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Recent Kerr relaxation experiments by Gotteal. [J. Chem. Physl16, 360 (2002; 116 6339

(2002] have revealed the existence of a pronourteedporal power lawdecay in the orientational
relaxation near the isotropic—nematic phase transifid®T) of nematogens of rather small aspect
ratio, k (k=3—4). We have carried out very loit§0 ng molecular dynamics simulations of model
(Gay—Berng prolate ellipsoids with aspect ratio 3 in order to investigate the origin of this power
law. The model chosen is known to undergo an isotropic to nematic phase transition for a range of
density and temperature. The distance dependence of the calculated angular pair correlation function
correctly shows the emergence of a long range correlation as the INPT is approached along the
density axis. In the vicinity of INPT, theingle particlesecond rank orientational time correlation
function exhibits power law decayf (%) with exponenta~2/3. More importantly, we find the
sudden appearance of a pronounced power-law decay icdifective part of the second rank
orientational time correlation function at short times when the density is very close to the transition
density. The power law has an exponent close to unity, thites;orrelation function decays almost
linearly with time At long times, the decay isxponential-likeas predicted by Landau—de Gennes
mean field theory. Since Kerr relaxation experiments measure the time derivative of the collective
second rank orientational pair correlation function, the simulations recover the near independence of
the signal on time observed in experiments. In order to capture the microscopic essence of the
dynamics of pseudonematic domains inside the isotropic phase, we introduce and calculate a
dynamic orientational pair correlation functiofDOPCH obtained from the coefficients in the
expansion of the distinct part of orientational van Hove time correlation function in terms of
spherical harmonics. The DOPCF exhibits power law relaxation when the pair separation length is
below certain critical lengthThe orientational relaxation oflacal director, defined in terms of the

sum of unit vectors of all the ellipsoidal molecules, is also found to show slow power law relaxation
over a long time scale. These results have been interpreted in terms of a newly developed mode
coupling theory of orientational dynamics near the INPT. In the present case, the difference between
the single particle and the collective orientational relaxation is huge which can be explained by the
frequency dependence of the memory kernel, calculated from the mode coupling theory. The
relationship of this power law with the one observed in a supercooled liquid near its glass transition
temperature is explored.

I. INTRODUCTION highly interesting power law decay of orientational correla-

. tion function near the isotropic-nematic transitidNPT) of
A system of elongated molecules is known to undergo a 19 .
" . ) several nematogens. Fayer and co-workers investigated

phase transition at low temperatures from an orientationall . .
. . . . . he dynamics of nematogens from very shidew picosec-
disordered, isotropic phase to an orientationally ordered, ot : i y | hundred nd
nematic phase, if the aspect ratio is larger than certain criticai"® 0 Very long time scalgseveral hundred nanoseconds

number. This isotropic to nematic phase transititiPT) is as a function of temperature, u;ing optical heterodyr)e de-
a weakly first order phase transition and is characterized by igcted Kerr effect. The data obtained from these experiments
large growth of orientational pair correlation function near@re related to impulse response function of the system which
the transition point. However, the orientational pair correla-is the timederivative of the polarizabilitypolarizability time
tion function does not diverge, because the impending divercorrelation function G(t) [that is, the Kerr signal
gence is preempted by the first order phase transttibh. «— [dCp(t)/dt]]. The decay observed in this experiments
These equilibrium characteristics make the study of orientais exponential on the longest time scdteeyond 100 ns
tional dynamics(both single particle and collectivenear ~ which is well described by Landau—de Gennes thé6ut
INPT highly interesting and theoretically challenging. short times, the decay is again exponential. However, at in-
This paper addresses the origin of a recently observedermediate time$10 ps—10 ng the data can be fitted to a
temporal power law with an exponent, with a value less than
3Electronic mail: jose@sscu.iisc.emet.in unity. The value of the exponent is found to be independent
PElectronic mail: bbagchi@sscu.iisc.emet.in of temperature, but to depend on the chemical identity of the
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nematogens{rather, on_the agpect ratjosignaling (in the CEgG=eXp(—t/TLde)- (1)
strict sensga lack of universality of the type observed near a _
critical point. However, the values of exponent are all closeThe Landau—de Gennes time constapde Shows a pro-
to 2/3 and thus some sort general behavior appears to grounced increase near the |-N transition. The physical origin
present in the dynamics. Gottle¢ al. also presented a mode of this slow down in relaxation is easily understood from a
coupling theory analysis which explained the emergence off€an-field theory which gives the following expression for
the power law behavior as a consequence of the growingLdc-
correlation length near 1-N transitidf!’ _
. . _23 . SZde_O)

