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The heat capacity of a supercooled liquid subjected to a temperature cycle through its glass
transition is studied within a kinetic model. In this model, theb process is assumed to be thermally
activated and described by a two-level system. Thea process is described as ab relaxation mediated
cooperative transition in a double well. The overshoot of the heat capacity during the heating scan
is well reproduced and is shown to be directly related to delayed energy relaxation in the double
well. In addition, the calculated scan rate dependencies of the glass transition temperatureTg and the
limiting fictive temperatureTf

L show qualitative agreement with the known results. Heterogeneity is
found tosignificantly reducethe overshoot of heat capacity. Furthermore, the frequency dependent
heat capacity has been calculated within the present framework and found to be rather similar to the
experimentally observed behavior of supercooled liquids.
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I. INTRODUCTION

A liquid on passage through its supercooled regime
the glass displays a spectrum of thermodynamic and kin
anomalies.1–4 Of them, the sharp rise in the measured h
capacity5 during the heating scan of a temperature cy
through the glass transition has remained an interesting p
lem to study. The overshoot is often taken as a signature
glass to liquid transition.6 The main objective of the presen
work is to reproduce the overshoot of the heat capa
within a kinetic model of glassy dynamics.

Time domain calorimetric experiments through the gla
transformation range routinely encounter with nonequil
rium state of the sample. It is a common practice to char
terize this nonequilibrium state by the fictive temperatu
Tf . As defined by Tool and Eichlin,7 Tf is the temperature a
which the nonequilibrium value of a macroscopic prope
~e.g., enthalpy! would equal the equilibrium one. If cooling
is continued through the supercooled regime, the struct
relaxation eventually becomes too slow to be detected on
experimental time scale, resulting in a limiting fictive tem
peratureTf

L . Understandably,Tf
L shows a dependence on th

cooling rate as a slower cooling rate provides a liquid wit
longer time for configurational sampling at each temperatu
The calorimetric glass transition temperatureTg is, however,
found to depend on both the cooling rate2qc and the heat-
ing rateqh . A shift to higher values is observed for fast
rates.5 As shown elegantly by Moynihanet al.,5 if the rates
of cooling and heating are taken to be the same, tha
2qc5qh5q, the dependence ofTg on q, is given by

d ln q

d~1/Tg!
52Dh* /R, ~1!

whereDh* can be interpreted as the activation enthalpy

a!Author to whom correspondence should be addressed. Electronic
bbagchi@sscu.iisc.ernet.in
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the structural relaxation in operation andR is the universal
gas constant. As pointed out by Moynihanet al., it is impor-
tant for the validity of the above relationship that the ma
rial be cooled and then reheatednot only at the same rate bu
the cycle be extended well beyond the glass transforma
range on either side. Tf

L is also known to have an identica
dependence onqc ,8 which has recently been reproduced
model glassy systems.9

Specific heat spectroscopy,10,11 on the other hand, brings
off frequency domain calorimetric measurements. As emp
sized in Ref. 10, these measurements are performed w
very slow cooling rate so that the sample is in equilibrium
each temperature. What one looks here is the frequency
pendent specific heat that is essentially a linear susceptib
describing the response of the sample to arbitrary small
turbations away from equilibrium. The imaginary part of th
complex frequency dependent specific heat, as measure
perimentally in the supercooled regime, shows a broad p
and differs from its dielectric analog in having contributio
of all the degrees of freedom of the system.10 A number of
theoretical approaches exist in the literature elucidating
measurable in specific heat spectroscopy.12–17

The glassy dynamics has often been considered to b
manifestation of an underlying thermodynam
transition.18–20 The celebrated Adam–Gibbs~AG! theory21

that invokes the concept of the cooperatively rearranging
gion ~CRR! attempts to provide a connection between th
modynamics and kinetics. A different framework is provid
by the so called landscape paradigm.22–30The landscape pic-
ture consists of a connected network of potential ene
minima, each minimum being surrounded by its own bas
This approach involves the division of the multidimension
configuration space into metabasins on the basis of a tra
tion free-energy criterion.26 This can entail two vastly differ-
ent time scales, the smaller one due to motionswithin the
metabasins and the longer one due to exchangebetweenthe
il:

http://dx.doi.org/10.1063/1.1752886
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metabasins involving much larger free-energy of activati
In particular, theb processes are visualized to originate fro
activated dynamics within a metabasin, while escape from
one metabasin to anotheris taken to describe ana process.27

