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Recent optical Kerr effect experiments have shown that orientational relaxation of nematogens
shows a pronounced slow down of the response function at intermediate times and also a power law
decay near the isotropic-nematic (I -N) transition. In many aspects, this behavior appears to be
rather similar to the ones observed in the supercooled liquid near-glass transition@Canget al., J.
Chem. Phys.118, 9303 ~2003!#. We have performed molecular dynamics simulations of model
nematogens~Gay-Berne with aspect ratio 3! to explore the viscoelasticity near theI -N transition
and also investigated the correlation of viscoelasticity~if any! with orientational relaxation. It is
found that although the viscosity indeed undergoes a somewhat sharper than normal change near the
I -N transition, it is not characterized by any divergencelike behavior~like the ones observed in the
supercooled liquid!. The rotational friction, on the other hand, shows a much sharper rise as theI -N
transition is approached. Interestingly, the probability distribution of the amplitude of the three
components of the stress tensor showsanisotropynear theI -N transition—similar anisotropy has
also been seen in the deeply supercooled liquid@Phys. Rev. Lett.89, 25504~2002!#. Frequency
dependence of viscosity shows several unusual behaviors:~a! There is a weak, power law
dependence on frequency@h8(v);v2a# at low frequencies and~b! there is a rapid increase in the
sharp peak observed inh8(v) in the intermediate frequency on approach to theI -N transition
density. These features can be explained from the stress-stress time correlation function. The angular
velocity correlation function also exhibits a power law decay in time. The reason for this is
discussed.
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I. INTRODUCTION

A system of rodlike molecules with aspect ratio larg
than certain minimum value is known to undergo a we
first-order phase transition from orientationally disordered
orientationally ordered~but positionally disordered! nematic
state at low temperature and/or at high density.1,2 The orien-
tational dynamics of the rodlike molecules near the isotrop
nematic (I -N) phase transition shows certain anomalies,
most notable being the pronounced temporal power law
cay in the collective orientational correlation function d
covered recently by Fayer and co-workers.3–8 A mode cou-
pling theory analysis explains this power law decay in ter
of large and rapidly growing orientational correlation ne
the I -N transition.7,8 Theoretical analysis has quantified th
growth of orientational pair correlation in an adequa
manner.9 A density functional theory analysis of theI -N
transition has also been presented.10,11

Several computer simulations have studied orientatio
dynamics near theI -N transition.12–17 Earlier studies have
found the signature of slowdown of orientational rela
ation in general. However, the simulations were not carr
out for sufficiently long time to observe the decay of t
relaxation function near theI -N transition. Very long time
molecular dynamics~MD! simulation of present author
in a system of Gay-Berne ellipsoids has observed the po

a!Electronic mail: jose@sscu.iisc.ernet.in
b!Electronic mail: bbagchi@sscu.iisc.ernet.in
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law relaxation of the collective orientational correlatio
function.17

An important transport property of the liquid is its she
viscosity. In the nematic phase, the shear viscosity is an
tropic. In a recent molecular dynamics simulation of t
shear viscosity of Gay-Berne ellipsoids of aspect ratio
Smondyrevet al. calculated the temperature dependence
rotational and shear viscosities. They obtained tempera
variation of Miesowicz viscosities18,19which were defined as
combinations of the components of shear viscosity but n
they are defined in the nematic phase with respect to
direction of the director.

Computer simulations and theoretical analysis show t
in dense, isotropic, liquid, the shear viscosity may be
pressed as20–23

hab~ t !5hab
B ~ t !1hab

r ~ t !, ~1!

where hab
B (t) is the short time part that arises from sta

correlations which can be approximated by a Gauss
function23 andhab

r (t) is the long time part that arises from
the density mode contribution. An analytic expression for
hab

r (t) can be obtained from mode-coupling theo
~MCT!,22

hab
r ~ t !5

kBT

60p2 E
0

`

dkk4
@S8~k!#2

@S~k!#4 E
0

`

dt@F~k,t !#2, ~2!

http://dx.doi.org/10.1063/1.1790871
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whereS(k) andS8(k) are structure factor and its first deriva
tive, respectively, andF(k,t), the intermediate scatterin
function, is defined by the following relation:

F~k,t !5
1

N
^r~2k,0!r~k,t !&, ~3!