Several computer simulation studi&have earlier at- TLdG=

tempted to recover the power law in orientational relaxation

near INPT. One of the first simulations to calculate Seconqlvhere 8220(k) is the wave number dependent orientational
ranksingle particleandCOIIeCtiveorientationaI time correla- structure factor in the intermolecular framwith k parallel
tion function(OTCP was performed by Alleret al”* using  to the Z axis) and where the subscript 220 denotes the ori-
hard ellipsoids. They could observe the critical slowingentational correlation of spherical harmoni¢s, () of rank
down of the dynamical correlation function near INPT, but¢ =2 and azimuthal numben=0. Dy is thelong timerota-
did not observe any power law decay. Peretal?? have  tional diffusion coefficient of the nematogens in the isotropic
done molecular dynamic simulation on a system of Gayphase. As the I-N transition is approach&g,(k=0) be-
Berne ellipsoids. This model undergoes an isotropic to nemeomes very large, reflecting the appearance of long range
atic phase transition at a reduced dengpity=0.315(where  orientational correlation near the phase transition. Note that
p* =pb®, p being the number density ardis the length of ~ S,,(k=0) does not actually diverge because of the interven-
the minor axis of the ellipsojdand temperatureT*=1  tion of the (weakly) first order I-N phase transition.
(whereT* =k, T/ €y, while k,, is the Boltzmann constant, While the Landau—de Gennes mean field theory is ex-
is the temperature ane, is the energy constant used in the pected to be valid in the long tim@t times much larger than
Gay—Berne potentialfor aspect ratio £=3). They found 6Dg"), the early short time decay of the orientational time
second ranksingle particleand collectiveOTCF slow down  correlation function should be dominated by the short range
appreciably near INPT. In another set of simulations of Allenlocal forces. Here the decay rate should be closedd 6
et al 2 calculated direct correlation functions of a system ofwhereDJ is the short time limit of the rotational diffusion
Gay-Berne e||ipsoids near INPT. Detailed molecular dy_COEfﬁCient. This rate is, for the systems studied by Fayer and
namic simulations of Ravichandra al?>?*found a sudden co-workers, is of the order of $bs™* or so. Note that the
appearance Of power |aW behavior in the Second W|e short time rotational diffusion CoeffiCierD% is eXpeCted to
particle OTCF near INPT. The value of power law exponent P& much larger than the long time diffusion coefficient, be-
was close to 0.56. These simulations also looked into théause the former is determined by the local interactions
translational and rotational diffusion coefficient of a systemWhile the latter contains the effects of slow density fluctua-
of Gay—Berne ellipsoids. Vasantht al?® carried out mo- tions. The long time L.andau—de Gennes exponenua_l decay is
lecular dynamics simulations to calculate diffusion of iso-&XPected to set at timegnuch longer than ns. It is the -
lated tagged spheres in a sea of Gay—Bere ellipsoids. THBt€rmediate time range between, say, 10 ps and 10 ns, which
diffusion is isotropic well inside the isotropic region of nem- Is of mterest n th!s study. In this time range, the simple
atic liquid crystal. In the vicinity of the INPT the parallel and mean-filed thr_eory IS not expected_to_ be valid because the
perpendicular component oD( and D, ) diffusion coeffi- memory function or the rotational frlct|0n should bg a s_trong
cient decouples from each other. They proved that the aniso{l—m.Ctlon of fre_quency. Mode coupll_ng theory pre_dlcts Inter-
esting dynamical behavior at such intermediate times. It sug-
ropy parameter @,/D,) obeys a power law of the form

(X —p*)P. gests that due to rapid increase in the static two particle

However, all the simulations reported until now have orient.ati.onal cqrre.la.tion as the I-N tr.ansition is approachgd,
. ' . the friction on individual rotors also increases rapidly. This
fa”gd 0 Qetect_ the tempora! power Ifiw m_the decay of COI'ef'fect is felt at intermediate times when the singular part of
lective orientational correlation functigrwhich, as already the friction is found to behave g7

mentioned, is the experimental quantity one measures in

Kerr relaxation experiment@ctually one measures the time rsngt)~Aq /. 3

derivative of the second rank orientational time correlation

function). Perhaps, the reason is that these early simulation@rientational time correlation function is given'as’

were limited in the duration of the trajectory obtained. Or, _ 2

may be, the intermolecular potential employed was inad- Cadt)~exp(a t)erfc(a\/f) @

equate. The nonobservance of the power law decay in simyyhere erfc is a complementary error function and the quan-

lations has remained somewhat of a puzzle. tity a is determined by a combination of orientational struc-
Theoretically, two limits of orientational relaxation near ture factor and rotational diffusion coefficient. As mentioned

INPT are understood clearly. The long time decay is ex-earlier, the above expression is predicted to be valid in the

pected to be given by the Landau—de Gennes theory whictime window which is short compared tg4g but long com-

predicts an exponential decay of the second rank orientgpared to (®g) 1. Complementary error function has the

tional correlation function following asymptotic expansion:

~6Dn @



e ¥ 1 13 135 tional dynamics of apair of ellipsoidsat different length

T 1- ﬁwt W‘F W-ﬁ- . (5 scales; this gives a more detailed description of the relax-
mX ation of the orientational order than tbellectiveOTCF. The

DOPCF shows critical slowing down of relaxation and the

shown by Gottkeet al, MCT prediction[Eq. (4)] seems ca- emergence of power law _relaxation near IN.PT. The emer-
pable of describing the experimentally observed decay ovegence of power law relaxation is also evident in the OTCF of

two orders of magnitude but not over the entire range of théhe local director that is discussed in the appendix. Present
observed slow decay:!’ simulations also explore the divergence of various equilib-

Therefore, not only does the MCT predict a weak timerium angular pair correlation functions which measure the

dependence at intermediate times, it also gives a clear physﬁ’-row’[h of correlat!on Iengt_h near lNPT.' . .

cal picture of the origin of this slow decay. At short times, of Th? next sch_on of th's. paper de.fmes various static "’?”d
the order of 1-10 ps or less, orientational relaxation is degynamlcal correlation funenone. Sect_|on Il gives the deteﬂs
termined by local dynamics. But at somewhat longer time f the mo!ecular dynamlcs_s S|mulat|ens. Results obtalr_]ed
(that is, beyond 10 ps or saorientational relaxation requires rom the S|mu_lat|or)s are discussed in Sec. IV. Concluding
relaxation of the nearest neighbors. In quantitative terms, thiEemarks are given in Sec. V.