See Fig. 1 for a schematic representation ofb and a pro-
cesses. There have been several approaches along this l
recent times to model relaxation in supercooled liquids.31,32

It is worth noting here that the breakdown of the mod
coupling theory~MCT!33–35 is ascribed to the dominance o
relaxation by these thermally activated, large amplitude h
pings, which are unaccounted for in MCT. Recent compu
simulation studies have further revealed that hopping i
highly cooperative phenomenon36–38 promoted by many
body fluctuations; large amplitude hopping of a tagged p
ticle is often preceded by somewhat larger than normal,
still small amplitude motion of several of its neighbors.Mo-
tivation of the present work largely comes from this set
findings.

In the present work, we consider a simple model of
laxation in supercooled liquids. It is a kinetic approach th
attempts to combine the activated hopping in the ene
landscape and the cooperative nature of the hopping ev
The b process is assumed to be a thermally activated e
within a two-level system~TLS!. The model assumes that a
a process can occur only when a minimum number ofb
processes are simultaneously activated. Such a treatmen
voking the concept ofb organizeda processdoes not seem
to have been discussed previously. The present treatm
however, is consistent with an earlier view that a collect
of b excitations is a precursor of thea relaxation.39

The present model can be taken to belong to the clas
kinetically constrained models40 that attempts to mode
glassy dynamics by imposing dynamical constraints on
allowed transitions between different configurations of
system, while maintaining the detailed balance. In particu
our model resembles the facilitated kinetic Ising mod
~FKIMs!,41 originally due to Fredrickson and Andersen,
the spirit that brings in cooperativity. The key feature of th
models is that a highly compressible region in the fluid c
relax only if there is/are region~s! of high compressibility in
the neighborhood to facilitate the relaxation. While the c
operative units~TLSs! in the present model are noninterac
ing, in contrast to the interacting ones in the FKIMs, t

FIG. 1. A schematic representation of the potential energy landscape s
ing motions within and between metabasins.
.

e in

-

-
r
a

r-
ut

f

-
t
y
nt.
nt

in-

nt,
n

of

e
e
r,
s

r
n

-

present model explicitly introduces the concept ofb orga-
nizeda process within the landscape paradigm.

It is worthwhile to relateb anda processes to real phys
cal processes occurring in glass-formers. Thea process may
correspond to large-scale hopping of a particle. However,
this hopping to occur many small reorientation
rearrangements/displacements are needed among its n
bors. The activated dynamicswithin a TLS may well repre-
sent small rotations.13 In the case of polymer melts whic
exhibit glassy behavior, theb relaxation may be the motion
of side chains. This picture apparently differs from the o
drawn by Dyre while discussing solidity of viscous liquids.42

Dyre has argued that large-angle rotations are ‘‘causes’’
small-angle rotations are ‘‘effects.’’ The present picture co
tains the Dyre’s one in the sense that small-angle rotati
indeed occur following a large-scale jump motion for t
completion of relaxation as evident in Fig. 2. The pres
model is built on a rather symmetrical picture that also n
cessitates small-angle rotations for a large-angle rotatio
occur.

Analysis of the heat capacity during a cooling–heati
cycle that extends well beyond the glass transformat
range on either side shows that the present model can re
duce the overshoot of the heat capacity in the heating s
In addition, the scan rate dependence of the glass trans
temperatureTg and that of the limiting fictive temperatureTf

L

are in qualitative agreement with the known results. Ho
ever, a somewhat larger fall in the heat capacity prior to
overshoot than what is observed experimentally in m
cases is notable. This we ascribe either to the lack of spa
heterogeneity or to the neglect of memory effects in
present treatment. The model also captures the basic fea
of frequency dependence of heat capacity.