wherer(k,t)5( i exp@2ik•r i(t)#. In the supercooled liquid
the decay of the dynamic structure factor slows down. T
leads to an increase in the value of the shear viscosity
discussed by Geszti, this increase in viscosity in turn furt
slows down the relaxation ofF(k,t). This feedback mecha
nism leads to rapid increase of viscosity in the supercoo
liquid state. An important point here is that the frequen
dependent viscosity is expected to closely follow the f
quency dependence of the dynamic structure factor whic
the Fourier transform of the intermediate scattering functi

It is known that the rotational correlation function ra
idly slows down and indeed shows anomalous behavior n
the I -N transition. Therefore, it seems natural to ask whet
the slow down in orientational relaxation has any signific
effect on the variation of shear viscosity near the transit
region. In this work, the shear viscosity of the a system
Gay-Berne ellipsoids is calculated along the density a
nearI -N transition. The shear viscosity of the system sho
a rise, sharper than normal, as theI -N transition is ap-
proached along the density axis. However, shear visco
does not diverge near theI -N transition. In fact, the emer
gence of long range orientational correlation near theI -N
transition is marked by the appearance of an anisotrop
the stress distribution function. Different components of
stress-stress correlation function also behave differently
to the anisotropy caused by the orientational ordering. T
angular velocity autocorrelation function shows a power l
decay in the long time, with an exponent21.2 near theI -N
transition. This result differs from the hydrodynamic pred
tion of 25/2 indicating that asymptotic long time decay h
not been attained in simulations.24–27

In an important work, Tang, Evans, Mason, and All
have earlier investigated viscoelasticity of hard ellipsoids28

Both generalized kinetic theory and computer simulatio
were used. These authors observed several anomalies i
frequency dependence of the real part of the frequency
pendent viscosity:~i! The decrease of viscosity with fre
quencyv at low frequencies is very weak and can be d
scribed by a power law.~ii ! The viscosity shows a
pronounced minimum at intermediate frequencies not
served in atomic liquids. The authors explained the la
result as due to the coupling between the stress and the
lective orientation. Tanget al.also considered the applicabi
ity of the Debye-Stokes-Einstein relation between rotatio
diffusion and viscosity. The viscosity approaches a cons
value at high frequency, which is due to hard ellipsoid nat
of the interactions.

The present simulations reveal somewhat different
quency dependence of shear viscosity near the isotro
nematic phase transition. The weak frequency dependen
low frequency exists and so does the minimum at somew
higher frequency. The notable differences are a peak at
intermediate frequency and the approach to zero at very l
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frequency. The latter is of course expected for a continu
potential. The rest can be understood from an analysis of
stress time correlation function. The weakv dependence a
low v can be traced back to a power law dependence of
stress time correlation function~STCF! while the minima
and the maxima are due to damped oscillations in ST
~note the negative region in the stress TCF!. The frequency
dependence of shear viscosity looks similar to that of
namic structure factor of dense liquids,21 except the rapid
sharpening of the maximum is clearly a signature of
translation-rotation coupling. In addition, we find that th
hydrodynamic relation between the rotational friction and
viscosity breaks down completely on approach to theI -N
phase transition.

The organization of the rest of the paper is as follows:
the following section, we present the basic theoretical
pressions required for the computation of the viscoelasti
of the system. In Sec. III, we discuss the system and
simulation details. In Sec. IV, we present the results a
discuss their significance. Section V concludes with a f
remarks.

II. BASIC THEORETICAL EXPRESSIONS

Consider a system ofN nematogens. The instantaneo
state of the system in the phase space is specified by pos
r i , linear momentumpi , orientationVi , and angular mo-
mentumgVi

, wherei 51, . . . ,N. Theab component of shea
viscosity of this system in the isotropic phase is given by
relation.18,21

hab5
V

kBT E
0

`

dt^sab~ t !sab~0!&, ~4!

whereV is the volume of the system,kB is the Boltzmann
constant,T is the temperature, andsab is the shear stres
tensor.29,30 Shear stress tensor is defined as

sab5
1

V S (
i

pa i pb j

m
1(

i
(
j . i

r a i j f b i j D , ~5!

where r i j and f i j are relative position and force between
pair of molecules, respectively. The indicesa,b5x,y,z and
aÞb. The normalized stress-stress correlation function
the system is given by the expression

Cab
s ~ t !5

^sab~ t !sab~0!&

^sab~0!sab~0!&
. ~6!

