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The heat capacity of a supercooled liquid subjected to a temperature cycle through its glass
transition is studied within a kinetic model. In this model, fhprocess is assumed to be thermally
activated and described by a two-level system. &lpeocess is described agaelaxation mediated
cooperative transition in a double well. The overshoot of the heat capacity during the heating scan
is well reproduced and is shown to be directly related to delayed energy relaxation in the double
well. In addition, the calculated scan rate dependencies of the glass transition tempkyatulehe

limiting fictive temperaturd ,5 show qualitative agreement with the known results. Heterogeneity is
found tosignificantly reducehe overshoot of heat capacity. Furthermore, the frequency dependent
heat capacity has been calculated within the present framework and found to be rather similar to the
experimentally observed behavior of supercooled liquids.

|. INTRODUCTION the structural relaxation in operation aRdis the universal

A liquid on passage through its supercooled regime tJas constant. As pointed out by Moynihanal, it is impor-

the glass displays a spectrum of thermodynamic and kineti@nt for the validity of the above relationship that the mate-
anomalies—* Of them, the sharp rise in the measured hea{'al be cooled and then reheatedt only at the same rate but

capacity during the heating scan of a temperature cyclethe cycle bg extended well beyond the glass transformation

through the glass transition has remained an interesting prot5@nge on either S'gieT%. is also known to have an identical
lem to study. The overshoot is often taken as a signature of 4éPendence ogc,” which has recently been reproduced in
glass to liquid transitiof.The main objective of the present Model glassy systenfs. _
work is to reproduce the overshoot of the heat capacity SPecific heat spectroscof,*on the other hand, brings
within a kinetic model of glassy dynamics. off frequency domain calorimetric measurements. As empha-
Time domain calorimetric experiments through the glasssized in Ref. 10, these measurements are performed with a
transformation range routinely encounter with nonequilib-very slow cooling rate so that the sample is in equilibrium at
rium state of the sample. It is a common practice to characeach temperature. What one looks here is the frequency de-
terize this nonequilibrium state by the fictive temperaturependent specific heat that is essentially a linear susceptibility
T . As defined by Tool and Eichlif[T; is the temperature at describing the response of the sample to arbitrary small per-
which the nonequilibrium value of a macroscopic propertyturbations away from equilibrium. The imaginary part of the
(e.g., enthalpywould equal the equilibrium one. If cooling complex frequency dependent specific heat, as measured ex-
is continued through the supercooled regime, the structurgderimentally in the supercooled regime, shows a broad peak
relaxation eventually becomes too slow to be detected on thend differs from its dielectric analog in having contribution
experimental time scale, resulting in a limiting fictive tem- of all the degrees of freedom of the syst&t#\ number of
peratureT . UnderstandablyTt shows a dependence on the theoretical approaches exist in the literature elucidating the
cooling rate as a slower cooling rate provides a liquid with aneasurable in specific heat spectrosctfpy’
longer time for configurational sampling at each temperature.  The glassy dynamics has often been considered to be a
The calorimetric glass transition temperatiiggis, however, manifestation ~of an  underlying  thermodynamic
found to depend on both the cooling rateg. and the heat- transition'®=2° The celebrated Adam—Gibb@&G) theory*
ing rateqy,. A shift to higher values is observed for faster that invokes the concept of the cooperatively rearranging re-
rates’ As shown elegantly by Moynihaat al.® if the rates gion (CRR) attempts to provide a connection between ther-
of cooling and heating are taken to be the same, that ifnodynamics and kinetics. A different framework is provided

—dc.=0n=0d, the dependence dfy on g, is given by by the so called landscape paradigim’ The landscape pic-
ding ture consists of a connected network of potential energy
Wz —Ah*/R, (1)  minima, each minimum being surrounded by its own basin.
g

This approach involves the division of the multidimensional
whereAh* can be interpreted as the activation enthalpy forconfiguration space into metabasins on the basis of a transi-
tion free-energy criteriof® This can entail two vastly differ-
dAuthor to whom correspondence should be addressed. Electronic maifNt tlme.scales, the smaller one due to motiwsithin the
bbagchi@sscu.iisc.ernet.in metabasins and the longer one due to exchaap@eerthe
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) ) . FIG. 2. A schematic representation of the model under consideration. The
FIG. 1. A schematic representation of the potential energy landscape showrizontal lines within a well represent different excitation levels. Note that
ing motions within and between metabasins. the energy levels are in general degenerate, as they correspond to the sum of
the energies of individual TLSs in the collection.