The paper is organized as follows: Section II contain
detailed description of the model. Section III provides t
theoretical treatment which is followed by the details of c
culation in Sec. IV. The results are presented with discuss
in Sec. V. Section VI concludes with a summary of the
sults and a critical view on the model.

w-
FIG. 2. A schematic representation of the model under consideration.
horizontal lines within a well represent different excitation levels. Note t
the energy levels are in general degenerate, as they correspond to the s
the energies of individual TLSs in the collection.
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II. MODEL

As mentioned, we model ab process as an activate
event in a two-level system~TLS!. We label the ground leve
of a TLS as 0 and the excited level as 1. The waiting ti
before a transition can occur from the leveli (50,1) is as-
sumed to be random. The waiting time is given by the Po
sonian probability density function:

c i~ t !5
1

t i
exp~2t/t i !, i 50,1, ~2!

wheret i is the average time of stay at the leveli . If pi(T)
denotes the canonical equilibrium probability of the leveli of
a TLS being occupied at temperatureT, detailed balance
gives the following relation

K~T!5
p1~T!

p0~T!
5

t1~T!

t0~T!
5exp@2e/~kBT!#, ~3!

where K(T) is the equilibrium constant atT for the two
levels which have an energy separatione, andkB is the Bolt-
zmann constant. The level 0 is taken to have a zero ene

Within the framework of this model, a metabasin is ch
acterized by anNb number of such non-interacting two-lev
systems~TLSs!. A given minimum number among the tota
numberNb of TLSs must simultaneously be in the excite
levels for the occurrence of ana process, which then hap
pens with a finite ratek. With this definition of a and b
processes, the heat capacity is sensitive to both the proce
A consideration of two adjacent metabasins can entail
same within the present framework. We, therefore, conc
trate here on two adjacent metabasins, which we label
and 2 and together call it a double well. Figure 2 show
schematic diagram of two adjacent metabasins with illus
tion of dynamics within and between them. The respect
numbers of TLSs that comprise the metabasins areNb

(1) and
Nb

(2) . For a collection ofNb
( i ) ( i 51,2) TLSs, a variable

z j
i (t), ( j 51,2,. . . ,Nb

( i )) is defined, which takes on a value
if at the given instant of timet the level 0 of the TLSj is
occupied and 1 if otherwise.z j

i (t) is thus an occupation vari
able. The collective variablesQi(t)( i 51,2) are then defined
as

Qi~ t !5(
j 51

Nb
i

z j
i ~ t !. ~4!

Qi(t) is therefore a stochastic variable in the discrete inte
space@0,Nb

( i )#. Herean a process is assumed to occur on
when all theb processes (TLSs) in a metabasin are simu
neously excited, i.e., when Qi5Nb

( i ) . There is a finite rate of
transitionk from each of the metabasins when this conditi
is satisfied. Within the general framework of the model,
double well becomes asymmetric whenNb

(1)ÞNb
(2) , as

shown in Fig. 2.

III. THEORETICAL TREATMENT

Theoretical analysis of nonequilibrium heat capacity i
nontrivial problem and has been addressed in great deta
Brawer,43,44 Jäckle,45 and, in more recent time, by Odaga
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and co-workers.46,47 The two widely used expressions o
equilibrium heat capacity at constant volume are given b

Cv~T!5S ]E~T!

]T D
v

~5!

and

Cv~T!5
^~DE~T!!2&

kBT2 , ~6!

where^(DE(T))2& is the mean square energy fluctuation
temperatureT. As is well known, these two are equal
equilibrium. However, they need not be equal in a noneq
librium system.