Viscoelasticity of the system is given by frequency depe
dent viscosityhab(v) ~Refs. 28 and 31! which is defined by
the Fourier transform ofhab(t). Viscoelasticity can be de
composed into real and imaginary parts,

hab~v!5hab8 ~v!1 ihab9 ~v!. ~7!

Then the real part of the frequency dependent viscosity
given as

hab8 ~v!5
V

kBT E
0

`

dt^sab~ t !sab~0!&cosvt. ~8!
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Another important correlation function which is a dire
measure of the building up of orientational order is angu
velocity autocorrelation function. The angular velocity au
correlation function of a system of ellipsoids is given as

Cv~ t !5
^vi~ t !•vi~0!&

^vi~0!•vi~0!&
, ~9!

where vi is the angular velocity of thei th molecule. The
relation between the rotational friction and the angular
locity autocorrelation function in the Laplace plane is giv
by the relation32,33

Cv~z!5
kBT

I @z1zR~z!#
. ~10!

We now present the details of the simulation.

III. SYSTEM AND SIMULATION DETAILS

Molecular dynamics simulations have been carried
for a system of 576 Gay-Berne34,35 ellipsoids at temperature
T* 51 near I -N transition in a microcanonical ensembl
The form of the modified intermolecular Gay-Berne poten
used in the simulation is14–17,30

U54e~ r̂ ,uW i ,uW j !F S ss

r 2s~ r̂ ,uW i ,uW j !1ss
D 12

2S ss

r 2s~ r̂ ,uW i ,uW j !1ss
D 6G , ~11!

where r̂ is the unit vector that passes through the cente
mass of a pair of molecules;uW i anduW j unit vectors that pass
through the major axis of a pair of ellipsoidal moleculese
ands give the strength and range of interaction,

s~ r̂ ,uW i ,uW j !5ssF12
x

2 S ~uW i• r̂ 1uW j• r̂ !2

11x~uW i•uW j !
1

~uW i• r̂ 2uW j• r̂ !2

12x~uW i•uj !
D G ,
~12!

ss is double of the minor axisb; k gives molecular elonga
tion ~aspect ratio!, which is the ratio of end-to-end to side
to-side diameters; andk5se /ss . The aspect ratio of ellip-
soids used in this simulation is 3. Herex is defined ask as

x5~k221!/~k211!,

e~ r̂ ,uW i ,uW j !5e0@12x2~uW i•uW j !#
2 1/2F12

x8

2 S ~uW i• r̂ 1uW j• r̂ !2

11x~uW i•uW j !

1
~uW i• r̂ 2uW j• r̂ !2

12x~uW i•uj !
D G2

, ~13!

wheree0 is the energy parameter andx85(Ak821)/(Ak8
11) (k85es /ee gives the strength of interaction which
side-to-side to end-to-end well depths!. The value ofk8 used
in the simulation is 5.15,18,36The scaling used for moment o
inertia isI * 5I /ms0

2. The density is scaled in the simulatio
as r* 5rs0

3 and the temperature is scaled asT* 5kbT/e0 .
The equation of motion is integrated with reduced time@ t*
5(ms0

2/e0)1/2# steps withDt50.002t* . The ellipsoid used
in the simulation has minor axisb50.5 and major axisa
51.5 ~in reduced units!. The simulations are done at the sta
points near the pretransition region of phase diagram, sh
r
-

-

t

l

f

n

in Fig. 1 The translational and rotational motions are solv
using leap-frog algorithm. The order parameter changes
matically in this system after density increases beyond
This is in accord with previous simulations.17

The simulation starts from an equilibrated configurati
of ellipsoids. Initial configuration of the ellipsoids is gene
ated from a cubic lattice and then the simulation is run
two-hundred thousand steps to obtain the equilibrium c
figuration. During the equilibration steps the temperature
scaled so that the system is in equilibrium at this particu
temperature. Four million production steps are used for c
culation of viscosities.