metabasins involving much larger free-energy of activation.
In particular, theB processes are visualized to originate from
activated dynamics within a metabasiwhile escape from o
one metabasin to anothés taken to describe amprocesg’ ~ Present model explicitly introduces the conceptbrga-
See Fig. 1 for a schematic representationofind  pro- ~ Nized a process within the landscape paradigm.
cesses. There have been several approaches along this line in Itis worthwhile to relates anda processes to real physi-
recent times to model relaxation in supercooled liqdfc®s. ~ cal processes occurring in glass-formers. Bhgrocess may
It is worth noting here that the breakdown of the mode-correspond to large-scale hopping of a particle. However, for
coupling theory(MCT)*~%%is ascribed to the dominance of this hopping to occur many small reorientations/
relaxation by these thermally activated, large amplitude hoprearrangements/displacements are needed among its neigh-
pings, which are unaccounted for in MCT. Recent computebors. The activated dynamiegithin a TLS may well repre-
simulation studies have further revealed that hopping is @ent small rotation&® In the case of polymer melts which
highly cooperative phenomentn®® promoted by many exhibit glassy behavior, thg relaxation may be the motion
body fluctuations; large amplitude hopping of a tagged parof side chains. This picture apparently differs from the one
ticle is often preceded by somewhat larger than normal, busirawn by Dyre while discussing solidity of viscous liquitfs.
still small amplitude motion of several of its neighbolo-  Dyre has argued that large-angle rotations are “causes” and
tivation of the present work largely comes from this set ofsmall-angle rotations are “effects.” The present picture con-
findings tains the Dyre’s one in the sense that small-angle rotations
In the present work, we consider a simple model of re{ndeed occur following a large-scale jump motion for the
laxation in supercooled liquids. It is a kinetic approach thalcompletion of relaxation as evident in Fig. 2. The present
attempts to combine the activated hopping in the energynogel is built on a rather symmetrical picture that also ne-

landscape and the cooperative nature of the hopping evenftegsitates small-angle rotations for a large-angle rotation to
The g process is assumed to be a thermally activated evenj..,

within a two-level systenfTLS). The mo.d?' assumes that an Analysis of the heat capacity during a cooling—heating

argégggzz ;?ens?rﬁa{[;s:éisVIVhZEti\Eja;ZI(;]m;LJ?h r;utrrnek; etrrﬁZLt iC_cle that extends well beyond the glass transformation

\Fjoking the concept of3 organi);eda procéssdoes not seem nge on either side shows that the prgsgnt model gan repro-
cluce the overshoot of the heat capacity in the heating scan.

to have been discussed previously. The present treatme . o
. . P y- 1he p . rfﬁ addition, the scan rate dependence of the glass transition
however, is consistent with an earlier view that a collection

of B excitations is a precursor of therelaxation?® temperaturdy and that of the limiting fictive temperatuﬂ'é(

The present model can be taken to belong to the class GF€ N qualitative agreement with the known results. How-
kinetically constrained modéfs that attempts to model EVE'» @ somewhat larger fall in the heat capacity prior to the
glassy dynamics by imposing dynamical constraints on th@Vershoot than what is observed experimentally in most
allowed transitions between different configurations of theCaSes is notable. This we ascribe either to the lack of spatial
system, while maintaining the detailed balance. In particular’&terogeneity or to the neglect of memory effects in the
our model resembles the facilitated kinetic Ising modelsPresent treatment. The model also captures the basic features
(FKIMs),** originally due to Fredrickson and Andersen, in of frequency dependence of heat capacity.
the spirit that brings in cooperativity. The key feature of their ~ The paper is organized as follows: Section Il contains a
models is that a highly compressible region in the fluid cardetailed description of the model. Section Ill provides the
relax only if there is/are regigs) of high compressibility in  theoretical treatment which is followed by the details of cal-
the neighborhood to facilitate the relaxation. While the co-culation in Sec. IV. The results are presented with discussion
operative unit§TLSs) in the present model are noninteract- in Sec. V. Section VI concludes with a summary of the re-
ing, in contrast to the interacting ones in the FKIMs, thesults and a critical view on the model.



