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Recent optical Kerr effect experiments have shown that orientational relaxation of nematogens
shows a pronounced slow down of the response function at intermediate times and also a power law
decay near the isotropic-nematit- ) transition. In many aspects, this behavior appears to be
rather similar to the ones observed in the supercooled liquid near-glass trahSi¢éinget al., J.

Chem. Phys118 9303 (2003]. We have performed molecular dynamics simulations of model
nematogensGay-Berne with aspect ratio) 3o explore the viscoelasticity near theN transition

and also investigated the correlation of viscoelastigityany) with orientational relaxation. It is

found that although the viscosity indeed undergoes a somewhat sharper than normal change near the
I-N transition, it is not characterized by any divergencelike behalile the ones observed in the
supercooled liquid The rotational friction, on the other hand, shows a much sharper rise kd\the
transition is approached. Interestingly, the probability distribution of the amplitude of the three
components of the stress tensor sh@amgsotropynear thel -N transition—similar anisotropy has

also been seen in the deeply supercooled lig@kys. Rev. Lett89, 25504 (2002]. Frequency
dependence of viscosity shows several unusual behaviarsThere is a weak, power law
dependence on frequenty’ (w) ~w ™ ¢] at low frequencies antb) there is a rapid increase in the

sharp peak observed in’'(w) in the intermediate frequency on approach to thi transition

density. These features can be explained from the stress-stress time correlation function. The angular
velocity correlation function also exhibits a power law decay in time. The reason for this is
discussed.

I. INTRODUCTION law relaxation of the collective orientational correlation
diik lecul ith io | function’
A system of rodlike molecules with aspect ratio larger — Ap jmportant transport property of the liquid is its shear

than certain minimum value is known to undergo a weakscqsity. In the nematic phase, the shear viscosity is aniso-
first-order phase transition from orientationally disordered totropic In a recent molecular dynamics simulation of the

orientationally orderedbut positionally disorderechematic shear viscosity of Gay-Bere ellipsoids of aspect ratio 3,

state at low temperature and/or at high den'sftyhe orien- Smondyrevet al. calculated the temperature dependence of

tational dynamics of the rodlike molecules near the isotropiCyqiational and shear viscosities. They obtained temperature

nematic (-N) phase transition shows certain anomalies, th§,, iation of Miesowicz viscositié&®which were defined as
most notable being the pronounced temporal power law desqhinations of the components of shear viscosity but now

cay in the collective orientational correlation function dis- they are defined in the nematic phase with respect to the
covered recently by Fayer and co-work&r8A mode cou- i oetion of the director

pling theory analysis explains this power law decay in terms 5 jter simulations and theoretical analysis show that

of large and.r_ap|7dgy growing orientational correlation near;, yense isotropic, liquid, the shear viscosity may be ex-
thel-N transition!® Theoretical analysis has quantified this pressed #8-23

growth of orientational pair correlation in an adequate

manner A density functional theory analysis of tHeN

transition has also been present&d: Nap(t) = 10 g(t) + 704(1), (1)
Several computer simulations have studied orientational

dynamics near thé-N transition’*~*’ Earlier studies have | nere #8.(1) is the short time part that arises from static
found the signature of slowdown of orientational relax'correlatig[:]s which can be approximated by a Gaussian
ation in general. However, the simulations were not carried;nctiorf3 and 7,4(1) is the long time part that arises from

a

out for sufficiently long time to observe the decay of the e gensity mode contribution. An analytic expression for the
relaxation funcﬂory near thLl.N trap3|t|on. Very long time 7,(t) can be obtained from mode-coupling theory
molecular dynamics(MD) simulation of present authors MCT),22

in a system of Gay-Berne ellipsoids has observed the power
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whereS(k) andS’ (k) are structure factor and its first deriva- frequency. The latter is of course expected for a continuous
tive, respectively, and=(k,t), the intermediate scattering potential. The rest can be understood from an analysis of the

function, is defined by the following relation: stress time correlation function. The weakdependence at
1 low w can be traced back to a power law dependence of the
SV stress time correlation functioSTCH while the minima
F(k,t)= S {p(=k0)p(k 1)), 3

and the maxima are due to damped oscillations in STCF

wherep(k,t) =, exg —ik-r;(t)]. In the supercooled liquid, (note the negative region in the stress TCFhe frequency