In Fig. 1, we show the phase diagram of ellipsoids w
aspect ratio 3 interacting with Gay-Berne potential. In t
diagram we also show by arrow the densities studied at t
perature (T* 51.0). Fig. 2 shows the variation of order pa
rameterS ~Ref. 17! with density. We now present the result

IV. RESULTS AND DISCUSSION

The simulations have given rise to a host of importa
results, many of which were not anticipated earlier. Some
the results have been reported in a recent communica
where we discuss the emergence of the power law in
orientational relaxation. In this work, we concentrate on
friction and the viscosity of the liquid as theI -N transition is
approached and on related several dynamical quantities.

A. Shear viscoelasticity and stress-stress time
correlation function

It has been discussed elsewhere that the orientati
correlation functions slow down dramatically as theI -N
transition is approached from low densities.7,8,17 The varia-
tion of shear viscosity near theI -N transition is another sub
ject of interest. It is of course known that viscosity does n
exhibit any divergence near theI -N transition. It is also

FIG. 1. The phase diagrams of the Gay-Berne ellipsoids are given here
simulations are carried out at the temperature and densities indicated b
arrow.
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known that the viscosity becomes anisotropic near the t
sition. However, a detailed study of the emergence of
anisotropy and the variation of viscosity seems to be ab
in the literature.

In Fig. 3 we show the variation of shear viscosity wi
density. There are several points of interest about this fig
First, the increase in viscosity with density becomes sha
as theI -N transition is approached. However, this growth
rather mild. Second point to note is that beyond the transi
point, the viscosity becomes anisotropic. The emergenc
anisotropy can be better understood by studying the p
ability distribution of the mean square stress. In Fig. 4
show the distribution at three densities. Note that the dis
bution is fully isotropic at low densities but becomes anis
tropic as the transition is approached. This anisotropy is
portant in determining the viscous response of the liquid. T
anisotropy in the values of different components of viscos

FIG. 2. The variating in the order parameter with density is shown in
figure.

FIG. 3. The viscosity of a system of Gay-Berne ellipsoids is plotted aga
density in the isotropic phase. When theI -N transition is approached, vari
ous components of viscosity increase and they become anisotropic.
n-
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nearI -N transition is clearly shown in Table I. We note th
the stress tensor also becomes anisotropic in the deeply
percooled liquid.37 Although this analogy is rather nice, th
origin of the two is obviously quite different.

In Fig. 5 we show the decay of the stress-stress ti
correlation function. Note the negative region and the sl
long time decay. We shall return to this point below.

We now discuss the viscoelasticity of the liquid whic
shows several interesting features. In Fig. 6 we show
frequency dependence of the viscosity. There are three
usual features of this figures:

~a! The fall of viscosity with frequency is nonlinear an
unusually weak at low frequencies. It is clear that the f
quency dependence obeys a power law dependence here
a small exponent. Such weak frequency dependence of
cosity has been observed earlier by Tanget al.28 and is re-
lated to the long time power law decay of the stress ti
correlation function.

~b! There is a shallow minimum at somewhat high

e

st

FIG. 4. The distribution of three different components of stress@sxy ~dashed
line!, sxz ~continuous line!, andsyz ~dot-dashed line!# is shown here. The
top figure is at densityr* 50.20 ~isotropic phase!; the middle figure is at
densityr* 50.315~nearI -N transition!; and the bottom figure is at densit
r* 50.34 ~nematic phase!.

TABLE I. Values of viscosities starting from very low densities to densit
nearI -N transition.

Density hxy* hxz* hxz*

0.05 0.07 0.07 0.07
0.10 0.11 0.11 0.11
0.15 0.20 0.20 0.20
0.20 0.38 0.38 0.37
0.25 0.64 0.64 0.65
0.3 1.16 1.05 1.07
0.31 1.53 1.31 1.32
0.32 1.75 1.42 1.72
0.34 1.59 3.65 1.26
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frequency, near the reduced value of frequency equa
unity.

~c! There is a pronounced peak near a value of redu
frequency which is'20. In real units, the peak is aroun
frequency 1013 s21. We now turn to the possible interpreta
tion of this interesting behavior.

The explanation, of course, lies in the time depende
of the stress-stress TCF shown in Fig. 5. Note the slow de
in the long time. In an interesting paper, Zwanzig pointed

FIG. 5. Components of the normalized stress-stress correlation function~the
dashed line gives thexy component, the dashed-dotted line gives thexz
component, the dotted line gives theyz component, and the continuous lin
gives the average! is plotted here at three densities. The top figure is
density r* 50.20 ~isotropic phase!; the middle figure is at densityr*
50.315 ~near I -N transition!; and the bottom figure is at densityr*
50.34 ~nematic phase!.