implies that the friction on rotational motion is coupled to

the isotropic and orientational density fluctuations of do-Il: STATIC AND DYNAMIC ORIENTATIONAL

mains. However, fluctuations of these domains are slow tGORRELATION FUNCTIONS

relax, especially near the INPT. As a consequence, the fric-  The radial distribution function for nonspherical mol-

tion due to the presence of the nonlocal, pseudonematic de@cules in a laboratory fixed frame can be expressed in terms
sity fluctuations increases with time, that is with lowering of average over delta functions?&8’

frequency. The increase in friction at intermediate times is
sufficiently fast to slow down the relaxation to a great extent.
After certain time, when the increase of friction slows down,
the relaxation occurs with constant friction and we get back
the exponential decay. This last stage is the Landau-—de
Gennes regime. Thus, MCT predit¢tgo crossover regions-

one from a fast, short time exponential decay to a power-law h . h . anifies th .
regime of slow decay and a second one from power law to(,t e prime over the summatlon_S|gn| les t at.tenms; are
xcluded from the suimwherer; is the translational coordi-

even slower but exponential decay. The duration of the weaR i th bi P is th |
time dependence in the intermediate time is predicted to gehate in the arbitrary reference system & is the polar

pend on the duration of the growth of the friction. This du- angle for theith Iin_ear molecule i_n the Iab_oratory fixed ref-
ration of the growth of the friction is correlated with the erence frame. This pair cor_relatlon function can be conve-
length of the long range correlation present in the Systemr_uently represented in an intermolecular reference frame
Thus, we expect the duration of the persistence of the powé’lV h_erez axis passes thr_ough the ce_nter .Of mass of two eIhp—
law to increase as the INPT is approached. Note thas soids. The pair correlation function in this reference frame is
also increases simultaneously becaSsg(k~0) becomes given esg(r.,w,w'). It gives the jo_int probability to find any
very large. In addition, since the Kerr relaxation experimentsIWO e_II|p50|ds seperateq by_ a dletanlceand W',th anguler
measure the time derivative of the polarizability— coordinatesv andw’. This orientational correlation function
polarizability time correlation function, a very weak time can be expanded in spherical harmoffi¢s

dependence in experiments implies a neéirigar time de- ) )

pendence of the second rank, collective, orientational corre-  9(F, @, @ ):| Zm 911,m(D Y1y m(@) Y1, m(@"), (7)
lation function. _ L _

In this work we carried ouvery long time(approxi-  1-€., thew=(6,¢) andw’=(6",¢") are the angular coordi-
mately 50 ns in real time unitmolecular dynamics simula- netes in the mter.molecular' frame. d.eflnes the angle an
tions of larger systeméhan attempted earlipto calculate  €llipsoid makes with the axis of t.he Intermol'ecular freme
the second rankollectiveOTCF of a system of Gay—Berne and¢ defines the angle an ellipsoid makes with #haxis in
ellipsoids. We find that just prior to INPT, the relaxation of thex—y plane of the intermolecular frame. The angular pair
second ranlcollective OTCF[CS(t)] [defined in Eq.(10)], correlation functions are obtained from the total pair corre-
abruptly changests decay behavior from exponential to a lation function using the orthogonal properties of the spheri-
pronounced power law decay which ranges from short tal harmonicg® These angular pair correlation functions can
intermediate times. The decay again changes over to d¢ calculated from simulation using the expres&ion
exponential-like deeay at Ienger tmes. _ 901 m(F)=16W2<g(r,w,w’)Y|* (@)YE (o). (8

In order to gain a microscopic understanding of the 12 v 2=
power law decay near the INPT, we have looked into theThe distance dependence of angular pair correlation function
study of two other time correlation functions. First, we in- gives the range of orientational order in among the molecules
vestigated the relaxation of the dynamic orientational paiin a system of nematogens.
correlation function(DOPCBH and, second we studied the Time dependent orientational correlation function gives
OTCF of alocal director. The DOPCF can probe orienta- a measure of the temporal decay of the memory of orienta-

erfo(x) ~

Thus, the leading term in the expansion varies a%. As

N N

1
g(r,ﬂ,ﬂ'):N_p<§i: EJ: S(r+rj—r)o(Q—)

X 5(9'—Qj)> (6)



tional order and one needs to define several such functions to Gim(r ) =Gy | m(r,t=o)
describe various aspects of complex orientational dynamics. C(t)= L2 L2
The single particleOTCF gives a temporal measure of loss
of a single molecule’s memoryf its orientation in the ran-

, 15
G =0 Gyt =y | > 19

whereR is a fixed distance at which the relaxation is mea-

dom potential created by the surrounding molecules in th%ured
liquid environment. Thaingle particleOTCF of the rank is '
defined agh2224:28.29
. N Ill. DETAILS OF MOLECULAR
CS(t)= (ZiPi(&(0)-&(1)) (9 DYNAMICS SIMULATIONS
T (EiPi(81(0)-8(0))

Long molecular dynamics simulations have been carried
where theg, is the unit vector or director associated with  out for a system of 576 Gay—Berne ellipscil; a micro-
ellipsoid along the major axis of the ellipsoid aRgis Ith  Canonical ensemble. The form of the modified intermolecu-
rank Legendre polynomial. The quantity measured in lightlar Gay—Berne potential 3242532

scattering experiments is tlwllective OTCF The collec-

tive OTCF is defined &32227-2° U=4e(f,G;,0j)