the decay of the dynamic structure factor slows down. Thisdepgndeincet of the?r wicgsny l(T.O ks_azlmllar :oththat Of ddy-
leads to an increase in the value of the shear viscosity. Agﬁm'c struc ufreth actor of dense IIqUII Fxcep te rapf| th
discussed by Geszti, this increase in viscosity in turn furthep 'arPENING OF the maximum IS clearly a signaturé of the

slows down the relaxation df(k,t). This feedback mecha- translation—rgtation.coupling. In addition, we finq that the
nism leads to rapid increase of viscosity in the Supercoole&1ydrodynam|c relation between the rotational friction and the

liquid state. An important point here is that the frequency\/'sCOSIty brggks down completely on approach to ki
phase transition.

dependent viscosity is expected to closely follow the fre- o . )

guency dependence of the dynamic structure factor which i% The or'ganlzatl'on of the rest of the Paperis as follpws. n

the Fourier transform of the intermediate scattering function™"® fqllowmg s_ectlon, we present the basic th_eoretlcal_e_x-
It is known that the rotational correlation function rap- pressions required for the compu_tat|on of the viscoelasticity

idly slows down and indeed shows anomalous behavior neé)r_f the _system. _In Sec. lll, we discuss the system and the

thel-N transition. Therefore, it seems natural to ask WhetheF'.mUIatlon ‘?'et‘?"s-. .In sec. IV, we present the regults and

the slow down in orientational relaxation has any significantd'sCuss their significance. Section V concludes with a few

effect on the variation of shear viscosity near the transitior{emarks'

region. In this work, the shear viscosity of the a system of

Gay-Berne ellipsoids is calculated along the density axis

nearl-N transition. The shear viscosity of the system showdl. BASIC THEORETICAL EXPRESSIONS

a rise, sharper than normal, as theéN transition is ap-

proached along the density axis. However, shear viscosity Consider a system dfl nematogens. The instantaneous

does not diverge near tHeN transition. In fact, the emer- State of the system in the phase space is specified by position

gence of long range orientational correlation near ftitg  Ti» linear momentunp;, orientation(};, and angular mo-

transition is marked by the appearance of an anisotropy if€Ntumdq , wherei=1,... N. Thea component of shear

the stress distribution function. Different components of theviscosity of this system in the isotropic phase is given by the

stress-stress correlation function also behave differently dueelation’®2!

to the anisotropy caused by the orientational ordering. The e

angular velocity autocorrelation function shows a power law ”aﬁ:ﬁf dt(o (1) o,5(0)), (4)

decay in the long time, with an exponentl.2 near thd-N B! JO

transition. This result differs from the hydrodynamic predic-\yhereV is the volume of the systenkg is the Boltzmann
tion of —5/2 indicating that asymptotic long time decay hasconstant,T is the temperature, and, is the shear stress

not been attained in simulatiofi: tensor?®3% Shear stress tensor is defined as
In an important work, Tang, Evans, Mason, and Allen

have earlier investigated viscoelasticity of hard ellipsdftls. 1 P.iPg;
h nvestigate s To=y| S PSS |
oth generalized kinetic theory and computer simulations BVl 4 m ™ = Al
were used. These authors observed several anomalies in the ) -
frequency dependence of the real part of the frequency devhereri; andf; are relative position and force between a
pendent viscosity(i) The decrease of viscosity with fre- P&r of molecules, respectively. The indices8=x,y,z and
quencyw at low frequencies is very weak and can be de-@# B. The pormahzed stress—stre;s correlation function of
scribed by a power law.(ii) The viscosity shows a the system is given by the expression
pronounced minimum at intermediate frequencies not ob- (0 05(1) T 45(0))
served in atomic liquids. The authors explained the latter Cgﬁ(t)=m.
result as due to the coupling between the stress and the col- ap ap
lective orientation. Tangt al. also considered the applicabil- Viscoelasticity of the system is given by frequency depen-
ity of the Debye-Stokes-Einstein relation between rotationatlent viscositys,g(w) (Refs. 28 and 3llwhich is defined by
diffusion and viscosity. The viscosity approaches a constarthe Fourier transform ofy,z(t). Viscoelasticity can be de-
value at high frequency, which is due to hard ellipsoid naturecomposed into real and imaginary parts,
of the interactions. , -