The system, when subjected to cooling or heating a
constant rate, can be envisaged to undergo a series of in
taneous temperature changes, each in discrete step of m
tude uDTu in the limit DT→0, at time interval of lengthDt,
whenceqi5DT/Dt ( i 5c,h).5 A pictorial representation of
the temperature control during a cooling process with fin
DT was given by Ja¨ckle.45 If we consider a time interval a
the beginning of which the temperature has been chan
from T to T85T1DT, the waiting timetobs before an ob-
servation is restricted byDt. The heat capacityC, measured
at a timetobs subsequent to a temperature change fromT to
T85T1DT, is not stationary in time unlesstobs is long
enough for the equilibrium to be established. The measu
heat capacity, and also the energy, then become a functio
the rate of cooling–heating as well, apart fromT and tobs.
The dependence ofC on qc and/orqh implies that the mea-
sured heat capacity of a nonequilibrium state depends on
history of the preparation of that state. Here we restrict o
selves to the case, where2qc5qh5q. Therefore, we calcu-
late C(T,tobs,q) from the following equation:

C~T,tobs,q!5 lim
DT→0

E~T1DT,tobs,q!2E~T,0,q!

DT
, ~7!

which is essentially a form of Eq.~5! modified to incorporate
the nonequilibrium effects.

With the total energy of the system at timet given by

E~T,t !5 (
n50

Nb
(1)

P1~n;T,t !~Nb
(2)2Nb

(1)1n! e

1 (
n50

Nb
(2)

P2~n;T,t !n e, ~8!

where the lowest level of the well 2 is taken to have ze
energy andPi(n;T,t) denotes the probability that the sto
chastic variableQi takes on a valuen in the i th well at
temperatureT and timet, the calculation of the heat capacit
C(T,tobs,q) along the cycle essentially reduces to the eva
ation of Pi(n;T,t)’s which satisfy the following maste
equation:48
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]Pi~n;T,t !

]t
5@~Nb

( i )2n11!/t0~T!#Pi~n21;T,t !

1@~n11!/t1~T!#Pi~n11;T,t !

2@~Nb
( i )2n!/t0~T!#Pi~n;T,t !

2~n/t1~T!!Pi~n;T,t !2kdn,N
b
( i )Pi~n;T,t !

1kdn,N
b
( i 61)d j ,i 61Pj~n;T,t !, ~9!

where the ‘‘1’’ and ‘‘ 2’’ signs in the indices of the
Kronecker delta are fori 51 and 2, respectively.

From a theoretical point of view, the treatment of fr
quency dependent heat capacity can be carried out by
ploying the linear response assumption. Following Niels
and Dyre,17 the frequency dependent heat capacityC(v,T)
of our system at temperatureT can be given by

C~v,T!5
^E2~T!&

kBT2 2
s

kBT2 E
0

`

dte2st^E~T,t !E~T,0!&,

~10!

wheres5 iv, v being the frequency of the small oscillatin
perturbation,i 5A21, and the angular brackets denote
equilibrium ensemble averaging. The evaluation of the
ergy autocorrelation function can be accomplished in te
of Green’s function as described in the next section.

IV. DETAILS OF CALCULATION

We now briefly describe the details of calculation. O
can have the following compact representation of the se
equations given by Eq.~9! for all possiblen and i values

]P~T,t !]t5A~T!P~T,t !, ~11!

whereP1(n;T,t) for n50,1,. . . ,Nb
(1) and P2(n;T,t) for n

50,1,. . . ,Nb
(2) together comprise the elements of the colum

vector P(T,t). We solve numerically by finding the eigen
values $l(T)% and the right eigenvectors$Fl(T)% of the
transition matrix A and then expanding in terms o
eigenvectors48

P~T,t !5(
l

cl~T!Fl~T!exp~l~T!t !. ~12!

The set of coefficients$cl(T)% at each temperatureT is ob-
tained from the knowledge of the initial probability distribu
tion atT. In particular,P(Th ,0) which gives the equilibrium
distribution at the initial pointTh of the temperature cycle
can be obtained from the eigenvector corresponding to
zero eigenvalue ofA(Th).

