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There has been renewed interest in the frequency dependent specific heat of supercooled liquids in
recent years with computer simulation studies exploring the whole frequency range of relaxation.
The simulation studies can thus supplement the existing experimental results to provide an insight
into the energy landscape dynamics. We here investigate a kinetic model of cooperative dynamics
within the landscape paradigm for the dynamic heat capacityC(v,T) behavior. In this picture, the
b-process is modeled as a thermally activated event in a two-level system and thea-process is
described as ab-relaxation mediated cooperative transition in a double well. The model resembles
a landscape picture, apparently first conceived by Stillinger@Science267, 1935~1995!#, where an
a-process is assumed to involve a concerted series ofb-processes. The model provides a description
of the activated hopping in the energy landscape in close relation with the cooperative nature of the
hopping event. For suitable choice of parameters, the model predicts a frequency dependent heat
capacity that reflects the two-step relaxation behavior. The separation between the two peaks grows
as the temperature drops, indicating the stringent constraint on thea-process due to the
cooperativity requirement. The temperature dependence of the position of the low-frequency peak,
due to thea-relaxation, shows a non-Arrhenius behavior as observed experimentally. Theshapeof
thea-peak is, however, found to be temperature independent. The high-frequency peak appears with
considerably larger amplitude than thea-peak. We attempt a plausible reason for this observation
that is in contrast with the general feature revealed by the dielectric spectroscopy. The relative
amplitudes of theb- and a-peaks in the present framework are found to depend on several
characteristic features of the energy landscape, including the extent of cooperativity requirement for
the a-relaxation and the asymmetry of the double well.
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I. INTRODUCTION

Understanding the complex relaxation phenomena in
percooled liquids has motivated much scientific efforts o
decades.1–3 The measurement of frequency dependent s
cific heat, pioneered independently by Birge and Nagel4 and
by Christensen5 in the year 1985, opened up another a
proach to this goal. Zwanzig subsequently showed on
basis of linearized hydrodynamics thatcp(v), the frequency
dependent specific heat at constant pressure, could b
rectly related to the frequency dependent longitudinal visc
ity h l(v).6 The frequency dependent specific heat has, h
ever, continued to get explored from both experimenta7–9

and theoretical10–14 perspectives in anticipation that specifi
heat spectroscopy would provide an insight into the ene
landscape dynamics.

In practice, one measures the frequency dependent
cific heat in the linear response regime following an arbitr
small thermal perturbation that takes the system sligh
away from the equilibrium.4 cp(v) is a linear susceptibility
describing the response of the system to this perturbat
One can, however, calculate the frequency dependent
cific heat in terms of equilibrium fluctuation of energy fo

a!Author to whom correspondence should be addressed. Electronic
bbagchi@sscu.iisc.ernet.in
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lowing a relevant fluctuation-dissipation theorem derived
plicitly by Nielsen and Dyre for a system whose dynamics
described by a master equation.12 In this work, we do so for
a kinetic model of glassy dynamics that invokes the conc
b-organized-a-process15 within the landscape paradigm.

The measurements of frequency dependent specific
currently suffer from a limitation that frequency range up
104 Hz can only be probed with the presently available e
perimental setup. Therefore, the experimentally obtained
quency spectra capture only thea-relaxation regime of su-
percooled liquids.14 However, Sceidleret al.14 have recently
carried out a computer simulation study of a system t
models amorphous silica, where they could scan the wh
frequency range of interest, revealing the two-peak struc
with a notably dominant high-frequency peak. The high
frequency peak shows only a weak temperature depend
and has been ascribed to the vibrational excitations of
system. In their work,14 they have applied the Mori–Zwanzi
projection operator formalism and made use of an ex
transformation formula, due to Lebowitzet al.,16 to derive a
relation between the frequency dependent specific h
cv(v) and the autocorrelation function of the temperatu
fluctuations in the microcanonical ensemble. This relatio
ship, which is identical to the one derived independently
Nielsen13 in terms of a fluctuation-dissipation theorem, h
il:

http://dx.doi.org/10.1063/1.1829251
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allowed the determination ofcv(v) from computer simula-
tions in equilibrium. A mode-coupling theory~MCT! based
calculation has also shown the two-step relaxation beha
in the predicted frequency spectrum of the specific hea17

The dominance of the high-frequency peak is, however,
evident in this work.