The present simulations reveal somewhat different fre-  7a8(®)= Map(®) Fi705(0). @)
quency dependence of shear viscosity near the isotropicFhen the real part of the frequency dependent viscosity is
nematic phase transition. The weak frequency dependence gitven as
low frequency exists and so does the minimum at somewhat
higher fr_equency. The notable differences are a peak at the 77'3(&))2 i focdt<0'aﬁ(t)0'a,3(0)>003wt. ®)
intermediate frequency and the approach to zero at very large ksT Jo

®

(6)



Another important correlation function which is a direct

measure of the building up of orientational order is angular
velocity autocorrelation function. The angular velocity auto-
correlation function of a system of ellipsoids is given as

1.2

2
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where w; is the angular velocity of théth molecule. The

]

relation between the rotational friction and the angular ve- | Py

locity autocorrelation function in the Laplace plane is given Lo 9

by the relatiof? S

keT =

C,(2)=——=. 10 A

= iz @] 10 0s -

We now present the details of the simulation.

1Il. SYSTEM AND SIMULATION DETAILS FIG. 1. The phase diagrams of the Gay-Berne ellipsoids are given here. The

simulations are carried out at the temperature and densities indicated by the
Molecular dynamics simulations have been carried ougrrow.
for a system of 576 Gay-Berft® ellipsoids at temperature
T*=1 nearl-N transition in a microcanonical ensemble.

The form of the modified intermolecular Gay-Berne potential _ . _
used in the simulation 141730 in Fig. 1 The translational and rotational motions are solved

using leap-frog algorithm. The order parameter changes dra-
matically in this system after density increases beyond 0.3.
This is in accord with previous simulatioRs.
o The simulation starts from an equilibrated configuration
_( 5 ’ (1) of ellipsoids. Initial configuration of the ellipsoids is gener-
r—o(f,0;,0j)+os ated from a cubic lattice and then the simulation is run for
wheref is the unit vector that passes through the center ofwo-hundred thousand steps to obtain the equilibrium con-
mass of a pair of molecules; anddj unit vectors that pass figuration. During the equilibration steps the temperature is

through the major axis of a pair of ellipsoidal molecules; scaled so that the system is in equilibrium at this particular
and o give the strength and range of interaction, temperature. Four million production steps are used for cal-

Y culation of viscosities.

(Gi-F+0;-F)" (G-F—d;-F) ) In Fig. 1, we show the phase diagram of ellipsoids with
1+ x(4i-4j) 1— x(Gi-u;) aspect ratio 3 interacting with Gay-Berne potential. In the

(12 diagram we also show by arrow the densities studied at tem-

o, is double of the minor axib; « gives molecular elonga- perature T*=1.0). Fig. 2 shows the variation of order pa-
tion (aspect ratiy which is the ratio of end-to-end to side- rameterS (Ref. 17 with density. We now present the results.
to-side diameters; and=o./0s. The aspect ratio of ellip-

soids used in this simulation is 3. Hexels defined asc as

X=(K2— 1)/(k%>+1),

o 12

U=4¢(7,U;,U; —
(F. i .0y r—o(f,0,0))+os

6

PO X
o(f,0;,Uj) = oy 1—5

IV. RESULTS AND DISCUSSION

(G;-P+0j-F) . . . . .
W The S|mulat|ons_ have given rise fco a host Qf important
el results, many of which were not anticipated earlier. Some of
(Gi-F— *J..f)Z 2 the results have been reported in a recent communication
m , (13 wr_lere we discuss 'Fhe emergence of the power law in the
orientational relaxation. In this work, we concentrate on the
where e, is the energy parameter and= (k' ~1)/(V" friction and the viscosity of the liquid as theN transition is

+1) (k' =eslee gives the strength of interaction which is approached and on related several dynamical quantities.
side-to-side to end-to-end well depth$he value of«x’ used

in the simulation is 3>'83The scaling used for moment of
inertia isl* =1/mo3. The density is scaled in the simulation
as p* =pos and the temperature is scaled Bs=k,T/e. It has been discussed elsewhere that the orientational
The equation of motion is integrated with reduced tifte  correlation functions slow down dramatically as theN
=(mo?/ep)Y?] steps withAt=0.002*. The ellipsoid used transition is approached from low densitfes!’ The varia-

in the simulation has minor axis=0.5 and major axisa  tion of shear viscosity near theN transition is another sub-
=1.5(in reduced units The simulations are done at the stateject of interest. It is of course known that viscosity does not
points near the pretransition region of phase diagram, showexhibit any divergence near theN transition. It is also

PN o Xr

+

A. Shear viscoelasticity and stress-stress time
correlation function
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FIG. 2. The variating in the order parameter with density is shown in the v GOLB
figure.

