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ABSTRACT We report the results of operator state fluctuations in gene expression for the entire bacterial growth cycle, using
single-cell analysis and synthetic unregulated and negative-feedback transcription regulatory gene circuits. In the unregulated
circuit, during the cell cycle, we observe a crossover from log-normal-to-normal distribution of expressed proteins and an
unusual linear dependence of their standard deviation on the mean gene expression levels. With negative-feedback circuits we
find the existence of bimodality as the cell cycle progresses. We suggest that such long-tail and bimodal distributions may be
used as selection mechanisms in developmental switches and for assigning cell identity.

INTRODUCTION

Gene expression—the transfer of information from DNA to

proteins—is sensitive to fluctuations (McAdams and Arkin,

1997; Hasty et al., 2002; Thattai and van Oudenaarden,

2001). The availability of genome sequences, engineered

gene circuits, and single-cell analyses provide a new

dimension in exploring mechanisms of gene expression in

real biological systems (Becskei and Serrano, 2000; Gardner

et al., 2000; Elowitz and Leibler, 2000; Rosenfeld et al.,

2002; Swain et al., 2002; Kepler and Elston, 2001). These

approaches reveal that noise in gene expression arises at the

level of transcription (Becskei and Serrano, 2000; Ozbudak

et al., 2002) and translation (Ozbudak et al., 2002) with

a subtle distinction between intrinsic and extrinsic origins of

fluctuations (Elowitz et al., 2002). Such fluctuations and

their time evolutions are believed to play a fundamental role

in introducing the cell-to-cell variability or phenotypic

diversity that is observed during development (Houchmand-

zadeh et al., 2002; Sternberg and Felix, 1997) and

demonstrated in cell survival strategies (van der Woude

et al., 1996; Robertson and Meyer, 1992; van de Putte and

Goosen, 1992). Hence, the study of the time evolution of

noise characteristics in gene expression and its dependence

on cell growth phase is expected to provide insight into

developmental processes. Despite its importance this topic

has not been explored so far in depth. Our work addresses

this issue directly, investigating it at the level of transcrip-

tion.

Transcription regulation is by far the most dominant gene

regulatory process. There are different kinds of genetic

networks that underlie such regulation. Simple uncoupled

gene expressions to complex interregulatory reactions are

known to be functional at the transcriptional level, bringing

to the regulation some distinctive features. However, the

molecular mechanism of any such regulation is the specific

DNA-protein interaction—for example, that between the

bacterial lac-operator sequence and the lac-repressor protein.

Thus the stringency of gene expression is determined by the

resulting operator state fluctuations and is specific to the

mode of regulation.

In this work, we elucidate the detailed nature and

importance of operator state fluctuations through direct

single-cell studies, and propose simple models to account for

the observations. Our experiments, for the first time,

demonstrate that 1), probing model gene circuits with cell-

cycle progression provides new insights into the underlying

design principle; 2), characteristics of noise during cell-cycle

progression have unique features in the distribution of gene

expression that have not been observed before; and 3), the

cell-cycle progression is crucial in determining noise features

that lead to bimodality in the autoregulatory (negative-

feedback) circuit.

We use bacterial cells and the lac operator as a model

system to elucidate the effect of cell-cycle progression, and

thus the metabolic rate, on the time evolution of the operator

state noise in transcription regulation. The state of the

operator therefore defines the state of transcription (Fig. 1 A).
Analyzing the distribution of bacterial gene expression under

various regulatory conditions we capture the operator state

fluctuations and thus look for signatures of phenotypic cell

identity during the entire period of cell cycle. The approach

for probing operator fluctuations is to make differential

measurements of phenotypic noise by changing the repressor

strength and the regulatory mechanism involved. Phenotypic

noise is measured via the fluorescent reporter gene product

concentration per cell in a population. We use the standard

deviation of the distribution and its dependence on the mean

as a measure of the phenotypic noise in addition to studying

the nature of the distributions. These fluctuations are studied

by keeping the ratio of the concentration of the repressor

molecules to the operator (or promoter) sites either fixed (;0

and 10, unregulated system) or under autoregulatory genetic
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circuits (Fig. 1 A). Note that we have used the repressor/

promoter (R/P) ratio in the unregulated circuit merely as

a pointer toward the degree of repression. Measurements are

done over 20–30 bacterial cell cycles such that all phases of

growth are covered (Fig. 1 B). This gives information about

temporal fluctuations of the operator state and the growth

rate-induced tuning of the noise distribution characteristics.