The measurements of frequency dependent specific
in specific heat spectroscopy supplemented by comp
simulation studies may prove to be useful in providing
sight into the landscape dynamics of supercooled liqu
The landscape paradigm18–21 has been widely used to eluc
date dynamics of liquids in the supercooled regime. T
framework involves the division of the multidimension
configuration space into so calledmetabasinson the basis of
a transition free-energy criterion. Two vastly different tim
scales thus get entailed, the smaller one due to mot
within the metabasins and the longer one due to excha
betweenthe metabasins involving much larger free-energy
activation. In particular, theb-processes are visualized
originate fromactivated dynamics within a metabasin, while
escape from one metabasin to anotheris taken to describe an
a-process.20 See Fig. 1 for a schematic representation of
two processes. It is important to recognize that such a
scription ofb-process within the landscape paradigm cor
sponds to what is known as the Johari–Goldstein relaxa
or ‘‘slow’’ b-process that is believed to involve loc
rearrangements.19,20,22This b-process is so called to distin
guish it from an even fasterb-process that is predicted by th
mode-coupling theory.23–25 Note that the breakdown of th
MCT is ascribed to the dominance of relaxation by the th
mally activated hopping events,26,27 which are unaccounted
for in the ideal version of MCT. Recent computer simulati
studies28–31 have further revealed that hopping is a high
cooperative phenomenon promoted by many body fluc
tions; hopping of a tagged particle is often preceded
somewhat larger than normal, but still small amplitude m
tion of several of its neighbors.31 A rather different stringlike
cooperative motion has also been found to occur in a mo
glassforming liquid.32

In the present work, we employ a kinetic model
glassy dynamics that attempts to provide a description of
activated hopping within the landscape paradigm in cl
connection with the cooperative nature of the hopping ev
We follow a procedure, as outlined by Nielsen and Dyre,12 to
compute the frequency dependent heat capacityC(v,T) for
our model system. For suitable choice of parameters,

FIG. 1. A schematic representation of the potential energy landscape s
ing motions within and between metabasins.
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model predicts a frequency dependent heat capacity that
tures many of the features of the two-step relaxation beh
ior in supercooled liquids. Some of the predictions of o
model are in good qualitative agreement with the availa
experimental and computer simulation results.

The outline of the paper is as follows: In the next secti
we describe the model. Section III provides the theoreti
treatment. We present the results along with discussion
Sec. IV. Section V concludes with a summary of the resu
and a few comments.

II. DESCRIPTION OF MODEL

We model ab-process as an activated event in a tw
level system~TLS!. We label the ground level of a TLS as
and the excited level as 1. The waiting time before a tran
tion can occur from the leveli (50,1) is assumed to be ran
dom and is given by the Poissonian probability density fu
tion:

c i~ t !5
1

t i
exp~2t/t i !, i 50,1, ~1!

wheret i is the average time of stay at the leveli. If pi(T)
denotes the canonical equilibrium probability of the leveli of
a TLS being occupied at temperatureT, the equilibrium con-
stantK(T) for the population in two levels at temperatureT
is given by the following relation that obeys the detail
balance:

K~T!5
p1~T!

p0~T!
5

t1~T!

t0~T!
5exp@2e/~kBT!#, ~2!

wheree is the energy separation between the two levels i
TLS, andkB is the Boltzmann constant. Here the level 0
taken to have a zero energy.

Within the framework of the present model, a metaba
is characterized by anNb number of such noninteractin
two-level systems~TLSs!. A given minimum number among
the total numberNb of TLSs must simultaneously be in th
excited levels for the occurrence of ana-process. We here
concentrate on two adjacent metabasins, which we label
and 2 and together call a double well. Figure 2 show
schematic diagram of two adjacent metabasins with illus
tion of dynamics within and between them. The respect
numbers of TLSs that comprise the metabasins areNb

(1) and

w-
FIG. 2. A schematic representation of the model under consideration.
horizontal lines within a well represent different excitation levels. Note t
the energy levels are in general degenerate, as they correspond to the s
the energies of individual TLSs in the collection.
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(2) . For a collection ofNb

( i ) ( i 51,2) TLSs, a variablez j
i (t),

( j 51,2,...,Nb
( i )) is defined, which takes on a value 0 if at th

given instant of timet the level 0 of the TLSj is occupied
and 1 if otherwise.z j

i (t) is thus an occupation variable. Th
collective variablesQi(t) ( i 51,2) are then defined as

Qi~ t !5(
j 51

Nb
~ i !

z j
i ~ t !. ~3!