(ZiZ;Pi(&(0)-&(1)))

C'(t):<2iEJP.(éi(o)-é,-(o))>' 10 _< G j‘saH
r—o r,Ui,Uj Tg

12

Os
I’_O'(f,l:l)i ,L_jj)‘f‘O'S
6

(16)

This is a limiting case of the more general wave numb@r ( _ _
dependent orientational correlation functi6fi(k,t) defined ~Wheref is the unit vector that passes through the center of

as mass of a pair of moleculesj; and G; unit vectors that
(E-E-e‘k"iiP (2(0)-&(1))) passes through 'the major axis of a pair of eI.Iipsoida.I mol-
Co(k,t)= [l o L ! _ (11) ecules.e and o give the strength and range of interaction,
<Ei2jel r”I:’I(ei(o)'ej(o))) % (L—jf-f'fjf)z
A wealth of information about the space dependence of ~ o(f,Ui,Uj)=0¢ 17 m
orientational relaxation can be obtained by studying the two A
particle correlation functions, such as molecular van Hbve (G;-F—1;-7)?
correlation function. In order to study the orientational dy- + m : (17)

namics of a pair of particles we have defined a DOPCF. ) , )

Orientational pair correlation function is obtained from the 7s is double of .the minor axis, « gives molecular 9'0”96"
distinct part of Van Hove correlation function by expanding fio" (@spect ratia which is the ratio of end-to-end to side-
it in terms of spherical harmonics. Van Hove correlation0-Side diametersg=o,/os. we have worked with aspect

function for a molecular liquid can be defined as ratio is 3. In the expression fer, y can be given in terms of

(.2 2
NN kasy= («"—1)/(k“+1),

1
Gy(r Q.0 D=1 2 ; S(r+r;(0)—ri(t)) e(f,ﬁi,Gj)=eo[1—xz(ﬁi-ﬁj)]1’2[1

5(Q—0,(0))3(Q' — (1)) ). X (@-FHGD? (G f—ﬁrf)z) ?

X (0~ €,(0) 5~ (1)) 1 et d |

(12 (18)

In a system of linear molecules, the van Hove correlationvhere e, is the energy parameter and= (Vx' —1)/(Vk’
function can be represented in intermolecular referencer1) («x’=e./€, gives the strength of interaction which is
frame asGy(r,w,w’,t). This correlation function can be ex- side-to-side to end-to-end well depth¥he value ofx’ used
panded in terms of spherical harmonics to get DOPCF,  in the simulation is 5% The scaling used for moment of
inertia is|* =1/mo3. The density is scaled in the simulation
Gy(r,w,0' )= >, PG Lm(N DY m(@)Y, m(@). asp* =po? and the temperature is scaled Bs=k,T/¢g.
l1lz,m The equation of motion is integrated with reduced tiftie
(13 = (mo/ ep) 2] steps withAt=0.002*.
The DOPCF gives a direct measure of relaxation of orienta-  The simulation starts from an equilibrated configuration
tional order at different shells around a linear molecule. Theof ellipsoids. Initial configuration of the ellipsoids is gener-
DOPCEF can be calculated from the simulation using the exated from a cubic lattice and then the simulation is run for
pression 200 000 steps to obtain the equilibrium configuration. During
_ 2 , * * , the equilibration steps the temperature is scaled so that the
Giyiom(1, D) =167(Cu(r, @, 0" OY], (@)Y, (@) p- system is in equilibrium at this particular temperature. The
(14 production steps starts from this equilibrated configuration.
In order to study the orientational relaxation of different The production steps are run for 15 million steps to calculate
cages, we can define orientational correlation function irstatistically averagesingle particleandcollectivestatic®~3°
terms of DOPCF. Let and dynamic orientational correlation functions. When trans-
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p FIG. 2. The variation of order paramefes(p* )] with densityp* at differ-
ent temperatures is shown in this figure. The continuous line gives the
FIG. 1. A region of phase diagram of the Gay—Berne ellipsoids taken fromS(p*) at T*=1.0, the dashed line gives ti&p*) at T*=1.1 and the
Fig. 10 of Ref. 32 near INPT where simulations presented here are doneélashed-dotted line giveS(p*) T*=1.2.
Shaded portion are the phase coexistence regions. The region between the
dotted lines are the region of the phase diagram between deifsity.3

and p* =0.315 where the pretransition effects were found. Arrows denote . . .
temperatures at which density has been varied toward the transition. of the Peaks as_ the INPT is approache(_:l. 'I_'hIS_ angular _palr
correlation function correlates angular distribution of ellip-

soids around a test sphere. Since the orientation of only one
lated into argon units, this corresponds to a run time of 75 nsof the ellipsoid is taken into consideration in the calculation
We found that such long runs are indeed necessary to studf g,.(r), this angular pair correlation function does not
decay of collective orientational correlation near the INPT. di\/erge even in the nematic phase_ But the sharpening of
The ellipsoid used in the simulation has minor akis peaks of this correlation function shows the building up of
=0.5 and major axi=1.5 (in reduced units The order orientational order when the nematic phase is approached
parameter of the system can be written in terms of thregjlong the density axis. The angular pair correlation function
orthogonal vectors, b, ¢ associated with the molecule. Then g,,(r) which measures the correlation between a pair of
the tensorial order parameter of INPT is defineti®as ellipsoids separated by a distangeshows divergence in the