Il. MODEL and co-worker8®*” The two widely used expressions of

. . equilibrium heat capacity at constant volume are given by
As mentioned, we model @ process as an activated

event in a two-level systeiTLS). We label the ground level

of a TLS as 0 and the excited level as 1. The waiting time CU(T):(aE(T)) (5)
before a transition can occur from the levék=0,1) is as- T/,
sumed to be random. The waiting time is given by the Pois-
sonian probability density function: and
1
gi(t)= —exp(—t/7), 1=0,1, 2 AE(T))?
o ' C,(T)= (BED") " (TZ)) s 6
B

where 7; is the average time of stay at the levellf p;(T)
denotes the canonical equilibrium probability of the leivef
a TLS being occupied at temperatufe detailed balance
gives the following relation

where((AE(T))?) is the mean square energy fluctuation at
temperatureT. As is well known, these two are equal at
equilibrium. However, they need not be equal in a nonequi-
p1(T) 7(T) librium system

Do(T)  7o(T) =exfl — €/ (kgT)], 3 The system, when subjected to cooling or heating at a
constant rate, can be envisaged to undergo a series of instan-

where K(T) is the equilibrium constant ar for the tWo  gnequs temperature changes, each in discrete step of magni-
levels which have an energy separatiomndkg is the BOlt-  4e|AT| in the limit AT—0, at time interval of lengtft,
zmann constant. The level 0 is taken to have a zero energyyhenceq;=AT/At (i=c,h).5 A pictorial representation of

I ’ .

Within the framework of this model, a metabasin is char-yq temperature control during a cooling process with finite
acterized by amN ; number of such non-interacting two-level AT \yas given by Jekle® If we consider a time interval at

systems(TLSs). A given minimum number among the total e heginning of which the temperature has been changed
numberNy of TLSs must simultaneously be in the excited s T to T' = T+AT. the waiting timet,, before an ob-

levels for the occurrence of am process, which then hap-  geryation is restricted bixt. The heat capacitg, measured
pens with a finite rat&k. With this definition ofa and B8 4; 4 timet s SUbsequent to a temperature change fioto
processes, the heat capacity is sensitive to both the processgs_ 1 AT is not stationary in time unlest,. is long
. . . . . ’ S

A consideration of two adjacent metabasins can entail theq,gh for the equilibrium to be established. The measured
same within the present framework. \We, therefore, concenseat capacity, and also the energy, then become a function of
trate here on two adjacent metabasins, which we label as .6 (ate of cooling—heating as well, apart framand t,,

1 obs-

and 2 and tpgether call it a Fiouble well. Figure 2 shows 8rhe dependence & on g, and/org;, implies that the mea-
schematic diagram of two adjacent metabasins with illustrag,req heat capacity of a nonequilibrium state depends on the
tion of dynamics within and between them. The respectiv,igiory of the preparation of that state. Here we restrict our-

numbers of TLSs that comprise the metabasins\féand  ¢ojves to the case, whereq,= = q. Therefore, we calcu-

(2) i (1) (i = i : .
I\EB . Fpr a coIIectlion. ofNﬁ' (|—1,2_) TLSs, a variable late C(T, tops,q) from the following equation:
(1), (i=1.2.... NY) is defined, which takes on a value 0
if at the given instant of time the level O of the TLS is

K(T)=

E(T+AT,tos,q)—E(T,09)

occupied and 1 if otherwisg}(t) is thus an occupation vari- C(T,tops, @)= lim . @
able. The collective variable®;(t)(i=1,2) are then defined AT—0 AT
as
N which is essentially a form of E¢5) modified to incorporate
B Sep s
_ i the nonequilibrium effects.
Qi(t)‘,zl &0 “) With the total energy of the system at tirhgiven by

Qi(t) is therefore a stochastic variable in the discrete integer
spacd ONY]. Herean a process is assumed to occur only
when all thes processes (TLSs) in a metabasin are simulta-
neously excited, i.e., when; @NY) . There is a finite rate of
transitionk from each of the metabasins when this condition N(Bz)

is satisfied. Within the general framework of the model, the + E Po(n;T,t)n e, (8)
double well becomes asymmetric whe{’#N&), as n=0

shown in Fig. 2.