We have carried out all the necessary control experiments to

check for the functionality of the circuits, and particularly the

fusion protein in the autoregulatory system. These are briefly

described below (see the Supplementary Materials for

details).

EXPERIMENTAL PROCEDURES

Cell culture and flow cytometry

Cells were grown in Luria Broth growth medium and initially cultured

overnight before starting the secondary culture. Cells were then collected

from the secondary culture at various points in time, spanning all the phases

of growth starting from 2 h to 15 h with 1-h intervals (Fig. 1 B).

Centrifugation was carried out next at 8000 rpm for 6 min and the pellet

resuspended in filtered PBS (pH 7.4). Single-cell fluorescence measurements

were done on a Becton-Dickinson (San Jose, CA) FACScan flow cytometer

with a 488-nm argon excitation laser and a 530/30-emission filter. Each

experiment involved signal acquisition from 50,000 cells. The flow rate of

the sheath fluid was kept at high, which corresponds to 60 mL 6 7 mL/min

sample through flow cell. Similar gate widths for the side scatter and the

enhanced green fluorescent protein (EGFP) fluorescence channels were used

in all the experiments. The population average of the protein content per cell

as measured above is referred to as the mean protein content/cell. The

standard deviation is also calculated over the population.

The growth kinetics of all the strains (and their variants) used in the work

was first tested by standard optical density measurement. The mean growth

curve in Fig. 1 B shows similar growth characteristics for all strains. We

have also checked and confirmed that there is no dependence of cell

morphology (as function of growth hour) on gene expression levels. These

observations clearly indicate that there is no inherent difference in either the

growth kinetics or the cell morphology over time, which can distort the

inferences about the gene expression kinetics.

Construct preparation and promoter efficiency

EGFP gene from pEGFP was cloned into pZERO2 (kanamycin resistance

marker, Invitrogen, Carlsbad, CA) to construct a low copy plasmid (colE1

replication origin, ;10 copies/cell). Bacterial strains JM109 (;100

repressor molecules/cell) and MC4100 (0 repressors/cell) were each trans-

formed with low copy plasmids to have two different repressor/promoter

ratios (0 and 10). To construct a negative-feedback circuit, lacI gene, coding

for lac repressor protein from pMAL-p2, was cloned into the high copy

(pUC origin, ;100 copies) pEGFP vector (ampicillin resistance marker,

Clontech, Palo Alto, CA) and the cloning was confirmed by sequencing.

This vector was then transformed into MC4100 (0 repressors/cell). In all the

above constructs, the lac promoter drives the EGFP reporter gene and the

expression is regulated by the lac operator sequence.

Multiple copies of the gene and the nature of the medium used (not

minimal) make the effective repression lower than expected (Ptashne and

Gann, 2002; and see Supplementary Materials). Moreover, the fluorescence

is found to increase even into the stationary phase, contrary to what may be

naively expected. This is the result of (much stronger) local transcription rate

FIGURE 1 (a) Schematic of the system used in the

experiment. Promoter/operator state is off (A) or on (B and

C) depending on repressor bound or unbound to operator

sequence. In the autoregulated system (C), the repressor is

synthesized with the reporter gene as a fused product and

thereby represses its own production. (b) Plot of absorb-

ance at 600 nm (measurement of cell density) against time.

Error bars in the figure represent the variation over the

different strains used in the study.
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dominating the rates of dilution (due to cell division) and degradation (see

also Supplementary Materials). Here, the strength of the transcription is

coming from the multiple gene copies and the choice of the medium (Luria

Broth) in which the expression from lac promoter is known to be higher than

other minimal mediums (e.g., glucose medium; see Supplementary

Materials for details).