Qi(t) is therefore a stochastic variable in the discrete inte
space@0,Nb

( i )#. Qi(t) serves as an order parameter for d
namical change involving metabasini. Herean a-process is
assumed to occur only when all theb-processes (TLSs) in
metabasin are simultaneously excited, i.e., when Qi5Nb

( i ) .
There is a finite rate of transitionk from each of the metaba
sins when this condition is satisfied. Within the gene
framework of the model, the double well becomes asymm
ric whenNb

(1)ÞNb
(2) , as shown in Fig. 2.

It is worthwhile to note the correspondence of t
present description with real physical processes occurrin
glassformers. Thea-process may correspond to large-sc
hopping of a particle. For this hopping to occur, howev
many small reorientations/rearrangements/displacements
required simultaneously among its neighbors. The activa
dynamicswithin a TLS may well represent small rotations.10

In the case of polymer melts which exhibit glassy behav
theb-relaxation may involve the motion of side chains. Th
picture apparently differs from the one drawn by Dyre33

who has argued that large-angle rotations are ‘‘causes’’
small-angle rotations are ‘‘effects.’’ The present pictu
however, contains Dyre’s one in the sense that small-an
rotations indeed occur following a large-scale jump mot
for the completion of relaxation as evident in Fig. 2. T
present model is built on a rather symmetrical picture t
also necessitates small-angle rotations for a large-angle
tion to occur.

III. THEORETICAL TREATMENT

From a theoretical point of view, the treatment of fr
quency dependent heat capacity can be carried out by
ploying the linear response assumption. Following Niels
and Dyre,12 the frequency dependent heat capacityC(v,T)
of our system at temperatureT can be given by

C~v,T!5
^E2~T!&

kBT2
2

s

kBT2 E0

`

dte2st^E~ t,T!E~0,T!&,

~4!

wheres5 iv, v being the frequency of the small oscillatin
perturbation,i 5A21, and the angular brackets denote
equilibrium ensemble averaging.E(t,T) stands for the tota
energy of the system at timet and temperatureT and is given
by

E~ t,T!5 (
n50

Nb
~1!

P1~n;t,T!~Nb
~2!2Nb

~1!1n!e

1 (
n50

Nb
~2!

P2~n;t,T!ne. ~5!
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Here the lowest level of the well 2 is taken to have ze
energy andPi(n;t,T) denotes the probability that the sto
chastic variableQi takes on a valuen in the ith well at time
t and temperatureT. The evolution of these probabilitie
obeys the master equation34

]Pi~n;t,T!

]t
5@~Nb

~ i !2n11!/t0~T!#Pi~n21;t,T!

1@~n11!/t1~T!#Pi~n11;t,T!

2@~Nb
~ i !2n!/t0~T!#Pi~n;t,T!

2~n/t1~T!!Pi~n;t,T!2kdn,N
b
~ i !Pi~n;t,T!

1kdn,N
b
~ i 61!d j ,i 61Pj~n;t,T!, ~6!

where the ‘‘1’’ and ‘‘ 2’’ signs in the indices of the Kro-
necker delta are fori 51 and 2, respectively.

One can have the following compact representation
the set of equations given by Eq.~6! for all possiblen and i
values

]P~ t,T!