(1
N

E(T.)=2 Py(mT.H(NP-NP+n) e
0

n=

where the lowest level of the well 2 is taken to have zero
energy andP;(n;T,t) denotes the probability that the sto-
IIl. THEORETICAL TREATMENT chastic variableQ; takes on a valuen in the ith well at
temperaturd and timet, the calculation of the heat capacity
Theoretical analysis of nonequilibrium heat capacity is aC(T,t.,s,q) along the cycle essentially reduces to the evalu-
nontrivial problem and has been addressed in great detail bgtion of P;(n;T,t)’s which satisfy the following master

Brawer*#* Jxkle*® and, in more recent time, by Odagaki equation*®



(9P|(n,T,t) .
— o ~LINP=n+1)/7(M)]Pi(n—1;T.1)
+[(n+1)/m(T)]P;(n+1;T,t)
~[(NE=n)/7o(T)IPi(n;T 1)
~ (/7 (T) Pi(n; T, 1)~k nOPi(NST, 1)
+k5n,Ngf1>5j,itlpj(n;T,t), 9
where the “++” and “—" signs in the indices of the
Kronecker delta are for=1 and 2, respectively.
From a theoretical point of view, the treatment of fre- -2
guency dependent heat capacity can be carried out by em- 0.4 0.6 0.8 1
ploying the linear response assumption. Following Nielsen T/Tm

and Dyrel’ the frequency dependent heat capa€ityw, T)
of our system at temperatufiecan be given by

C(EAT) s [m
C(w,T)—W—@fO dte t(E(T,t)E(T,O)),

(10

FIG. 3. The heat capacity vs reduced temperature plot for the system with
N=6 andN$@=10, when subjected to a cooling—heating cycle with dif-
ferentq values. They values are given in reduced units.

total number of states. Note that here the indices of states

wheres=iw, o being the frequency of the small oscillating d to th tation foll di Th
perturbation,i=\—1, and the angular brackets denote anco'respond to ,e representation loflowed in Etll)-_ €
matrix of Green’s functions satisfies the rate equation

equilibrium ensemble averaging. The evaluation of the en-
ergy autocorrelation function can be accomplished in terms  dGq(t)
of Green’s function as described in the next section. at =A(T)G+(1), (14)

with the initial conditionG(0)=1, wherel is the identity

matrix of orderN. We write G(i ,S|j) as the Laplace trans-
We now briefly describe the details of calculation. Oneform of G+(i,t|j,0):

can have the following compact representation of the set of

IV. DETAILS OF CALCULATION

equations given by Eq9) for all possiblen andi values Go(i,slj) = fwdte*StGT(i t1j,0). (15)
OP(T,H)at=A(T)P(T 1), (11) °

where Py(n:T,t) for n=0,1,... ,N(ﬁl) and P,(n:T,t) for n The frequency dependent heat capacity is then given by

=0,1,... ,N§ together comprise the elements of the column (EX(T)) s

vector P(T,t). We solve numerically by finding the eigen- w,T)= kT2 - kT2

values{\(T)} and the right eigenvectors®, (T)} of the

transition matrix A and then expanding in terms of NN L .
eigenvector® Xi; 121 Gr(i,8[])EiEjPed,T), (16)
P(T,t)=>, ¢, (T)®,(T)expA(T)t). (12  Where the Green’s functions can be obtained by an inversion
X of matrix,
The set of coefficient$c, (T)} at each temperaturE is ob- Gr(s)=(sl—A(T))"L. (17)

tained from the knowledge of the initial probability distribu-
tion atT. In particular,P(Ty,,0) which gives the equilibrium
distribution at the initial poinfT}, of the temperature cycle
can be obtained from the eigenvector corresponding to thé. Temperature dependence of heat capacity

zero eigenvalue oA(Ty). In Fig. 3, we show the heat capacity versus temperature

qu the computf_mon of the frequency dgpendent_ heatr:urve obtained for our model for different cooling—heating
capacity, one can write the energy autocorrelation function as,;.c |5 the present calculation, we have takgg= At

NN Throughout the cycle the transition rates are assumed to be
(E(T,OE(T,0)=2, > Gr(itllj,0EEPeqj,T), (13  tuned with the heat bath temperatufe The curves look

=11=1 quite close to the ones observed in experiméntmte the
where G+(i,t|j,0) is the Green’s function that gives the sharp rise in heat capacity during heatingigure 3 is the
probability to be in the stateat a later timet given that the  result of the model calculation whemd$”=6 and N
system is in the statp at timet’ =0, the temperature being =10. In the present section, temperatldrés expressed in
kept constant at temperatufe P¢((j,T) is the equilibrium  reduced units ofl/T,, with T,,, the melting temperature,
probability of the statg at T, andN=N{+N{’+2 is the  taken to be unity. We have safT = 0.002 in reduced units.