FIG. 6. The frequency dependent viscosity is plotted against the frequ
at different densities nearI -N transition. The inset gives the plothab(v) vs
ln(v). This shows the low frequency characteristics ofhab(v).
to

d

e
ay
t

the correlation between the slow long time decay of
stress-stress TCF and a nonanalytic frequency dependen
the viscosity.38 That is, if the long time tail decays ast23/2,
then the frequency dependence is given by

h8~v!5h~0!2Av1/21O~v!. ~14!

When we fit the long time part of the stress TCF to a fo
t2a, we find a value ofa;1.1 for the exponenta. The fit is
shown in Fig. 7. The value of the exponent does provide
explanation for the weak frequency dependence at small
quencies ofhab8 (v).

The minimum inhab(v) at small frequencies seems
originate from the negative region in the stress-stress T
Note that the negative region ofCab

s (t) becomes more pro
nounced as theI -N transition is approached, so does t
peak inhab(v). The maximum is due to damped oscilla
tions in the stress time correlation function. Note the clo
similarity between the frequency dependence of visco
and that of dynamics structure factor,21 signifying the general
validity of the mode coupling theory expression relati
STCF to the dynamic structure factor. The sharp peak
h~v! occurs atv* '20 which is a rather large frequency. I
real terms, the value of the frequency at the peak is ab
1013 s21. The sharp increase in the peak value as theI -N
transition is approached from low density indicates the f
mation of a nearest neighbor cage giving rise to high f
quency, rattling-type motion. Such a cage formation is als
prerequisite for glass transition. This cage can also be
garded as a manifestation of translation-rotation coupling
cause the cage is essentially due to local orientatio
ordering.

B. Angular velocity correlation

In Fig. 8 we show the time dependence of the angu
velocity TCF. Note the slow decay in the long time, follow

t

cy

FIG. 7. The tail of the stress-stress correlation function is fitted to
functiony50.0031t21.1 ~the continuous line gives the fit and the dashed li
gives the stress-stress correlation function! at densityr* 50.315. The expo-
nenta obtained from the fit is 1.1.
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ing the negative dip at short times. The rise of the veloc
TCF after the minimum has been fitted to a function of t
following form:

^v~0!v~ t !&'2a1 exp~2a2t !2a3t2a4. ~15!

The fit has been shown in Fig. 9. The power law exponen
about 1.2. Hydrodynamic prediction of long time power la
exponent is much larger, equal to 5/2.24–27 This point de-
serves further study. It is possible that the long time de
observed in simulation isnot the true hydrodynamic long
time decay—instead an intermediate time decay one o
finds in the mode coupling theory which arises from t
coupling with the density mode.

FIG. 8. The angular velocity autocorrelation function is plotted at differ
densities. As the density of the system increases the depth of backscat
region of the angular velocity autocorrelation function becomes deep.
is clearly shown in the inset where the negative region of the angular
locity autocorrelation function is highlighted.

FIG. 9. The tail of the angular velocity autocorrelation function fitted to
power law~the continuous line gives the fit and the dashed line gives
stress-stress correlation function!. The exponenta obtained from the fit is
1.2 at densityr* 50.315.
y

is

y
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The last point can be further substantiated if one uses
MCT form of the friction32,33,39in Eq. ~10!. The expression
for the single particle rotational friction can be written as

zR~z!5zbare1
r

2~2p!4 E
0

`

dte2ztE
0

`

dkk2

3 (
l 1l 2m

cl 1l 2m
2 ~k!Fl 2m

s ~k,t !, ~16!

where cl 1l 2m(k) is the l 1 ,l 2 ,mth coefficient of the two-
particle direct correlation function and

Flm
s ~k,t !5^e2 ik•rYlm@Vi~0!#Ylm@Vi~ t !#& ~17!

is the single particle orientational correlation function. O
finds nearly perfect agreement at long times, substantia
the logic presented here. However, a more complete calc
tion is required to fully reproduce the angular velocity co
relation curve.