]t
5A~T!P~ t,T!, ~7!

where P1(n;t,T) for n50,1,...,Nb
(1) and P2(n;t,T) for n

50,1,...,Nb
(2) together comprise the elements of the colum

vector P(t,T) and A is the transition matrix of orderN
5Nb

(1)1Nb
(2)12. If GT( i ,tu j ,0) be the Green’s function tha

gives the probability to be in the statei at a later timet given
that the system is in the statej at timet850, the temperature
being kept constant at temperatureT, the matrix of Green’s
functions also satisfies the rate equation

dGT~ t !

dt
5A~T!GT~ t ! ~8!

with the initial conditionGT(0)5I , whereI is the identity
matrix of orderN. In terms of Green’s functions, one ca
then rewrite the energy autocorrelation function as

^E~ t,T!E~0,T!&5(
i 51

N

(
j 51

N

GT~ i ,tu j ,0!EiEj Peq~ j ,T!,

~9!

wherePeq( j ,T) is the equilibrium probability of the statej at
T. We write ĜT( i ,su j ) as the Laplace transform o
GT( i ,tu j ,0):

ĜT~ i ,su j !5E
0

`

dte2stGT~ i ,tu j ,0!. ~10!

The frequency dependent heat capacity is then given by

C~v,T!5
^E2~T!&

kBT2

2
s

kBT2 (
i 51

N

(
j 51

N

ĜT~ i ,su j !EiEj Peq~ j ,T!. ~11!

The computational procedure involves the numerical eva
ation of the Green’s functions by an inversion of matrix:

ĜT~s!5~sI2A~T!!21, ~12!
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and that ofPeq(T) from the eigenvector corresponding to th
zero eigenvalue ofA(T). In the next section, we present th
results with discussion and note the relevance of our res

The dynamical response of the system in the pres
framework is expected to be determined by a set of par
eters that includes the numberNb of TLSs in a metabasin
the energy separatione between the two levels of a TLS, th
energy of activatione‡ for barrier crossing within a TLS, the
energy asymmetryD between the two adjacent metabasin
and the critical numberNc of TLSs required to be in the
excited levels at a particular time for thea-relaxation to oc-
cur. The choice of these parameters has been kept simp
this work though at the expense of being ad hoc at leas
some cases. For example, we have takenNc to be equal to
Nb and the value ofe has been taken of the order ofkBTm ,
Tm being the melting temperature. An approximate estim
of Nb has been taken from simulation results.30,31 The value
of the activation energy is a rather difficult guess. We ha
used the guidance provided by an earlier work of ours.15

IV. RESULTS AND DISCUSSION

In Fig. 3, we show the frequency dependence of
imaginary part of the heat capacityC9(v* ,T* ) calculated
for our model system at three different temperatures. T
two-peak structure corresponding to the bimodal relaxa
behavior as conceived in the model is evident at all temp
tures investigated. The peak at high frequenciescorresponds
to the b-relaxation and is remarkably dominant. The low-
frequency peak isdue to thea-relaxation that occurs on a
longer time scale. Note thatthe separation between the po
sition of theb-peak and that of thea-peak grows as tem

FIG. 3. Frequency dependence of the imaginary part of the dynamic
capacityC9(v* ,T* ) for our model system withNb

(1)53 and Nb
(2)55, at

three dimensionless reduced temperaturesT* 50.9 ~solid line!, T* 50.8
~dashed line!, andT* 50.7 ~dotted–dashed line!. TemperatureT is scaled by
the melting temperatureTm to have a reduced temperatureT* 5T/Tm . Fre-
quency is also scaled by the inverse oft1(Tm) to get a dimensionless re
duced frequencyv* 5vt1(Tm). As in the earlier work~Ref. 15! we setk
52.0 in the reduced units, ande52kBTm ande1

‡518kBTm , the latter being
the energy barrier to the transition from the level 1 in a TLS. The prese
of a fixed energy barrier to transition from one level to the another withi
TLS is expected to impart an Arrhenius temperature dependence o
b-relaxation within the present framework. The laboratory glass transi
temperatureTg occurs at a temperature around (2/3)Tm ~Ref. 1!. All tem-
peratures investigated here therefore fall betweenTm and (2/3)Tm . The
same set of parameter values has been used for all calculations in the p
work unless it is specifically mentioned otherwise.
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perature is lowered. This is indicative of the stringent con
straint on thea-process that arises from the cooperativ
requirement.