V. RESULTS AND DISCUSSIONS
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FIG. 4. The dependence of the glass transition temperalyren the

cooling—heating rate is shown in a plot of the logarithm of vs the |G, 5. Plot of the fictive temperatuf®; vs the heat bath temperatuFein
reciprocal of the reducedl, . The slope of the linear fit to the data equals reduced units for different cooling rates. The cooling rates are given in

—8.284 in appropriate temperature units. reduced units. The dot-dashed line tracesTthe T line. The inset shows the
dependence of the limiting fictive temperatt]’rbobtained upon cooling on
the rate_ of cooling. The slc_)pe of the linear fit to the data—i8.488 in
The correspondence to real units is discussed later. We haf&ProPriate temperature units.
also takene=2kgT, ande} =18 kgT,,, the latter being the
energy barrier to the transﬂion from the level 1 in a TLS. TheC. Origin of the overshoot of heat capacity
choice of s_uch a value foufl ensures.tha_t the overshoot of 44 the effect of heterogeneity
heat capacity in the heating scan, which is often used to mark o _
the g|ass transition, occurs at a temperature arounm The Or|g|n of the observed behavior of the calculated
evident in Fig. 3Note that the glass transition temperature heat capacity can be traced back to the evolution of the en-
T, is indeed found to be around two-thirds of, > we ~ €rgy during a cooling—heating cycle, as shown in Fig. 6. The
express time also in reduced units, being scaledtl§¥,).  fictive temperature evolves in an identical fashion as energy.
The cycle starts with the equilibrium population distribution Note that the energy or the fictive temperature remains prac-
atT,,. The inter-well transition rates are equal and indepenfically unchanged during the initial period of heating before
dent of temperature. We have takkn'=0.50 in reduced it undergoes a fall which is followed by a sharp increase. The
time units. The hysteresis in ti@versusT plot, and also the réason is as follows. The presence of an energy barrier for all
overshoot of the heat capacity observed during heating, bdhe intra-well transitions results in a slow down of the el-
come progressively weaker as the cooling—heating rate d@me.ntary relaxation rates as the system is s.ubjected to rqte
creases, and eventually vanish for sufficiently slow ratescooling. The system eventually gets trapped into a nonequi-

This is again in agreement with the long known experimentaliPrium glassy state on continued cooling. As one subse-
results. quently starts heating, the rates of elementary relaxation keep

B. Scan rate dependencies of T, and Tk 25 T .

We have further investigated the cooling—heating tate
dependence of; for our model. The latter has been taken as
the temperature of onset of the heat capacity increase as ob-
served during heating. The logversus 1T 4 plot, as shown
in the Fig. 4, is linear with a negative slope, accordance
with the experimental observatianEhe slope gives a mea-
sure of the energy of activation for the relaxation being in
operation.

Figure 5 shows a fictive temperatufe versus heat bath
temperaturel plot for different cooling rates, wher€&; is
calculated in terms of energy. The freezing of structural re- 1
laxation within the experimental time scale at low tempera- 04 0.6 0.8 1
tures is evident from the attainment of a limiting fictive tem- T/T,
peratureTt . In the inset of Fig. 5, we show the plot of the
cooling rateq in the logarithmic scale versus the reciprocal FIG. 6. The evolution of the energy of the system during a cooling—heating

of the limiting fictive temperaturd@” obtained on cooling. Y¢!e WithN;’=6, Ni=10, andg=8.0x 10°% in reduced units. The inset
9 P f g shows thedT;/dT vs reduced temperature plot for the system when sub-

The linearity of the_ plot with a_negative slope is again injected to a cooling—heating cycles. The solid line isder8.0x 10°%, and
good agreement with the experimental results. the dot-dashed line is fay=2.0x 10", both in reduced units.

[
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increasing. At first, there can be no change in the observ- 8
ablds), because relaxation is still frozen within the experi-
mental time scale. Once the heat bath temperature is high
enough, what happens @sdelayed (that is, overdue) energy
relaxation This explanation further gains support from the
fact that the calculated heat capacity is negatfv®ne
should not consider this as a paradox, since the system is not
in equilibrium Such an evolution of the fictive temperature
(or equivalently, the energyduring a cooling—heating cycle
gives rise to the kind ofi T;/dT versusT behavior as dis-
played in the inset of Fig. 6 for two different cooling—
heating rates. This is also in accord with the experimental
observation.