FIG. 4. The distribution of three different components of stfess (dashed
line), oy, (continuous ling and oy, (dot-dashed ling is shown here. The

known that the viscosity becomes anisotropic near the trarfoP figure is at density* =0.20 (isotropic phas the middle figure is at
densityp* =0.315(nearl -N transition; and the bottom figure is at density

sition. However, a detailed study of the emergence of th%*=o.34(nematic phase
anisotropy and the variation of viscosity seems to be absent
in the literature.

In Fig. 3 we show the variation of shear viscosity with
density. There are several points of interest about this figuréiearl-N transition is clearly shown in Table I. We note that
First, the increase in viscosity with density becomes sharpeihe stress tensor also becomes anisotropic in the deeply su-
as thel-N transition is approached. However, this growth ispercooled liquid®’ Although this analogy is rather nice, the
rather mild. Second point to note is that beyond the transitio®rigin of the two is obviously quite different.
point, the viscosity becomes anisotropic. The emergence of In Fig. 5 we show the decay of the stress-stress time
anisotropy can be better understood by studying the probecorrelation function. Note the negative region and the slow
ability distribution of the mean square stress. In Fig. 4 welong time decay. We shall return to this point below.
show the distribution at three densities. Note that the distri- We now discuss the viscoelasticity of the liquid which
bution is fully isotropic at low densities but becomes aniso-shows several interesting features. In Fig. 6 we show the
tropic as the transition is approached. This anisotropy is imfrequency dependence of the viscosity. There are three un-
portant in determining the viscous response of the liquid. Theisual features of this figures:

anisotropy in the values of different components of viscosity ~ (&) The fall of viscosity with frequency is nonlinear and
unusually weak at low frequencies. It is clear that the fre-

quency dependence obeys a power law dependence here with
3.5 T T T T T T ] a small exponent. Such weak frequency dependence of vis-
cosity has been observed earlier by Taiql?® and is re-
lated to the long time power law decay of the stress time
correlation function.
(b) There is a shallow minimum at somewhat higher

TABLE |. Values of viscosities starting from very low densities to densities
nearl-N transition.

Density oy Nz Mz
0.05 0.07 0.07 0.07
0.10 0.11 0.11 0.11
0.15 0.20 0.20 0.20
) . . . ) \ : 0.20 0.38 0.38 0.37
8.2 022 024 026 028+« 03 032 034 0.25 0.64 0.64 0.65
P 0.3 1.16 1.05 1.07
0.31 1.53 131 1.32
FIG. 3. The viscosity of a system of Gay-Berne ellipsoids is plotted against 0.32 1.75 1.42 1.72
density in the isotropic phase. When thé\ transition is approached, vari- 0.34 1.59 3.65 1.26

ous components of viscosity increase and they become anisotropic.
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FIG. 7. The tail of the stress-stress correlation function is fitted to the
functiony=0.0031 "% (the continuous line gives the fit and the dashed line

gives the stress-stress correlation functiahdensityp* =0.315. The expo-
nenta obtained from the fit is 1.1.

the correlation between the slow long time decay of the

component, the dotted line gives the component, and the continuous line stress-stress TCF and a nonanawﬂc frequency dependence of

gives the averageis plotted here at three densities. The top figure is at
density p* =0.20 (isotropic phasg the middle figure is at densitp*
=0.315 (near I-N transition); and the bottom figure is at densify*
=0.34 (nematic phase

the viscosity’® That is, if the long time tail decays as®?,
then the frequency dependence is given by
7' (0)=7(0)—Aw®+0(w). (14)

When we fit the long time part of the stress TCF to a form

frequency, near the reduced value of frequency equal t9-« e find a value ofr~1.1 for the exponent. The fit is

unity.

shown in Fig. 7. The value of the exponent does provide an

(c) There is a pronounced peak near a value of reducegxplanation for the weak frequency dependence at small fre-
frequency which is~20. In real units, the peak is around quencies ofn;ﬁ(w)_

frequency 18° s~1. We now turn to the possible interpreta-

tion of this interesting behavior.