The features of the two-step relaxation also get reflec
in the frequency spectra of the real part of the heat capa
C8(v* ,T* ) as shown in Fig. 4 at three different temper
tures. This is expected on the basis of the Kramers–Kro
relation that relates the real and imaginary parts. Whene
v21 is on the order of the time scale of a characteris
relaxation process, the system takes up energy inducing
increase in the real part of the heat capacity around
frequency. The dominance ofb-relaxation is again eviden
from a much larger increase at the high frequencies. T
low-frequency limit corresponds to the static heat capacity
the system.

Let us now discuss the temperature dependence of
positions of the peaks as they appear in the frequency spe
of C9(v* ,T* ). The temperature dependence of thea-peak
positionvp,a* (T* ) in the reduced scale is shown in Fig. 5

at
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n
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FIG. 4. Frequency dependence of the real part of the dynamic heat cap
C8(v* ,T* ) for our model system at three reduced temperaturesT* 50.9
~solid line!, T* 50.8 ~dashed line!, andT* 50.7 ~dotted–dashed line!.

FIG. 5. Thea-peak frequencyvp,a* , on a logarithmic scale vs the invers
temperature 1/T* . The solid line and dashed line correspond to two nea
indistinguishable fits to the data with the Vogel–Fulcher–Tammann eq
tion and a three-parameter scaling law~see text!. From the fits,T0,VFT

50.154 andT0,scl50.475 in the reduced units. The inset shows the tempe
ture dependence of theb-peak frequencyvp,b* in a logvp,b* vs 1/T* plot.
The solid line is a linear fit to the data with a slope of 7.912 in the redu
temperature units.
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a logvp,a* (T* ) vs 1/T* plot. The data fit well to
the Vogel–Fulcher–Tammann~VFT! equation: vp,a* (T* )
5v0,VFTexp@2AVFT /(T* 2T0,VFT)#. The small curvature of
the fitted curve is, however, notable and has been obse
experimentally as well.4 As in Ref. 4, we show in Fig. 5 a
second fit to the data with a scaling law:vp,a* (T* )
5v0,scl@(T* 2T0,scl)/T0,scl#. The two fits are nearly indistin
guishable. The inset of Fig. 5 shows the temperature de
dence of theb-relaxation peak positionvp,b* (T* ) in a simi-
lar plot. The linear fit corresponds to the Arrhenius behav
as expected from the supposition of the model.

Since the experiments till date could probe only t
a-relaxation regime of the frequency spectrum, we have
vestigated the features of thea-relaxation peak as predicte
by our model system in a bit more detail. In Fig. 6, w
concentrate on thea-relaxation regime of the frequenc
spectra ofC9(v* ,T* ) at different temperatures to get a
enlarged view of thea-relaxation peak. It is evident that th
area under thea-peak becomes smaller as temperature dro
This implies that the cooperative component of the confi
rational part of the heat capacity diminishes with decreas
temperature. See Ref. 14 for a detailed discussion. Altho
the height and the position of thea-peak have been found t
change with temperature, itsshapeseems to show no suc
dependence. This can be evident if one constructs a ma
plot by scaling both the height of the peak and the frequen
This is demonstrated in the inset of Fig. 6 where we p
C9(v* ,T* )/C9(vp,a* ,T* ) vs log(v* /vp,a* ) at different tem-
peratures for the frequency range of interest. The curve
different temperatures appear to be superimposed on
other with negligible error. It is therefore reasonable to co
clude that the shape of thea-peak here does remain indepe
dent of temperature. The computer simulation study repo
in Ref. 14 makes a similar observation on the shape of
a-peak.

FIG. 6. The frequency spectra of the imaginary part of the dynamic h
capacityC9(v* ,T* ) at different temperatures showing the low-frequen
a-peak only. From the right to the leftT* 50.95, 0.9, 0.85, 0.8, 0.75, 0.7
respectively. The inset shows the same curves, in dotted lines, scaled b
height of the respective peaks vs log(v* /vp,a* ). The solid line is a fit to the
curve forT* 50.7 with a three-parameter equation that is a good freque
domain representation of the time domain Kohlrausch–Williams–W
stretched exponential form. The dashed line is a fit to the same curve
the Debye response function. The curves along with the two fits are ne
indistinguishable. The details of the fit are given in the text. The range
frequency shown here is restricted at the high frequency side due to
presence of theb-peak that leads to a break down of the fitting.
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The results presented here until now have been fo
single set ofNb