SHP=%3i,i g~ Bupdij),

where «,8=X,y,z are indices referring to the laboratory

frame, whilei,j=a,b,c, and 8,5 and &; are Kronecker 0

delta symbols. Her&j’ﬁ is diagonalized and it is the highest Sao 5l p:=0_285

absolute value that is taken as the order param&gr ( Oc;a ’ (@) + p=0.290
The simulations are done at the state points near the l © p=0.295

pretransition region of phase diagram, shown in Fig. 1 where v p =0.30

the variation in temperature and the density employed is [ -~ p=0.305 )

shown by arrows. The translational and rotational motions

are solved using leap-frog algorithm. The calculated order

parameter is shown in Fig. 2 where the order parameter is
plotted against the density near INPT at three temperatures.
The order parameter changes dramatically after density in-
creases beyond 0.3. This is in accord with previous

simulations??~2°

IV. RESULTS AND DISCUSSIONS

A. Static pair correlation functions

As already mentioned, the INPT occurs nedr= 0.3
for all temperatures used in this simulation. Figurda),3
3(b), and 3c) show the distance dependence of angular paiFIG. 3. Three angular pair correlation functions are plotted at different
correlation functions plotted against position for a system offensities against distance of separatioi’at- 1.0. () showsgzod(r) angu-
Gay-Berne ellipsoids at temperature 1.0 for different numAa" Pair correlation function(b) gives thegza(r) angular pair correlation

.. * . function. This is the first angular pair correlation function which shows
ber densities,p* =0.285-0.315. The angular correlation gjgnificant divergence near INPT. The angular pair correlation function

function g,oo(r) [plotted in Fig. 3a)] shows the sharpening gudr) is shown in(c).
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FIG. 5. The second rankollective OTCF, [C5(t), Eg. (10)] is plotted

H H S
F.IG' 4. The !o_g—l_og plot ofsingle partcheOTC_:F [C3(D)] [Eq. (.9)]’ at . _against time at different densities and at constant temperaturel. As the
different densities is shown here. The linear region of the relaxation function

anifies th f | laxati 03. The li density approaches INPT this correlation function shows power law relax-
S|gn‘| es the err;erg(.anc_e ora power‘aw r.e axation ad.!a ->- Theflinear — ation. The regions where power law relaxation is dominant are fitted with
portion of theC5(t) is fitted to a straight line at densigy* =0.305.

the functiony=1.1-0.014%%8 at p* =0.31 andy=1.0—0.0016°% at p*
=0.315.

vicinity of INPT as depicted in Fig. ®). The divergence in

angular pair <_:orre|atio_n function is algo evidgnt in higherthat form an pseudonematic domain is important near this
order correlation functions, as shown in the Figc)3Note state point(near 0.3 of the phase diagram shown in the

that these higher order correlations have non-negligible co Sig. 1)

tribution in the series expansions of total angular correlation The collective OTCF function at densitiep* ranging

from 0.285 to 0.315 are plotted in Fig. 5. The collective
liaibl in the total | . lation f STCF also showsignificant lengtheningn the time scale of
non-negligivie error in the tolal angular pair correfation Unc- o . a4ion. The change in the time scale of the relaxation is

tion. Also note that for the system sizes simulated here, thgf the order of hundreds when density changes from 0.285 to

correlation length of angular correlation is comparable to theb 315. At very close to the INPT, the nature of the decay of

size of the systemés the system approaches INPT WhOIe_coIIectiveorientational relaxation function changes abruptly.

system starts to behave like a single pseudonematic domalwe note that this observation of slow down of the of relax-
ation of thecollective orientational relaxation is in general
agreement with Landau—de Gennes mean field theory at
We now turn to dynamics of orientational relaxation. longer time scale. The emergence of the power law is evident
The log—log plot of secondank single particle OTCF in this correlation function at densitigs’ =0.31 (the value
against reduced time at different densitip§=0.285 to  of the exponent obtained is 0.,68nd p* =0.315(the value
0.315 is shown in Fig. 4. The power law relaxation emerge®f the exponent obtained is 0,865om the power law fit at
in the correlation function when the reduced density in-the initial part of these correlation functions.
creases beyon@* =0.3. In this region, the decay of the In Fig. 6 we have plotted the logarithm of the time de-
correlation function in the intermediate times can be reprefivative of the second rank collective orientational correla-
sented by the function of the forX(t)=bt 2, wherea and tion function(the experimentally measured quantiagainst
b are constants. At higher densities the fast and slow relaxogarithm of time to further our comparison with the ob-
ation processes are clearly separated by intermediate poweerved behavior. The derivative has been plotted for two den-
law as indicated by the linear region of the curfbetween sities in the transition region. This figure brings out the
20 and 100 in reduced uhitn Fig. 4 the linear region of the crossover from the power law to the exponential decay at
log—log plot is fitted to a straight line, long times rather nicely.l,g\lso, this figure can be compared
with Fig. 5 of Canget al.™® Over more than two orders of
In(X(t))=b—aln(t), (19 magnitgde, the sim%larity is rather remarkable.
the exponent obtained from the fitas=0.70. As the density We have earlier discussed the explanation put forward
increases thsingle particleorientational relaxation becomes by using the mode coupling theory of relaxation near the
slower due to the strong coupling of rotational motion with INPT. According to this interpretation, the power law decay
the surrounding ellipsoids or due to an orientational cagingarises because of the rapid increase in the rotational memory
effect of the ellipsoids. The formation of orientational cagefunction as the frequency decreases. In other words, subse-
or pseudonematic region surrounding an ellipsoid gives it theuent to the initial relaxation within the cage, any collective
memory of the previous orientation resulting in the slow re-(or single particlg relaxation becomes coupled to the orien-
laxation process. Theollectiverelaxation of the ellipsoids tational density fluctuation which becomes very slow near

B. Dynamics
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FIG. 6. The log of negative of the time derivative of second realkective

OTCF,[C5(t) of Eq. (10)], is plotted for densitiep* =0.31 (dashed ling
and p* =0.315(continuous ling against log of time aT* =1.0. The linear . .
portion of the plot gives power law observed in the intermediate time scale distance (r )
of the experiment.