For the computation of the frequency dependent h
capacity, one can write the energy autocorrelation function

^E~T,t !E~T,0!&5(
i 51

N

(
j 51

N

GT~ i ,tu j ,0!EiEj Peq~ j ,T!, ~13!

where GT( i ,tu j ,0) is the Green’s function that gives th
probability to be in the statei at a later timet given that the
system is in the statej at time t850, the temperature bein
kept constant at temperatureT, Peq( j ,T) is the equilibrium
probability of the statej at T, andN5Nb

(1)1Nb
(2)12 is the
m-
n

-
s

of

e

at
s

total number of states. Note that here the indices of sta
correspond to the representation followed in Eq.~11!. The
matrix of Green’s functions satisfies the rate equation

dGT~ t !

dt
5A~T!GT~ t !, ~14!

with the initial conditionGT(0)5I , whereI is the identity
matrix of orderN. We write ĜT( i ,su j ) as the Laplace trans
form of GT( i ,tu j ,0):

ĜT~ i ,su j !5E
0

`

dte2stGT~ i ,tu j ,0!. ~15!

The frequency dependent heat capacity is then given by

C~v,T!5
^E2~T!&

kBT2 2
s

kBT2

3(
i 51

N

(
j 51

N

ĜT~ i ,su j !EiEj Peq~ j ,T!, ~16!

where the Green’s functions can be obtained by an invers
of matrix,

ĜT~s!5~sI2A~T!!21. ~17!

V. RESULTS AND DISCUSSIONS

A. Temperature dependence of heat capacity

In Fig. 3, we show the heat capacity versus tempera
curve obtained for our model for different cooling–heati
rates. In the present calculation, we have takentobs5Dt.
Throughout the cycle the transition rates are assumed to
tuned with the heat bath temperatureT. The curves look
quite close to the ones observed in experiments.5 Note the
sharp rise in heat capacity during heating. Figure 3 is the
result of the model calculation whereNb

(1)56 and Nb
(2)

510. In the present section, temperatureT is expressed in
reduced units ofT/Tm with Tm , the melting temperature
taken to be unity. We have setDT560.002 in reduced units

FIG. 3. The heat capacity vs reduced temperature plot for the system
Nb

(1)56 andNb
(2)510, when subjected to a cooling–heating cycle with d

ferentq values. Theq values are given in reduced units.
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The correspondence to real units is discussed later. We
also takene52 kBTm ande1

‡518 kBTm , the latter being the
energy barrier to the transition from the level 1 in a TLS. T
choice of such a value fore1

‡ ensures that the overshoot
heat capacity in the heating scan, which is often used to m
the glass transition, occurs at a temperature around 2/3Tm as
evident in Fig. 3.Note that the glass transition temperatu
Tg is indeed found to be around two-thirds of Tm .1,3 We
express time also in reduced units, being scaled byt1(Tm).
The cycle starts with the equilibrium population distributio
at Tm . The inter-well transition rates are equal and indep
dent of temperature. We have takenk2150.50 in reduced
time units. The hysteresis in theC versusT plot, and also the
overshoot of the heat capacity observed during heating,
come progressively weaker as the cooling–heating rate
creases, and eventually vanish for sufficiently slow ra
This is again in agreement with the long known experimen
results.

B. Scan rate dependencies of Tg and Tf
L

We have further investigated the cooling–heating ratq
dependence ofTg for our model. The latter has been taken
the temperature of onset of the heat capacity increase as
served during heating. The logq versus 1/Tg plot, as shown
in the Fig. 4, is linear with a negative slope,in accordance
with the experimental observations. The slope gives a mea
sure of the energy of activation for the relaxation being
operation.

Figure 5 shows a fictive temperatureTf versus heat bath
temperatureT plot for different cooling rates, whereTf is
calculated in terms of energy. The freezing of structural
laxation within the experimental time scale at low tempe
tures is evident from the attainment of a limiting fictive tem
peratureTf

L . In the inset of Fig. 5, we show the plot of th
cooling rateq in the logarithmic scale versus the reciproc
of the limiting fictive temperatureTf

L obtained on cooling.
The linearity of the plot with a negative slope is again
good agreement with the experimental results.