(1) , Nb
(2) , e ande1

‡ values. It is important to
know how the predicted results are dependent on the ch
of model parameters, in particular onNb

(1) andNb
(2) , before

one judges the merits of the model. To this end, we h
explored the parameter dependence of the predictions of
model. The two-step relaxation behavior has been found
be revealed in the predicted heat capacity spectra of
model for a few other choices of$Nb

(1) ,Nb
(2)% as well, spe-

cifically, for $4,6%, $5,7%, and$6,8%. For each of these param
eter sets, a similar non-Arrhenius behavior of the tempe
ture dependence of thea-peak position has been observed
shown in Fig. 7. The Vogel temperatureT0,VFT obtained from
the VFT fit shifts to higher values along the series as o
would expect from an increasingly stringent cooperativ
requirement. Although the magnitude of the shift is sma
the trend is quite clear. The shape of thea-peak has also
been found to remain independent of temperature along
series ~data not shown!. For $6,9%, the amplitude of the
a-peak gets diminished to a large extent by the timeT*
50.7 is reached, while the two-peak structure does not
pear at all even atT* 50.95 for $6,10%. The two-step relax-
ation behavior also does not get evident from the predic
dynamic heat capacity spectra in the temperature range
plored here for even$2,6%. It follows therefore that a differ-
ence of 4 inNb

(2) and Nb
(1) with the set ofe and e1

‡ values
used here is large enough to suppress any manifestatio
the two-step relaxation behavior within the present fram
work. On considering varying asymmetry of the two adjace
metabasins, we further make an interesting observation
illustrated in Fig. 8. Here, we have variedNb

(2) with Nb
(1) , e

and e1
‡ held fixed. For a symmetric double well, only on

peak appears in the frequency spectrum of the imaginary
of the dynamic heat capacity. Thea-peak disappears as a
a-process is inconsequential from an energy considera
for the symmetric double well. The amplitude of thea-peak
is the largest with the least asymmetry and gradually dim
ishes with growing asymmetry before it gets suppres
completely. The results suggest that the relative amplitu

at
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FIG. 7. Thea-peak frequencyvp,a* , on a logarithmic scale vs the invers
temperature 1/T* for three different sets of$Nb

(1) ,Nb
(2)% values. For each set

the solid line and dashed line correspond to two nearly indistinguishable
to the data with the Vogel–Fulcher–Tammann equation and a th
parameter scaling law. From the fits,T0,VFT50.174 andT0,scl50.485 for
$4,6% ~top!, T0,VFT50.197 andT0,scl50.496 for $5,7% ~middle!, and T0,VFT

50.203 andT0,scl50.498 for$6,8% ~bottom!.
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of the a-peak may provide an insight into the energy asy
metry between the metabasins in the energy landscape o
system. It may be noted in this context that if theb-processes
are not associated with any energy cost~i.e., e50! even
though being activated events~i.e., with a nonzero energy o
activation e‡ for barrier crossing!, one would expect the
strongly temperature dependent high-frequency peak to
appear.

In the inset of Fig. 6, we have also shown a fit to t
curve forT* 50.7 with a three-parameter equation35 that is a
good frequency domain representation of the time dom
Kohlrausch–Williams–Watts~KWW! stretched exponentia
form. From the fit parameters we obtain the stretching
rameter bKWW50.94. Such abKWW value implies very
weakly nonexponential behavior. In fact, a fit with the Deb
response function that corresponds to a single expone
behavior is found to be reasonable and for some of the o
sets of$Nb

(1) ,Nb
(2)%, it is found to be as good as the one wi

the three-parameter equation with a stretching param
very close to unity. This is reasonable as spatially hetero
neous domains, which is believed to be the primary rea
for the stretched exponential relaxation in supercoo
liquids,36–38 has not been considered in the present calc
tions. The heterogeneous dynamics in different domains
be included either through a distribution ofe ~the separation
between the energy levels within a TLS! or through a distri-
bution of barrier height for transition from one level to th
other within a TLS. When the heterogeneity is included,
exponentbKWW is expected to decrease considerably as
deed found in the treatment of structural relaxation within
similar model where we have considered a distribut
of e.39

