appears in the second ra
OTCF of the directors due to enhancement of collective
teractions. After this particular density the change in the c
relation function becomes dramatic and the relaxation
comes extremely slow. In Fig. 12 the linear potion of t
second rank orientational time correlation function of t
directors is fitted to a straight line at density 0.315. T
power law exponent obtained from this fit is 0.34. In Fig.
the log–log plot of OTCF of thelocal director is shown at
three different temperatures (T* 51.0, 1.1, and 1.2!. This
correlation function shows a long linear region showing t
emergence of power laws.

e

d

FIG. 13. The time dependence of second rank of the OTCF of the lo
director@C2

d(t), defined in Eq.~A2!#, is plotted at different temperatures an
constant densityr* 50.315. The continuous line givesC2

d(t) at T* 51.0,
dashed–dotted line givesC2

d(t) at T* 51.1 and the dashed line givesC2
d(t)

at T* 51.2.
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