FIG. 4. The dependence of the glass transition temperatureTg on the
cooling–heating rateq is shown in a plot of the logarithm ofq vs the
reciprocal of the reducedTg . The slope of the linear fit to the data equa
28.284 in appropriate temperature units.
ve
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e-
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C. Origin of the overshoot of heat capacity
and the effect of heterogeneity

The origin of the observed behavior of the calculat
heat capacity can be traced back to the evolution of the
ergy during a cooling–heating cycle, as shown in Fig. 6. T
fictive temperature evolves in an identical fashion as ene
Note that the energy or the fictive temperature remains p
tically unchanged during the initial period of heating befo
it undergoes a fall which is followed by a sharp increase. T
reason is as follows. The presence of an energy barrier fo
the intra-well transitions results in a slow down of the e
ementary relaxation rates as the system is subjected to
cooling. The system eventually gets trapped into a none
librium glassy state on continued cooling. As one sub
quently starts heating, the rates of elementary relaxation k

FIG. 5. Plot of the fictive temperatureTf vs the heat bath temperatureT in
reduced units for different cooling rates. The cooling rates are given
reduced units. The dot-dashed line traces theTf5T line. The inset shows the
dependence of the limiting fictive temperatureTf

L obtained upon cooling on
the rate of cooling. The slope of the linear fit to the data is28.488 in
appropriate temperature units.

FIG. 6. The evolution of the energy of the system during a cooling–hea
cycle withNb

(1)56, Nb
(2)510, andq58.031025 in reduced units. The inse

shows thedTf /dT vs reduced temperature plot for the system when s
jected to a cooling–heating cycles. The solid line is forq58.031025, and
the dot-dashed line is forq52.031026, both in reduced units.
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increasing. At first, there can be no change in the obs
able~s!, because relaxation is still frozen within the expe
mental time scale. Once the heat bath temperature is
enough, what happens isa delayed (that is, overdue) energ
relaxation. This explanation further gains support from th
fact that the calculated heat capacity is negative.46 One
should not consider this as a paradox, since the system is
in equilibrium. Such an evolution of the fictive temperatu
~or equivalently, the energy! during a cooling–heating cycle
gives rise to the kind ofdTf /dT versusT behavior as dis-
played in the inset of Fig. 6 for two different cooling
heating rates. This is also in accord with the experimen
observation.

Note that the observedfall in heat capacity prior to the
overshoot in the heating scan is somewhatlarger than what
is found in real experiments. Such a large apparently
physical dip has been observed in earlier theoretical stu
as well.49 This kind of sharp dip is in fact known to happe
in the heating scan for cases where the relaxation pro
being unfrozen is exponential.50 This could be the case her
also because the existence of spatially heterogeneous
mains, which is believed to underlie the stretched expon
tial relaxation in supercooled liquids,51–53 has not been con
sidered in the present calculations. There could also be o
reasons for this limitation: First, theb processes~two-level
systems in the perspective of our model! are unlikely to be
fully noninteracting. Second, the relaxation within the tw
level systems may itself be non-Markovian. That is, the
layed energy relaxation can get further delayed and can o
lap with the subsequent overshoot of the heat capacity.

In the following, we explore the effect of heterogenei
The heat capacity of the whole system can be written a
weighted average of the heat capacities of such heter
neous domains:

C5(
i

wiCi , ~18!

whereCi is the heat capacity of the domains of thei th kind
andwi is the corresponding weight. Since each of these
mains relaxes with its own distinct relaxation time, the h
capacity of the system should look quite different from t
one presented in Fig. 3. We illustrate this difference in Fig
The heterogeneous dynamics in different domains can be
cluded either through a distribution ofe ~the separation be
tween the energy levels within a TLS! or through a distribu-
tion of barrier height for transition from one level to th
other within a TLS. Figure 7 shows the heat capacity beh
ior in a temperature cycle for different values of the barr
heights along with the average behavior. The important p
here is that the domains with smaller barrier heights unfre
and subsequently undergo the sharp rise in heat capacity
lier, which interferes~destructively! with the later drop inC
for domains with larger barrier heights. This could par
wipe out the comparatively large decrease in heat capacit
observed in Fig. 3. Before we conclude this sub-section,
should note that Eq.~18! holds true only when the lifetime o
heterogeneitytex is much longer thanta , the time scale ofa
relaxation. Ediger and co-workers54 have indeed reportedtex