The remarkably dominantb-peak as predicted by ou
model merits further consideration. In order to trace back
origin, we note that the constraint of cooperativity on t
a-relaxation allows the system to take up energy o
through the localizedb-processes unless the condition is s
isfied. The system takes up more energy through the ex
tion of individual b-processes~that collectively bring about
thea-process! than thea-process itself which corresponds
a transition from one metabasin to another. This argumen

FIG. 8. The frequency spectra of the imaginary part of the dynamic h
capacityC9(v* ,T* ) at temperatureT* 50.95 for four choices ofNb

(2) with
Nb

(1) kept fixed:~a! $3,3% ~solid line!, ~b! $3,4% ~dotted line!, ~c! $3,5% ~dashed
line!, and~d! $3,6% ~dotted–dashed line!.
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substantiated in Fig. 9, where we focus on the amplitude
the b-peak relative to that of thea-peak in the frequency
spectra of the imaginary part of the dynamic heat capac
Note that thea-peak is not distinctly observed for$1,3% as
the separation between the two peaks is not enough. A
crease in the requirement of cooperativity for thea-process
is found to result in a fall in the relative amplitude of th
b-peak. One can, therefore, define a parameterQhc

ab as the
ratio of the amplitude of theb-peak to that of thea-peak,
which is in general temperature dependent. That is,Qhc

ab(T)
5C9(vp,b ,T)/C9(vp,a ,T). The parameterQhc

ab(T) may
serve as a measure of the cooperativity needed
a-relaxation to take place.

V. CONCLUSION

Let us first summarize the present work. We have e
ployed a kinetic model of glassy dynamics that consid
cooperativity through the constraint ofb-organized-a-
processwithin the landscape paradigm. The two-step rela
ation behavior as conceived in the model gets revealed in
frequency dependent heat capacity of the model for a rea
able range of parameter values. The analysis of the predi
dynamic heat capacity spectra suggests the following em
gent features of our model:~i! The a-peak frequency has a
non-Arrhenius temperature dependence.~ii ! The shape of the
a-peak as it appears in the frequency spectrum of the im
nary part of the dynamic heat capacity is invariant in te
perature.~iii ! The amplitude of theb-peak is considerably
larger than that of thea-peak.

While the first ~the non-Arrhenius temperature depe
dence! of the above conforms to a number of experimen
results, the second one has been observed in a recent
puter simulation study.14 The third one, however, does invit
a few comments. Although a remarkably dominant hig
frequency peak has been reported in Ref. 14, it is rat
ascribed to the vibrational excitations of the system and
likely to be more relevant with the ‘‘fast’’b-process typically
appearing in the mode-coupling theory predictions. The
tivated dynamics with an Arrhenius-type temperature dep
dence characterizing theb-process considered in the prese
work is on the other hand a typical feature of the Joha

at
FIG. 9. The frequency spectra of the imaginary part of the dynamic h
capacityC9(v* ,T* ) at temperatureT* 50.9 for four sets of$Nb

(1) ,Nb
(2)%

values withNb
(2)2Nb

(1) held fixed: ~a! $4,6% ~dotted line!, ~b! $3,5% ~solid
line!, ~c! $2,4% ~dotted line!, and~d! $1,3% ~dotted–dashed line!.
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Goldstein relaxation or ‘‘slow’’b-process.19,20,22A dominant
b-peak with a strong temperature dependence suggests
such ab-peak should be observable in the specific heat sp
troscopy even with its limited frequency range if it is e
plored at low enough temperatures. We, however, note
the experimentally obtained dynamic heat capacity spe
are yet to capture the two-step relaxation behavior e
though dielectric spectroscopy has revealed distinct
peaks for a number of glassformers, and it is rather
b-peak that is the weaker one. An address to this issu
further detail is beyond the scope of the present work.