FIG. 7. The dynamic orientational pair correlation functi@OPCBH [Eq.

(14)] is plotted at three different densities. In these figure continuous lines

he INPT b fth fthe | . _starting from the top are plotted at time step of 1 in the time interval 1-10.
the ecause of the emergence of the long range OlN€Rhen dotted—dashed lines are plotted at a time step of 10 in the time interval

tational pair correlation. Thus, the reason for the power lawpo-100. Finally the dashed lines are plotted at a time step of 100 in time
decay in the collective and the single particle decay is near|jnterva| 200-1000. All the lines arranged from top to bottom in the increas-
the same. However. the time scales of the two decay aI,i@g order of time. The top subfigure is at density=0.295, middle sub-

. ! . figure is at densityp* =0.305, and bottom subfigure is at densjty
vastly different—the former is much slower. The reason can~, 53z
be understood from the mean-field theory itself. Unlike the
single particle dynamics, the collective orientation occurs in

a collective many-body potential. For small density fluctua-

tion, this potential can be approximated as a harmonic oNng the power law obtained from the slope of the fit is 0.79.
As the INPT is approached, the frequency of the harmonierhg ohservation of power law in the first shell of the relax-
potential decreases rapidly, slowing down relaxation in theyion confirms that decay of pseudonematic regions of size of

well. ) ) ) first nearest neighbor distance also shows power law relax-
In many aspects orientational relaxation near INPT IooksaﬁOn

similar to that in the supercooled liquid near the glass
transition’®'’ As discussed earlier, the reasons are also simi-
lar. Both is a reflection of a rapid increase in the memory
function at low frequency. However, the reason for this rapid 0 :

increase is different in the two cases. Now it is interesting to Pfg'ggg
look into the orientational relaxation within various shells.  -0.5¢ y=-0.79(In 1 )-0.2 g*:0.295 1

This gives a close picture of the dynamics at varying length
scales. Such information can be obtained from the dynamic
pair correlation function. Figure 7 shows the behavior of
DOPCF G, (r,t) at three densities at three different time ;:_
scales. This gives a picture of slowing down of orientational ;2 _»
relaxation near INPT. Note that in the top figure DOPCF at
time t=0 converge to zero at large distance, signifying the -2.5f
absence of long-range orientational order. The picture of re-
laxation changes at higher densities. At =0.315, the =37
DOPCEF is nonzero at time=0 even at long distance. At this
density the slow orientation relaxation can be identified from
the widely separated dashed—dotteche scale of tendines _4 . ‘
and dashed linegtime scale separated by hundrgdshe
orientation relaxation at the first peak of DOPCF is denoted
by Cp(t) [Eq. (15)]. In Fig. 8 theCp(t) is plotted atR equal FIG. 8. The log of pair time correlation functid(t) defined by Eq(15)

! A js plotted against logarithm of time at separat®®equal to the first peak of
to first peak of DOPCF. When density is at 0.305 the sudde OPCF. The emergence of power is evidentp&t=0.305. In this figure

appearance of the power law is obs_erveql. In Fig. 8 the lineafear portion of InC,(t) vs Int curve at densityp* =0.305 is fitted to a
portion of theC(t) is fitted to a straight line. The exponent straight line.
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FIG. 9. The log-log plot of the second rasingle particleOTCF[C5(t) in FIG. 11. The log of the pair time correlation functi@)(t) [Eqg. (15)] is
Eqg. (9)] at different temperatures and at constant dengity-0.315 are plotted against log of time at three different temperature at density
shown here. The continuous line give§(t) at T* = 1.0, dashed—dotted line =0.305. The dashed—dotted line giveg(t) at T*=1.0, the dashed line
gives C3(t) at T*=1.1 and the dashed line giv&(t) at T*=1.2. The  givesCy(t) at densityT*=1.1 and theC(t) at T*=1.2 is given by con-
slope of the linear region varies with temperature showing temperature dginuous line.

pendence of power law.

this correlation function is slow. This also points toward the
fact that even the long time simulation used here is inad-
) ) ) ) equate to probe the full decay of this correlation function. It
In Fig. 9, the log—log plot ofingle EartcheOTCF IS s also evident from the phase diagréfig. 1) that transition
shown at three different temperatures* 1.0, 1.1, and 50t has only a small variation due to change of tempera-
1.2. At all temperatures this OTCF slows down significantly ,re The log of the pair time correlation functi@y(t) in a

and takes long time to relax. The emergence of the pPOWeLystem of density* =0.305 is plotted against log of time at
law is indicated by the linear region of the second ranky ee gifferent temperatures in Fig. 11.