in far excess ofta , although Schieneret al.55 have sug-
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gested that the two time scales are comparable. Heterog
ity, however, must have a finite lifetime since exchange m
occur between domains exhibiting different dynamics
maintain the ergodicity of supercooled liquids. Neverthele
Eq. ~18! is expected to provide a reasonable approximat
for having at least a qualitative idea of the effect of hete
geneity, particularly the issue of the lifetime of dynamic he
erogeneity being not resolved as yet.51

D. Effect of number of TLSs in metabasins

In Fig. 8, we show an additional feature observed for
heat capacity behavior during a temperature cycle while

FIG. 7. The heat capacity behavior in a temperature cycle for a heter
neous system. Hereq52.031025 in reduced units. The thick solid line
depicts the average behavior while the other lines as indicated in the le
correspond to different values of the barrier heighte1

‡ . The horizontal
dashed line is an indicator of the zero energy. The averaging is done
illustrative purpose with arbitrary weights, the maximum weight being
the middle value and the weight gradually decreasing on both sides.
chosen values ofe1

‡ roughly correspond to a distribution of relaxation time
with a width on the order of two decades.

FIG. 8. The heat capacity vs reduced temperature plot for the system
Nb

(1)53 and Nb
(2)55, when subjected to a cooling–heating cycle withq

5231026 in reduced units. The inset shows the same plot forq52
31024 in reduced units. The axis labels for the inset, being the same
those of the main one, are not shown.
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ploring the effect of number of TLSs in metabasins. Whe
different set of parameters is chosen such that thea relax-
ation becomes more probable within the observation tim
weak second peak appears at high temperatures in the
ing scan. We ascribe this second peak toa relaxation whose
effect on the temperature dependence of heat capacity
felt for the chosen set of parameters. However, there has
been any report in the literature, to the best of our kno
edge, of such an observation made experimentally. For fa
rates, the second peak vanishes as evident from the ins
Fig. 8, thus substantiating the above argument.

E. Frequency dependent heat capacity

We have also investigated the frequency dependenc
heat capacity as predicted by the present model. Figu
shows the frequency dependence of the negative imagi
part of heat capacity,2C9(v,T), for our model system at a
given temperatureT. In the inset, the real part of the fre
quency dependent heat capacityC8(v,T) is shown for the
same temperature.The spectra look similar to the ones o
served experimentally for supercooled liquids. The broad
peak in2C9(v,T) is corresponding to a characteristic r
laxation time and the peak frequency shifts to lower valu
with temperature going down as expected from the s
down of the relaxation.

F. Connection with experimental systems

The results presented in this work are all in reduc
units. In order to make connection with the real world, w
now present reasonable estimates of some of the parame
For Tm5300 K, the temperature window we have look
into lies between 300 and 120 K. Further, fore1

‡518 kBTm

and ta51029 s, the latter being the inverse of the attem
frequency, with an Arrhenius approximation to the tempe
ture dependence of the elementary rate constants, the co
and heating rates explored here range from 0.009

FIG. 9. Frequency dependence of the negative imaginary part of hea
pacity, 2C9(v,T), for our model system withNb

(1)56 andNb
(2)510, at a

given temperatureT50.8Tm . In the inset, the real part of the frequenc
dependent heat capacity,C8(v,T), is shown for the same temperature. Th
frequency is scaled by the inverse oft1(Tm).
a

a
at-

ets
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ter
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ry
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d

ers.

t
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ing
to

0.95 Ks21. One should note that these rates are of the sa
order of magnitude as practised in time domain calorimet
experiments.