Imaging and single-cell fluorescence anisotropy
measurements—confirmation of EGFP-lacI
fusion protein function

For independent confirmation of the function of the EGFP-lacI fusion

protein in the autoregulatory circuits, we have taken images of the cell

fluorescence and performed single-cell assays to test the DNA binding

property of the protein. Cells were immobilized on a poly-L-lysine-coated

glass coverslip and suspended in PBS (pH 7.4) throughout the measurement.

An inverted microscope (IX-70, Olympus, Tokyo, Japan) with the right

fluorescent filters (Olympus; Chroma, Rockingham, VT) was used in

addition to an intensified charge-coupled device (Cascade, Roper Scientific,

Tucson, AZ) to take images of the cell fluorescence. Florescence anisotropy

r ¼ ðIk � I?Þ=ðIk123 I?Þ was measured by exciting the immobilized cell

(with 488-nm excitation wavelength, Ar-Ion laser, Spectra-Physics,

Mountain View, CA) with polarized light. The fluorescence emission was

measured with an analyzer oriented parallel to the excitation (I||) and

perpendicular to the excitation (I?). We use an inverted optical microscope

(IX-70 Olympus microscope) with a 1.4 numerical aperture 1003 objective

lens. The emission fluorescence is detected through a confocal aperture

(50-mm pinhole) and avalanche photodetectors (EG&G, Fremont, CA). The

details of the experimental setup will be reported elsewhere.

Fig. 2, A and B, show images of autoregulated cells (A) where the

fluorescence is due to the fusion protein, and of unregulated cells (B) where

the fluorescence is due to plain EGFP. The images clearly show the contrast

in the localization of the proteins. The fusion protein is located strictly at

small polar pockets in the autoregulated cells whereas the EGFP in the

unregulated cells is uniformly distributed in the cells. Similar localization of

the fusion protein has been reported in the literature (Pogliano et al., 2001;

Gordon et al., 1997; Straight et al., 1996) indicating the binding of the

protein to the DNA in the cell. This is further confirmed by our single-cell

anisotropy measurements performed on the cells. Fluorescence anisotropy is

used to characterize rotational mobility of the fluorescing molecules or

complexes. The process of binding to DNA is expected to reduce the

rotational mobility of the EGFP-lacI protein. Therefore, in vivo measure-

ments of fluorescence anisotropy reveal the mobility of the proteins (EGFP

and EGFP-lacI) in their respective environments. The measurements are

made on single cells by acquiring the data for 30 s (binning of 0.1 s) at any

given point. Each cell is scanned starting at the tip and going inwards. Fig. 2

shows the anisotropy values obtained from such measurements in un-

regulated and autoregulated cells. In contrast to a uniform anisotropy (;0.2)

observed in the unregulated cell (s), the autoregulated cell (d) shows

a higher value (;0.33) at the tip, which reduces (to 0.2) as the scan proceeds

away from the tip. This demonstrates quantitatively that EGFP-lacI actually

binds to DNA (higher anisotropy than free EGFP) and shows that the fusion

protein has retained the DNA binding ability of lacI.

RESULTS AND DISCUSSIONS

Unregulated system

The dependence of the mean in gene expression (EGFP

photon counts) per cell on cell cycle for repressor strengths

R/P ¼ ;0 (s) and R/P ¼ ;10 (d) is shown in Fig. 3. The

effect of repression on fluctuations in gene expression can be

understood by plotting the standard deviation s as a function

of the mean (Fig. 3, inset). Interestingly, we find that the

standard deviation increases linearly with the mean for both

R/P ¼ ;0 (slope ¼ 0.61) and R/P ¼ ;10 (slope ¼ 0.52)