OTCF. Note that when temperature increases the slope of the

linear region qf the second rardingle particleOTCF de- VI. CONCLUDING REMARKS

creases, showing the temperature dependence of power law

exponent. In Fig. 10, the log—log plot abllective OTCF is In this paper extensive and long molecular dynamics

plotted at three different temperatures*(=1.0, 1.1, and simulations of orientational relaxation of model nematogens

1.2). Note that even at the high temperature 1.2 the decay diave been carried out in a system of Gay—Berne ellipsoids in
an attempt to understand the origin of the experimentally
observed temporal power law decay of the second rank ori-

V. TEMPERATURE DEPENDENCE OF RELAXATION

3 entational order parameter in the isotropic phase of a nematic
0_9,\\\’\ > _ liquid crystal. We have observed the well-known divergence
NN of the angular pair correlation functions as the system goes
o I ] toward INPT along the density axis. This divergence gives
071 N N evidence of the formation of nematic domains inside the iso-
osl \\ o N tropic phase. Theingle particlesecond rank orientational
_ AN Tl time correlation functiofOTCF shows the emergence of a
{’;'05‘ ) . power law in the relaxation beyond the density 0.3. The
04l ' power law exponent obtained from the linear fit of the sec-
ond ranksingle particleOTCF is~0.7.
031 T Perhaps the most important result of this work is the
0.2f el finding that the second rankollective OTCF showsan
o1l - abrupt emergence of a power law decegry close to the
isotropic—nematic phase transition. In fact, over a substantial
% 200 200 600 part of its short time decay, the correlation function decays
time (t almostlinearly with time predicting a very weak time de-

pendence of the derivative @f(t)—it is the time derivative

FIG. 10. This figure shows the time dependencealfectivesecond rank

is that measured in experiments. In the very long time, the
OTCF[C5(t), defined in Eq(10)] at different temperatures and at constant P y 9

density p* =0.315. The continuous line givesj(t) at T*=1.0, dashed- decay becomes exponential-like, in agreement with the

dotted line givesCS(t) at T*=1.1 and the dashed line givesy(t) atT*  Landau—de Gennes mean-field theéwhich describes re-
=1.2. laxation in terms of randomization of pseudonematic do-



maing. It is certainly heartening to observe the appearancenechanism is included through a self-consistent solution
of the power law in the decay of the collective correlationwhich gives rise to the well-known power laws and the even-
function. Note that all the earlier studies have failed to ob-tual divergence of the relaxation time in the mode coupling
serve this power law decay because these early simulatioriBeory. It should also be noted here that the mode coupling
were all limited to rather short times. In fact, the power lawtheory breaks down completely at low temperatures because
was found in the single particle correlation function becausdt predicts a critical pointand divergence of viscosity and
the latter decays on a much shorter time scale. relaxation time at a temperature which is about 30-50 K
Mode coupling theory analysis of this probletpre-  above the true glass transition temperature. However, prior to
sented earligrsuggests that not only the orientational pairthis breakdown, MCT is known to provide a satisfactory de-
correlation function must grow rapidigwith temperature or scription of the relaxation behavior. Therefore, it is clear that
density as the INPT is approached, but also the long wavevhile the power law relaxation near INPT has a thermody-
number part of the Fourier transformed static pair correlatiornamic origin, the ones in the supercooled liquid has a dy-
function must become very large to make a dominant contrinamic origin (note that MCT predicts a dynamic transition
bution to the memory functioff®! This happens at very only).
small wave number. Thus, the success in capturing in simu-  Nevertheless, experiments have unequivocally shown
lations of many aspects of the interesting dynamical behavicihat the two relaxation are quite similar. The reason may be
near the isotropic—nematic transition should be attributed téhat the basic features simply cannot be too different. Both
the carrying out of very long simulations. must have an initial fast decaglue to short range interac-
Another notable new result is the observed slow relaxtions), followed by a slow power-law decaylue to different
ation in the orientationapair correlation function. Over a reasons thoughand both have a long time exponential-like
limited range of time, this relaxation function can be fitted todecay. Thus, the basic features of relaxations are the same
a power law decay when the separation between the pairs and, therefore, can be described by the same functional form.
equal to the first maximum in the static pair correlation func-Even with these observations, experimental observations of
tion. The existence of power law at the level of pair correla-the similarity is indeed revealing.
tion function shows that even two particle relaxation slows We have already discussed the mode coupling theory
down at nearest neighbor level. Further work is required tdnterpretation of the slow decay. It seems that the basic con-

fully understand the nature of these time correlation funclusions of MCT is in agreement with the simulation results.
tions. It will be interesting to use the two particle correlation func-

As noted earlier, there are certain striking similaritiestions directly from simulations and perform a more detailed
between relaxation near INP(In the isotropic phageof a comparison between theory and simulation results. In addi-
liquid crystalline system and that in supercooled liqditi& tion, we need a fully self-consistent MCT, which is not at-
It has been found that the same functional form can descripEmpted yet. Work in this direction is under progress.
relaxation in both supercooled liquids and in isotropic liquid ~ AlS0, even with our very long MD simulations, it is hard
of liquid crystals. The nature of the relaxation function is to study the crossover regions with definitive conclusions.
similar in both the systems—a short time decay, followed by Or that to occur, we need to simulate much larger systems
a pronounced power law which is again followed by a slow(May be something of the order of 5000 particlés simi-
exponential-like decay. As the temperature is lowered toward@ly long times. Also, we have not addressed the aspect ratio
the glass transition temperatuffer supercooled liquidsor dependence (_)f the power law behavior. We hope to address
toward the INPT, the duration of the power law increades. these issues in future.