The initial decay of the angular velocity correlatio
function is fast and inertial. This may be due to rattling m
tion of the ellipsoids within its orientational cage~cone!
formed by the nearest neighbors. Such a motion can exp
the peak in the viscoelasticity. Of course the same rattl
motion will be present in the translational motion.

C. Rotational friction on the ellipsoids

We have discussed earlier that the single particle ori
tational correlation function exhibits power law decay beha
ior at intermediate times. In Fig. 10 we show the dens
variation of the zero frequency friction at the temperatu
T* 51.0. Note the rapid rise in the friction as the transiti
density is approached.

Mode coupling theory predicts that due to the emerge
of the long range orientational density correlation, the ro
tional friction should show a strong frequency dependen
Here the frequency is the Laplace frequency. In Fig. 11
show the frequency dependence of rotational friction at s

t
ing
is
e-

e

FIG. 10. The zero-frequency friction is plotted against density. The frict
rapidly increases asI -N transition is approached along the density axis.
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eral densities. Note the increasingly faster rise of the frict
at low frequencies as theI -N transition is approached.

D. Comparison between viscosity
and rotational friction

While the friction shows a sharp increase near theI -N
transition, the same is absent for viscosity. In Fig. 12,
have plotted the ratio ofzR /h. The figure shows a hydrody
namiclike, density independent~or weakly dependent! be-
havior at low densities which gives away to a strong var
tion as theI -N transition point is approached. This is th
manifestation of the strong growth of friction near theI -N
transition where viscosity shows only weak dependence
density. Thus, the Debye-Stokes relation between rotatio
friction and viscosity breaks down near theI -N transition.

V. CONCLUDING REMARKS

Let us first summarize the main results of this paper.
have carried out molecular dynamics simulations of a sys

FIG. 11. The frequency dependent friction is plotted at different densiti

FIG. 12. The ratio of zero-frequency friction to the average viscosity
plotted against the density nearI -N transition.
n

e
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of Gay-Berne ellipsoids of aspect ratio 3 near its isotrop
nematic phase transition. We have calculated the viscoela
properties of the system. While the rotational friction sho
a sharp rise in its value as the isotropic-nematic phase t
sition is approached, the viscosity shows only a mild
crease. The frequency dependent viscosity shows interes
anomalies—a weak power-law dependence at low frequ
cies and a sharp peak at the intermediate frequency; the
are separated by a shallow minimum. While the obser
behavior for Gay-Berne fluids near theI -N transition is yet
to be understood from a quantitative theory the anomalie
the viscoelastic properties can be qualitatively underst
from the stress-stress time correlation function which sho
a negative dip at short times and a power law decay at l
times. The stress becomes anisotropic near the transition
gion which is expected.

One of the motivations of the present study was the
cent work by Canget al. who showed that Kerr respons
near theI -N transition is surprisingly close to that in supe
cooled liquids.4,5 We find that although the orientational co
relation function indeed shows power law decay, viscos
and viscoelasticity do not show similar behavior. This is b
cause the origin of the slow decay is completely different
the two cases. In supercooled liquid, the slow decay is
lieved to arise from a nonlinear feedback mechanism
tween the density and the stress relaxation, where the s
density relaxation occurs at nearest neighbor distance~near
the first peak of the static structure factor!. In the present
system, the slowness arises from the long range orientati
correlation. Nevertheless, the frequency dependence of
cosity already shows behavior similar to the ones observe
dense liquids.

There is one more similarity between the present sys
and supercooled liquids. The frequency dependent visco
shows a sharp increase in its peak value at intermediate
quency as theI -N transition is approached from low densit
This clearly indicates formation of a nearest neighbor ca
giving rise to high frequency rattling-type motion. Such
cage formation is also a prerequisite for glass transition.

This strong similarity between the two phenomena
really intriguing. The main reason appears to be the ra
growth in the value of the friction and the memory functio
of the stress time correlation function. Mode coupling theo
shows that the rotational friction grows approximately
1/Az at low frequencies (z). This gives rise to the power law
decay. A similar rapid growth in the friction also takes pla
in the supercooled liquid.

While the theory of Tanget al.28 provides a framework
to understand many aspects of the relaxation behavior
ported here, it will be worthwhile to develop a mode co
pling theory to understand the effect of orientational rela
ation on viscoelasticity. Work in this direction is unde
progress.
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