The present work suggests that the relative amplitude
the two peaks may provide insight into the microsco
mechanism of the relaxation processes in deeply superco
liquids. In view of this, further measurements of frequen
dependent specific heat of various glass forming liquids w
certainly be worthwhile. A recent simulation study by van
et al.40 of computer model of amorphous Ni81B9 has shown
that the hopping mode is not only collective but appears
involve rather large number of neighbors. This study see
to support the picture that coherence among neighbors
prerequisite for large scale hopping. Such a scenario is c
patible with our present picture whereb-process may be
identified with small amplitude motion while hopping is th
jump between the two minima shown in Fig. 2. We furth
argue here that a predominantb-peak would be a characte
istic feature of Stillinger’s picture which assumes
a-process to involve a concerted series ofb-processes.22

Several other comments on the present work are in or
First, the present model can be taken to belong to the clas
kinetically constrained models41 that attempts to provide a
description of glassy dynamics by imposing dynamical c
straints on the allowed transitions between different confi
rations of the system, while maintaining the detailed balan
In particular, our model resembles the models of hierarc
cally constrained dynamics of glassy relaxation, due or
nally to Palmeret al.,42 in the spirit that brings in cooperat
ivity. Second, the high-frequency peak for real liquids
likely to draw contribution fromb-relaxation as well as vi-
brational excitations. In some cases, specifically at low te
peratures close to the glass transition, it is possible that th
two can be sufficiently separated to give rise to an additio
peak in the imaginary part of the frequency dependent s
cific heat. Third, it is imperative to compare the two-pe
structure of the frequency spectrum of the imaginary par
the dynamic heat capacity with its dielectric analog. In co
trary to the prediction our model makes on dynamic h
capacity behavior, it is rather the predominance of
a-peak that has been observed in a vast body of experime
data on dielectric relaxation. While the fluctuation in ener
within the present framework of the model that has an ene
landscape picture at the backdrop translates easily into
calculation of the frequency dependent heat capacity,
model as such does not allow us to calculate the freque
dependence of the dielectric constant. The latter needs
ther development of the model. However, the well-kno
bimodal frequency dependence of the dielectric relaxatio
supercooled liquids can be at least qualitatively underst
from the present description ofb- and a-processes. We es
hat
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sentially follow the description of Lauritzen and Zwanzig43

in assuming that ab-process can be taken to correspond t
two-site angular jump of individual molecules by a sm
angle around some axis. These individual, uncorrelated
gular jumps lead to a partial relaxation of the total elect
momentM (t) of the whole system@note thatM (t) is the
sum of the dipole moment of the individual molecules#. The
dielectric susceptibility spectrum can be obtained from
auto-time correlation function ofM (t) by using the linear
response theory.44 SinceM (t) is a sum of a relatively large
number of individual dipole moments, the former is a Gau
ian Markov process and thus the time correlation function
the b-relaxation mediated part must decay exponentially.
noted earlier, thisb-relaxation mediated decay is incomple
because all the jumps are small and restricted. Thus, it is
to assume the following form for the auto-time correlati
function of M (t),

CM~ t !5^Mb
2&exp~2t/tb!1~^M0

2&2^Mb
2&!exp~2t/ta!,

~13!

where tb and ta are the time scales ofb-relaxation and
a-relaxation, respectively. In the above equation^Mb

2& is the
value by which the mean-square total dipole moment dec
due tob-relaxation alone from the initial value of^M0

2&. The
rest of the decay to zero occurs via thea-process. This sug-
gests that with well separatedtb andta , one would observe
bimodal dispersion. However, the calculation of^Mb

2& would
require a more detailed model than the one attempted h

The present study suggests several future proble
First, it would be interesting to investigate the frequen
dependence of the specific heat of several molecular liqu
of varying fragility in computer simulations. In some case
one should be able to discern a three-peak structure. Sec
it would be also of interest to investigate if the frequen
dependent specific heat can be used to study the so-c
Boson peak which has drawn much attention in rec
times.45 Third, a comparison of the frequency dependence
specific heat with that of the dynamic structure factor
certain model systems would provide us insight to decide
whether the microscopic mechanisms of relaxation vary
different modes. Finally, a generalization of the pres
model or an altogether different model to describe the f
quency dependence of dynamic heat capacity and tha
dielectric response in the same framework would be a wo
while undertaking.
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