VI. CONCLUSION

Let us first summarize the main features of the pres
work. We have presented a kinetic model that employs
concept ofb organizeda process. In spite of the simplicity
of the present model, it could reproduce many of the exp
mentally observed features of the anomalous behavio
heat capacity during a temperature cycle through the g
transition. The overshoot of the heat capacity during
heating scan that marks the glass transition is found to
caused by a delayed energy relaxation. The initial dip in
value of the heat capacity during the heating scan is obse
to be affected by the inhomogeneity of the system. T
model also captures the basic features of the frequency
pendent heat capacity of supercooled liquids as observed
perimentally.

The well-known bimodal frequency dependence of t
dielectric relaxation in supercooled liquids can be at le
qualitatively understood from the present description ofb
and a processes. We essentially follow the description
Lauritzen and Zwanzig56 in assuming that ab process can be
taken to correspond to a two-site angular jump of individu
molecules by a small angle around some axis. These i
vidual, uncorrelated angular jumps lead to a partial rel
ation of the total electric momentM (t) of the whole system
@note thatM (t) is the sum of the dipole moment of th
individual molecules#. The dielectric susceptibility spectrum
can be obtained from the auto-time correlation function
M (t) by using the linear response theory.57 SinceM (t) is a
sum of a relatively large number of individual dipole m
ments, the former is a Gaussian Markov process and thus
time correlation function of theb relaxation mediated par
must decay exponentially. As noted earlier, thisb relaxation
mediated decay is incomplete because all the jumps are s
and restricted. Thus, it is fair to assume the following fo
for the auto-time correlation function ofM (t):

CM~ t !5^Mb
2&exp~2t/tb!

1~^M +
2&2^Mb

2&!exp~2t/ta!, ~19!

wheretb andta are the time scales ofb anda relaxations,
respectively. In the above equation^Mb

2& is the value by
which the mean-square total dipole moment decays dueb
relaxation alone from the initial value of^M +

2&. The rest of
the decay~i.e., from ^M +

2&2^Mb
2&) to zero occurs via thea

process. Therefore, one can easily see the occurrence o
two time scales in the total relaxation process. However,
calculation of̂ Mb

2& would require more detailed model tha
the one attempted here. On the other hand,^M +

2& can be
obtained from the value of static dielectric constant.

While one can easily show that

tb5
t0t1

t01t1
, ~20!

the estimation ofta is much more difficult. However, a
crude estimate of the latter can be obtained in the follow

a-
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way. One can consider an absorbing boundary atQi5Nb
( i ) ,

and calculate the mean first passage timet ( i ) that would give
a relaxation time for a cooperative transition out of the w
i .58 Once such a relaxation time is determined for each of
two wells, these relaxation times can be used to obtainta

through an equation similar to Eq.~20!. Equation~19! can
then be used to compute the frequency dependent diele
constante~v!. Because of a wide separation ofta and tb ,
the imaginary part ofe~v! would exhibit the bimodal disper
sion. The above qualitative analysis remains unchan
when M (t) corresponds to that of a heterogeneous dom
and the domains are assumed to be noninteracting. The l
may not be a bad approximation for a not too strongly dip
lar liquid ~for example, chlorobenzene!.

The present model can be considered as a represent
in a simple form of a class of wider, more sophisticated a
more general models. An immediate generalization will be
include the correlations among theb processes within a me
tabasin. The success of our model in reproducing many
pects of experimentally observed heat capacity behavior
ing the temperature cycle is noteworthy. Most importan
we need not invoke any singularity, thermodynamic or
netic, to explain the anomalous heat capacity behavior.
present work suggests that the heat capacity anomaly h
purely kinetic origin. While the elementary relaxation rat
evolve with the heat bath temperature,it is the slow popula-
tion (b) relaxation within a well that gives rise to the delaye
energy relaxation. In this model, the much slowera relax-
ation is seen to get quenched when theseb processes them
selves slow down. In this picture,b relaxation is not only a
precursor toa relaxation but the latter can occur only when
coherence between severalb processes occurs.
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