cases. This finding is rather unusual particularly since for

equilibrium fluctuations, the standard deviation varies as

square root of the mean, whereas there are no examples of

nonequilibrium situations where this linear increase is

observed. It is important to note here that this is the first

result in which noise in the system has been tracked in real-

time during the entire growth phase, and not across different

systems under different transcription/translation efficiencies

FIGURE 2 Confirmatory tests for DNA binding ability

of EGFP-lacI fusion protein: measurement of fluorescence

anisotropy while scanning the cells from the tip shows vari-

ation in anisotropy in the autoregulated cells and uniform

and lower anisotropy values for the unregulated cells. Error

bars in autoregulated cells represent the standard deviation

in the measurement. For the regulated cells the data shown

is averaged over three different experiments, and the error

bar represents the variation between these experiments. In

the insets, the fluorescence images of cells show localized

fluorescence (A) for the autoregulated cells (EGFP-lacI

protein) and uniform fluorescence (B) for unregulated cells
(only EGFP).

3054 Banerjee et al.

Biophysical Journal 86(5) 3052–3059



as done in previous studies (Ozbudak et al., 2002; Elowitz

et al., 2002).

We have simultaneouslymonitored the time dependence of

the probability density of the gene product/cell as function of

the growth hour; this is shown in Fig. 4 A. The non-Gaussian
feature seen at short times crossing over to a Gaussian beyond

themean expression level 750 (Fig. 4A) can be renderedmore

transparent by plotting the scaled distributions with matching

mean and peak heights. This is shown in Fig. 4 B along with

the fits to log-normal given by PLNðxÞ ¼ ðA=w ffiffiffiffiffiffiffiffiffi
p=2

p Þ
expð�2ðln ðx=xcÞÞ2=w2Þ, where A ¼ 0.003, w ¼ 0.905, and

xc ¼ 307.0, and the normal distribution is PGðxÞ ¼
ðA#=w ffiffiffiffiffiffiffiffiffi

p=2
p Þexpð�2ðx � xcÞ2=w2Þ, where A#¼ 0.557, w¼

177.8, and xc ¼ 320.3. The fits are seen to be good. We have

also confirmed the fits by checking the Quantile-Quantile

plots for log-normal and normal distributions (see Supple-

mentary Materials).

To understand these results we describe the mean kinetics

of the unfolded (nonfluorescent) and folded (fluorescent)

proteins by the following equations:

_xxu ¼ aaðtÞ � gðtÞxu � kfxu (1)

_xxf ¼ kfxu � gðtÞxf : (2)

Here xu is the mean concentration/cell of the nonfluorescent

protein and xf that of the fluorescent state of the reporter gene.
In each cell xu is formed at a rate aa(t), and diluted due to cell
division at the rate g(t) ¼ ln 2/tcelldivision, where tcelldivision is
themean time taken by the cells to dividewhich itself depends

on the bacterial growth phase. At the exponential phase

(growth hour 2–5) tcelldivision ¼ ;25 min. The cell division

time is higher both at the lag (0–2 h) and the stationary phase

(6–15 h). kf is the rate (kf ¼ ln 2/tfolding-half life, where folding
half-life ¼ 90 min; Tsien, 1998) with which nonfluorescent

proteins xu become fluorescent. The fluorescent protein

concentration is also diluted at the same rate as xu. The
protein decay rate was not included, inasmuch as EGFP is

stable within the timescale of the experiment (Leveau and

Lindow, 2001). The dilution rate is calculated from the

experimental data on absorbance versus time of the bacterial

culture studied. The protein production rate aa(t) depends on
the bacterial growth phase and is taken to be aa(t) ¼ g(t)c.
As can be seen from Fig. 3, the above equations fit (solid

line) the experimental data (d) for R/P¼;0 and (s) for R/P
¼;10 quite well. (The values used for the parameters are c¼
0.1, xf ¼ 0.0077 min�1, and repressor strength, arep/aunrep ¼
0.7). Since changing average number of repressors changes

the average transcription rate and therefore the protein

production rate, it is reflected in the parameter a. As we

approximate all distributions to be Gaussian using a single

parameter �xxðtÞ, identified with the mean gene expression

level xf, we find that the Gaussian form PðxÞ ¼
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

0�xxðtÞ
p

Þexp� ðx� �xxðtÞÞ=ðs0�xxðtÞÞ2 fits the experi-

mental distributions over the entire growth curve except at

short times where non-Gaussian features are seen. The fact

that theGaussian is agoodapproximation except at short times

can be seen from the x2 plot shown in the inset of Fig. 4B. The
observation that an increase in repression decreases the ratio of

the standard deviation to the mean implies that the repression

strength changes the inherent noise.