The explanation, of course, lies in the time dependenc@ote that the negative region @7 4(t) becomes more pro-
of the stress-stress TCF shown in Flg 5. Note the slow decauounced as thé-N transition is approached’ so does the
in the long time. In an interesting paper, Zwanzig pointed oupeak in Nap(®). The maximum is due to damped oscilla-
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FIG. 6. The frequency dependent viscosity is plotted against the frequency
at different densities nedrN transition. The inset gives the plet,s(o) vs

100

150 260 - 2é0 360 350
frequency(o )

In(w). This shows the low frequency characteristicsgf(w).

The minimum in7,g(w) at small frequencies seems to
originate from the negative region in the stress-stress TCF.

tions in the stress time correlation function. Note the close
similarity between the frequency dependence of viscosity
and that of dynamics structure factdisignifying the general
validity of the mode coupling theory expression relating
STCF to the dynamic structure factor. The sharp peak in
n(w) occurs atw* ~20 which is a rather large frequency. In
real terms, the value of the frequency at the peak is about
10 s 1. The sharp increase in the peak value aslti¢
transition is approached from low density indicates the for-
mation of a nearest neighbor cage giving rise to high fre-
quency, rattling-type motion. Such a cage formation is also a
prerequisite for glass transition. This cage can also be re-
garded as a manifestation of translation-rotation coupling be-
cause the cage is essentially due to local orientational
ordering.

B. Angular velocity correlation

In Fig. 8 we show the time dependence of the angular
velocity TCF. Note the slow decay in the long time, follow-
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FIG. 10. The zero-frequency friction is plotted against density. The friction

FIG. 8. The angular velocity autocorrelation function is plotted at different’ "~ =~ AT . )
9 y P Irﬁpldly increases als N transition is approached along the density axis.

densities. As the density of the system increases the depth of backscatteri
region of the angular velocity autocorrelation function becomes deep. This
is clearly shown in the inset where the negative region of the angular ve-

locity autocorrelation function is highlighted. . . .
v oma The last point can be further substantiated if one uses the

MCT form of the frictior’>33*%in Eq. (10). The expression
for the single particle rotational friction can be written as
ing the negative dip at short times. The rise of the velocity " "
TCF after the minimum has been fitted to a function of the  ; (z)=¢, ...+ %f dte‘Z‘f dkk?
following form: 2m)" Jo 0

(w(O)w(t))%—al exq_azt)_a3t7a4. (15) % 2 C|2| m(k)FIS m(k,t), (16)
11 1'2 2

The fit has been shown in Fig. 9. The power law exponent is
about 1.2. Hydrodynamic prediction of Iong time power lawWhere ¢ ;,m(K) is the I,I;,mth coefficient of the two-
exponent is much larger, equal to 3227 This point de- particle direct correlation function and
serves further study. It is possible that the long time decay —ik-r
observed in simulation isot the true hydrodynamic long Fin(k, )= "Yim[Qi(0)]Yim[ 2i(D)]) (17
time decay—instead an intermediate time decay one oftei$ the single particle orientational correlation function. One
finds in the mode coupling theory which arises from thefinds nearly perfect agreement at long times, substantiating
coupling with the density mode. the logic presented here. However, a more complete calcula-
tion is required to fully reproduce the angular velocity cor-
relation curve.

The initial decay of the angular velocity correlation

0 function is fast and inertial. This may be due to rattling mo-
_o0.01h ) tion of the ellipsoids within its orientational cageone
formed by the nearest neighbors. Such a motion can explain
-0.02f 1 the peak in the viscoelasticity. Of course the same rattling
008 motion will be present in the translational motion.
£_0.04}
s C. Rotational friction on the ellipsoids
=0-057] We have discussed earlier that the single particle orien-
~0.06 ] tational correlation function exhibits power law decay behav-
ior at intermediate times. In Fig. 10 we show the density
-0.07 1 variation of the zero frequency friction at the temperature
0.08 T*=1.0. Note the rapid rise in the friction as the transition