Note that the observefall in heat capacity prior to the 0.4 0‘6 0|8 1
overshoot in the heating scan is somewlaager than what ’ ) T/T )
is found in real experiments. Such a large apparently un- m
physical dip has been observed in earlier theoretical studiesg. 7. The heat capacity behavior in a temperature cycle for a heteroge-
as well*® This kind of sharp dip is in fact known to happen neous system. Herg=2.0x 105 in reduced units. The thick solid line
in the heating scan for cases where the relaxation proceggpicts the average behavior while the other lines as indicated in the legend

being unfrozen is exponenti%ﬂ This could be the case here correspond to different values of the barrier heigfit The horizontal
' dashed line is an indicator of the zero energy. The averaging is done for

alsg becayse_ the ?XiStence of spatially heterogeneous dgistrative purpose with arbitrary weights, the maximum weight being on
mains, which is believed to underlie the stretched exponente middle value and the weight gradually decreasing on both sides. The

tial relaxation in supercooled |iquid_’§,—53 has not been con- chosen \(alues of! roughly correspond to a distribution of relaxation times
sidered in the present calculations. There could also be oth&fth & width on the order of two decades.
reasons for this limitation: First, th@ processestwo-level

systems in the perspective of our modafe unlikely to be  gogteq that the two time scales are comparable. Heterogene-
fully noninteracting. Second, the relaxation within the two- ity, however, must have a finite lifetime since exchange must

level systems may itself be non-Markovian. That is, the deycoyr petween domains exhibiting different dynamics to

layed energy relaxation can get further delayed and can ovefaintain the ergodicity of supercooled liquids. Nevertheless,
lap with the sub_sequent overshoot of the heat capacity. Eq. (18) is expected to provide a reasonable approximation
In the following, we explore the effect of heterogeneity. ¢, having at least a qualitative idea of the effect of hetero-

The heat capacity of the whole system can be written as goneity particularly the issue of the lifetime of dynamic het-
weighted average of the heat capacities of such heterog%’rogeneity being not resolved as Jet.

neous domains:

C(Tt, q) /K,

D. Effect of number of TLSs in metabasins

C= EI wiCi, (18) In Fig. 8, we show an additional feature observed for the
heat capacity behavior during a temperature cycle while ex-

whereC; is the heat capacity of the domains of ftike kind
andw; is the corresponding weight. Since each of these do-
mains relaxes with its own distinct relaxation time, the heat
capacity of the system should look quite different from the
one presented in Fig. 3. We illustrate this difference in Fig. 7.
The heterogeneous dynamics in different domains can be in-
cluded either through a distribution ef(the separation be-
tween the energy levels within a TL8r through a distribu-
tion of barrier height for transition from one level to the
other within a TLS. Figure 7 shows the heat capacity behav-
ior in a temperature cycle for different values of the barrier
heights along with the average behavior. The important point
here is that the domains with smaller barrier heights unfreeze
and subsequently undergo the sharp rise in heat capacity ear-

C(Tyt,.q9) /K,

-1

lier, which interferegdestructively with the later drop inC 04 0.6 08 1
for domains with larger barrier heights. This could partly '10‘4 0.6 08 1
wipe out the comparatively large decrease in heat capacity as T/T,

observed in Fig. 3. Before we conclude this sub-section, one _ _
should note that qug) holds true 0n|y when the lifetime of FIG. 8. The heat capacity vs reduced temperature plot for the system with
. . . N=3 andN®=5, when subjected to a cooling—heating cycle with
heterogeneityr., is much longer tham,, the time scale of B B ) .
- ex &t @ =2x10"° in reduced units. The inset shows the same plot der2
relaxation. Ediger and co-workefshave indeed reporteth,  x107* in reduced units. The axis labels for the inset, being the same as

in far excess ofr,, although Schieneet al®® have sug- those of the main one, are not shown.