While the dynamics appear to be quite similar, there are also
some diﬁergncgs, especially in the qrig?n of thg behavior. Ily cKkNOWLEDGMENTS
the case of liquid crystals, the behavior is certainly due to the
rapid growth in the equilibrium orientational pair correlation It is a pleasure to thank Professor Michael Faj@tan-
function which is reflected in the rapid increase in theg ~ ford University for discussions and correspondence on
wave numbetimit of the orientational structure factor. This many aspects of power law decay. The authors also thank R.
is reflected in the large growth &,k=0) near the INPT. Vasanthi and Dr. Steve Gottke for collaboration. This work
This growth also gives rise to slow down of the mean-fieldwas supported in parts by grants from Department of Science
Landau—de Gennes relaxation timgqs, as given by Eq. and Technology and Council of Scientific and Industrial Re-
(2) and discussed earlier. In the case of supercooled liquicsearch, India.
however, the slow down of relaxation at intermediate wave
numbers, when the wave number27/o, whereo is the ]

. . S APPENDIX: ORIENTATIONAL RELAXATION
molecular diameter. The mean-field theory again gives a de(')F A LOCAL DIRECTOR
cay at intermediate wave numbers given $\k)/D where
S(K) is the static structure factor at intermediate wave num-  The definition of yet another OTCF can be done in terms
bers while D is the self-diffusion coefficient. The large of the local director the ellipsoids. This definition is impor-
growth in relaxation time in supercooled liquid is due to atant in the case of experiments where a small fraction of
feedback mechanisiti *°where slow down of density relax- molecules are excited and the observation of ¢hiective
ation increases friction and the increase of friction causesrientational relaxation of this fraction of molecules by
further slowdown of the density relaxation. This feedbackprobe pulse. Let there be a unit vector associated with each
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FIG. 12. The log—log plot of second rank OTCF of tleal director, FIG. 13. The time dependence of second rank of the OTCF of the local
[CY(t), Eq.(A2)] vs time at different densities and at constant temperaturedirector[ C3(t), defined in Eq(A2)], is plotted at different temperatures and
T*=1 is shown in this figure. The linear portion of the curve found after constant density* =0.315. The continuous line givesg(t) atT*=1.0,
p*=0.3 shows the emergence of power law. The linear fit of the secondiashed—dotted line giveﬁg(t) atT*=1.1 and the dashed line givég(t)

rank OTCF of thelocal director [Cg(t)] at p*=0.315 is shown in the atT*=1.2.

figure.

ellipsoid along the major axis. In a system of ellipsoids it isresultant unit vectotJ slows down. Note that in the nematic

possible to define a local director in terms of the sum of thd€9ion the molecules are aligned in one direction due to the
unit vectors. Since there is no asymmetry along the axis iﬁestrlcted. |nd'|V|duaI' rotatlong. Therefore, the relaxatlon of
the interacting potential sum of unit vectors that initially has®ach arbitrarily assigned unit vector associated with the el-
a direction will vanish due to the rotation of the directors. IPSoid also slows down, which results in the delay in the
This rotational diffusion of the ellipsoid can be modeled inrelaxation time the local directod. The long tail of the
terms of a symmetric double well potential. The arbitraryC{(t) due to the forbidden rotation by formation of the nem-
initial direction of the ellipsoid is in the first well of this atic alignment which follows after the initial decay, results in
symmetric double-well potential and a rotationmfrom the ~ power law behavior. We believe that the power law relax-
initial direction, which is indistinguishable from this initial ation of this second rank orientational time correlation func-
direction is the other well of the symmetric double-well po- tion of the local director may be related to the experimental
tential. For ther rotation the ellipsoid has to over come the results;®*’ as follows. Here for measuring the relaxation of
potential barrier that is created by it is neighbors. Correlatiodocal director, the ellipsoids are given an arbitrary initial di-
time can be defined in terms of the relaxation time of therection. The relaxation time during which this average direc-
initial direction of the resultant vector. This can also be de-tor loses the memory of the initial direction depends on the
fined in terms of princip|e of conservation of angu|ar veloc- relaxation time of individual e”ipSOidS. It can be considered
ity in the system. The resultant orientation of the system i€s loss of polarizability of a small region of the system of

given by molecules due to random rotation.
The log—log plot of second rank OTCF of the local di-
R EiN:léi rector of a system of ellipsoids at different densitjes
U= m =0.285 to 0.315 aff* =1 near INPT is shown in Fig. 12.
i=

Hence thdth rank OTCF is defined as

This figure shows that the relaxation of the second rank
OTCEF of thelocal directorexhibits a pronounced power law

decay over a rather long time interval. At higher densities
(beyondp* =0.305) a long tail appears in the second rank
OTCF of the directors due to enhancement of collective in-
teractions. After this particular density the change in the cor-
relation function becomes dramatic and the relaxation be-
The angular velocityw is conserved locally in a system at comes extremely slow. In Fig. 12 the linear potion of the
equilibrium, so=N ; &;=constant. In a simulation to avoid second rank orientational time correlation function of the
the rotational flows in the box this constant is equal to zerodirectors is fitted to a straight line at density 0.315. The
In the isotropic region all the ellipsoids are free to rotatepower law exponent obtained from this fit is 0.34. In Fig. 13
individually, hence the direction of the resultant unit vector isthe log—log plot of OTCF of thdocal directoris shown at
changing fast. But near INPT the rotational motion of thethree different temperaturesT{=1.0, 1.1, and 1.2 This
individual ellipsoids are restricted by the formation of pseud-correlation function shows a long linear region showing the
onematic regions. Hence the orientational relaxation of the@mergence of power laws.

co(t) = <P|(EJ('[)'LAJ(0))> _
(Pi(U(0)-U(0)))

(A2)
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