12 3 4 5 . 6§ 7 8 09 10 density is approached.
Time(t) Mode coupling theory predicts that due to the emergence
F1G. 9. The tail of th | oci ation function fitted of the long range orientational density correlation, the rota-
e taill of the angular velocity autocorrelation function fitted to a
power law(the continuous line gives the fit and the dashed line gives the tional friction should show a strong frequency dependence.

stress-stress correlation functiohe exponent obtained from the fitis (€€ the frequency is the Laplace frequ_enCY- “_" F'g- 11 we
1.2 at densityp* =0.315. show the frequency dependence of rotational friction at sev-



200 T T T of Gay-Berne ellipsoids of aspect ratio 3 near its isotropic-
nematic phase transition. We have calculated the viscoelastic

190 - p=0.285 properties of the system. While the rotational friction shows
160 .+ p=0.29 ] a sharp rise in its value as the isotropic-nematic phase tran-
140 p:=0.295 ] sition is approached, the viscosity shows only a mild in-
10l p*ig'gos ] crease..The frequency dependent viscosity shows interesting
= T p,:0'31 a_nomalles—a weak power-la\_/v depenplence at low frequen-
:’Pﬁoo: o g*;0:315 cies and a sharp peak at the intermediate frequency; the two

are separated by a shallow minimum. While the observed
behavior for Gay-Berne fluids near theN transition is yet
to be understood from a quantitative theory the anomalies in
J the viscoelastic properties can be qualitatively understood
ol e o N from the stress-stress time correlation function which shows
MU R a negative dip at short times and a power law decay at long
times. The stress becomes anisotropic near the transition re-
gion which is expected.
One of the motivations of the present study was the re-
FIG. 11. The frequency dependent friction is plotted at different densities.cent work by Canget al. who showed that Kerr response
near thel-N transition is surprisingly close to that in super-
N _ _ _ _ cooled liquids*® We find that although the orientational cor-
eral densities. Note the increasingly faster rise of the frictiong|ation function indeed shows power law decay, viscosity,

80f*
60F,

40.52

0 0.5 1 *1f5 2
Laplace fequency(z )

at low frequencies as thieN transition is approached. and viscoelasticity do not show similar behavior. This is be-

cause the origin of the slow decay is completely different in
D. Comparison between viscosity the two cases. In supercooled liquid, the slow decay is be-
and rotational friction lieved to arise from a nonlinear feedback mechanism be-

While the friction shows a sharp increase near lthié ~ tween the density and the stress relaxation, where the slow
transition, the same is absent for viscosity. In Fig. 12, wedensity relaxation occurs at nearest neighbor disténear
have plotted the ratio ofg/ 7. The figure shows a hydrody- the first peak of the static structure fagtoin the present
namiclike, density independeribr weakly dependentbe-  system, the slowness arises from the long range orientational
havior at low densities which gives away to a strong varia-correlation. Nevertheless, the frequency dependence of vis-
tion as thel-N transition point is approached. This is the cosity already shows behavior similar to the ones observed in
manifestation of the strong growth of friction near the&d ~ dense liquids.
transition where viscosity shows only weak dependence on There is one more similarity between the present system
density. Thus, the Debye-Stokes relation between rotation&ind supercooled liquids. The frequency dependent viscosity

friction and viscosity breaks down near theé\ transition. shows a sharp increase in its peak value at intermediate fre-
quency as thé-N transition is approached from low density.
V. CONCLUDING REMARKS This clearly indicates formation of a nearest neighbor cage

. . ) . giving rise to high frequency rattling-type motion. Such a
Let us first summarize the main results of this paper. Wey, e formation is also a prerequisite for glass transition.

have carried out molecular dynamics simulations of a system This strong similarity between the two phenomena is
really intriguing. The main reason appears to be the rapid

140 . . . . . growth in the value of the friction and the memory function
of the stress time correlation function. Mode coupling theory
shows that the rotational friction grows approximately as
1/\/z at low frequenciesZ). This gives rise to the power law
decay. A similar rapid growth in the friction also takes place
in the supercooled liquid.

While the theory of Tanget a

130f
120f

110}
128 provides a framework

El_:iOO' to understand many aspects of the relaxation behavior re-
i ported here, it will be worthwhile to develop a mode cou-
oor pling theory to understand the effect of orientational relax-
sob ation on viscoelasticity. Work in this direction is under
progress.
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