0.95 Ks 1. One should note that these rates are of the same
order of magnitude as practised in time domain calorimetric
experiments

VI. CONCLUSION

Let us first summarize the main features of the present
work. We have presented a kinetic model that employs the
concept ofB organizeda process In spite of the simplicity
of the present model, it could reproduce many of the experi-
mentally observed features of the anomalous behavior of
heat capacity during a temperature cycle through the glass
transition. The overshoot of the heat capacity during the
heating scan that marks the glass transition is found to be
caused by a delayed energy relaxation. The initial dip in the
FIG. 9. Frequency dependence of the negative imaginary part of heat caalue of the heat capacity during the heating scan is observed
pacity, —C"(w,T), for our model system witiN{})=6 andN$’=10, ata  to be affected by the inhomogeneity of the system. The
given temperaturé’=0i81',m. In the inset, the real part of the frequency model also captures the basic features of the frequency de-
?ependent_heat capacity, (u_),T), is shown for the same temperature. The pendent heat capacity of supercooled liquids as observed ex-
requency is scaled by the inverse of T,,). .

perimentally.
The well-known bimodal frequency dependence of the

ploring the effect of number of TLSs in metabasins. When adle|€CtI’IC relaxation in supercooled liquids can be at least

different set of parameters is chosen such thatdhelax- qualitatively understood from the present descriptiongof

ation becomes more probable within the observation time, %nd a processes. We essentially follow the description of

weak second peak appears at high temperatures in the he fs_tuntzen and Zwanzfy in assuming that a%_process_cap _be
) . ) . aken to correspond to a two-site angular jump of individual
ing scan. We ascribe this second peakvteelaxation whose . -
: molecules by a small angle around some axis. These indi-
effect on the temperature dependence of heat capacity gets . .
vjdual, uncorrelated angular jumps lead to a partial relax-
felt for the chosen set of parameters. However, there has not. )
. . ation of the total electric momem (t) of the whole system
been any report in the literature, to the best of our knowl-

edge, of such an observation made experimentally. For fastéPOte thatM(t) is the sum of the dipole moment of the

. : . individual molecule$ The dielectric susceptibility spectrum
rates, the second peak vanishes as evident from the inset 0 . : : :
. - can be obtained from the auto-time correlation function of
Fig. 8, thus substantiating the above argument.

M(t) by using the linear response thedhSinceM(t) is a
sum of a relatively large number of individual dipole mo-
E. Frequency dependent heat capacity ments, the former is a Gaussian Markov process and thus the

) ) time correlation function of the8 relaxation mediated part
We have also investigated the frequency dependence st decay exponentially. As noted earlier, thiselaxation

heat capacity as predicted by the present model. Figure f\eiated decay is incomplete because all the jumps are small
shows the frequency dependence of the negative imaginaty,q restricted. Thus, it is fair to assume the following form

part of heat capacity; C"(w,T), for our model system ata ¢, the auto-time correlation function o (t):
given temperaturd. In the inset, the real part of the fre-

quency dependent heat capac®y(w,T) is shown for the Cu(t)=(Mz)exp(—t/75)

same temperatur@he spectra look similar to the ones ob- 2 2

served experimentally for supercooled liquidghe broad +(<M°>_<Mﬁ>)exq_t/7‘*)’ (19

peak in—C"(w,T) is corresponding to a characteristic re- wherer; andr, are the time scales @8 and « relaxations,

laxation time and the peak frequency shifts to lower valuesespectively. In the above equatidMé) is the value by

with temperature going down as expected from the slowwhich the mean-square total dipole moment decays dye to

down of the relaxation. relaxation alone from the initial value ¢M?). The rest of

the decay(i.e., from(MZ)—(M%)) to zero occurs via ther

process. Therefore, one can easily see the occurrence of the

two time scales in the total relaxation process. However, the
The results presented in this work are all in reducedcalculation of{ M%) would require more detailed model than

units. In order to make connection with the real world, wethe one attempted here. On the other hafid?) can be

now present reasonable estimates of some of the paramete@¥tained from the value of static dielectric constant.

For T,,=300 K, the temperature window we have looked  While one can easily show that

into lies between 300 and 120 K. Further, fdr=18 kgT,, o

and 7,=10 % s, the latter being the inverse of the attempt Tg= S , (20

frequency, with an Arrhenius approximation to the tempera- Tot Ty

ture dependence of the elementary rate constants, the coolitige estimation ofr, is much more difficult. However, a

and heating rates explored here range from 0.009 terude estimate of the latter can be obtained in the following

-5 -3 -1 1
ot (T)

F. Connection with experimental systems
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