As the linear dependence of noise on the mean is unusual

and appears to arise in biological systems naturally, we have

investigated a number of approaches to understand this

dependence. Moreover, there has been no stochastic basis for

FIGURE 3 Plot of growth of mean protein per cell with

time expressed as fluorescence counts in arbitrary units for

the unregulated system. Solid lines show the numerical

solution for xf (Eqs. 1 and 2). (Inset) Plot of standard

deviation s versus the mean.
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this dependence. Here we present a simple Fokker-Planck-

like equation for the physical variable of interest—namely, x,
which can be written down by including the time-

dependence of (obtained after integrating out) the other

variables such as the cell concentration. Such a Fokker-

Planck-like equation valid for long timescales would be

time-dependent and may be written as

@Pðx; tÞ
@t

¼ � @

@x
ðaaðtÞ � gðtÞxÞPðx; tÞ

1D
@
2

@x
2 xPðx; tÞ: (3)

Here a(t) and g(t) are as given in Eq. 2 and D is the noise

strength. This choice is equivalent to using the diffusion

constant D (x) ¼ Dx, arising from a multiplicative process

(Risken, 1984). This leads to the equation of motion for the

mean and variance of xf given by d�xx=dt ¼ aaðtÞ � gðtÞ�xx and
ds2=dt ¼ �2gðtÞs2 1 2Dx, respectively, which in turn

gives a linear dependence of s with x. (Compare the

equation for �xx with the sum of Eqs. 1 and 2.) Clearly, the full

description requires knowledge of the stochastic evolution of

several variables such as the concentration of cells and the

fluorescent and nonfluorescent proteins.

Autoregulatory system

To study the repressor noise in a regulated network, we study

the mean gene expression level and its distribution as

FIGURE 4 (a) Plot of single-cell protein distribution in

a population (R/P¼;10) of cells at different growth hours

(increasing from left to right). (b) Log-normal and

Gaussian curve fits to 5th hour and 15th hour distributions,

respectively. Inset shows x2 values of the Gaussian fits.
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a function of growth hour with a synthetic negative-feedback

circuit. Fig. 5 A shows the mean gene expression level per

cell (d) as a function of cell cycle having a single maximum

due to continuous tuning of the degree of repression. We find

that the peak (maximum) occurs at timescales (8 6 1 cell

cycles) close to the maximum growth rate of the cell with

a width of 3 6 1 cell cycles between different experiments,

and the maxima is ;100–200 counts per cell. Further, we

find that the distribution evolves from a unimodal form

(single peak) to a bimodal form (two peaks) as a function of

time and remains bimodal. This is shown in Fig. 5 B (s,

experimental points) and in Fig. 4 A in the Supplementary

Material. Fig. 4, B and C, in the Supplementary Materials

show other experimental realizations. The two peaks in the

probability distributions represent two populations with

distinct gene expression levels – repressed and unrepressed.

In contrast to the crossover observed from log-normal to

normal distributions for the unregulated case, here, the log-

normal nature persists all through the growth phase. Indeed,

the bimodal distributions can be fitted to the superposition of

two log-normal forms (–) as shown in the Fig. 5 B. It is clear
from Fig. 5 B that the bimodality sets in approximately at the

time of maximal bacterial growth rate. We find that the

realization of unimodal to bimodal transition is very sensitive

to experimental initial conditions (see the Supplementary

Materials for details). The initial conditions here refer to and

are determined by the variability in the gene expression

levels at the start of the experiments. A number of initial

FIGURE 5 (a) In the autoregulated system, the mean

protein per cell with time shows a peak occurring at

timescales when the cells have maximal growth rate. Solid

line shows the numerical solution of xf (Eqs. 4 and 5). (b)

Single-cell protein concentration distributions for an

autoregulated system taken at different growth points

show the emergence of bimodality. (c) Contour scatter plot

of the forward scatter versus side scatter and fluorescence

versus side scatter from FACs experiments. Three rows

correspond to three time points. (Autoregulated system)

Plots for the autoregulatory circuit where only the

fluorescence channel shows emergence of bimodality;

(Unregulated system) typical plots for the unregulated

system where none of the channels shows any bimodality.
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conditions can be realized experimentally leading to either

unimodal or bimodal distributions. Independent of the initial

distributions, the major changes in the peak heights occur

approximately at the maximal cell growth rate. Also, we

have confirmed from our flow cytometry data (Fig. 5 C) that
wherever bimodality in the gene expression is observed,

there is definitely no accompanying bimodality in the

population with respect to cell size (or granularity).

To understand the mean kinetics for a negative-feedback

system, we consider a modified form of time-delay equation

for the nonfluorescent protein xu (Rosenfeld et al., 2002) and
the fluorescent protein xf,

_xxu ¼ aaðtÞ
11

xuðt � tÞ
K

� �� gðtÞxu � kxu � kfxu (4)

_xxf ¼ kfxu � ðgðtÞ1 kÞxf ; (5)

where K is the binding affinity of the repressor to the

operator sequence taken as 10 nM (Rosenfeld et al., 2002),

and k is the decay rate of the lac repressor protein, the half-

life being taken as 20 min. The value t is the delay time to

complete repression of gene expression from all the promoter

sites, which is set to 2 h (;4 cell cycles). The parameters

aa(t), g(t), kf, and c are as defined for Eq. 1. Here we use c¼
0.9 in aa(t) ¼ g(t)c. Rigorous sensitivity analyses were

performed to achieve the optimal values of c,t for which the

least-square fit is best (see Supplementary Materials). As can

be seen in Fig. 5 A, the solid line fits the experimental data

(d) satisfactorily. Our experiments, which display bimodal

distributions for a negative-feedback loop, imply the

existence of multiple states in the gene expression. Such

bimodal behavior in an autorepressive system is indeed

possible when there is time delay in the feedback.

CONCLUSIONS

In summary, using simple model systems and synthetic gene

circuits, we have captured the effect of operator state

FIGURE 5 Continued.
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fluctuations in both unregulated and regulated systems. We

find that the response (mean, standard deviation, and the

nature of the distribution) of the system is directly linked to

the growth rate of the bacterial cells. A novel crossover from

long-tail distribution (characterized by log-normal) to

Gaussian distribution has been observed and may suggest

a mechanism for cell diversity as the mean gene expression

levels increase with cell cycle. We also find a unique linear

dependence of the noise on mean expression level, indicating

the coupling of noise features of cell-cycle progression to

gene expression kinetics. In the regulated system, the time

evolution of the operator state fluctuations leads to bimodal

distributions in the expression profile. We find that the onset

of bimodality is related to the maximum in the cell division

rate. The consequences of time delay as well as competing

timescales in the feedback in transcription regulation in

negative feedback may lead to such bimodality. It is,

however, of interest to test if there is indeed an inherent

delayed response in negative feedback in transcription

regulation or if it is introduced due to the fusion of reporter

proteins on repressor molecules. Our observations of the

selection of a population in the long-tail regime with cell-

cycle progression may have novel implications in assigning

phenotypic cell identity in the developmental context of

transcription regulatory switches (Pourquié, 2003). In the

early growth phase of an unregulated system, the small

number of molecules participating in the gene expression

could be the cause of the long-tailed distribution. This may

also offer an explanation for the persistence of long-tailed

distributions in the regulated case, as the number of

participating molecules remains small throughout.

SUPPLEMENTARY MATERIALS

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

We thank Apurva Sarin for useful discussions.
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