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There has been renewed interest in the frequency dependent specific heat of supercooled liquids in
recent years with computer simulation studies exploring the whole frequency range of relaxation.
The simulation studies can thus supplement the existing experimental results to provide an insight
into the energy landscape dynamics. We here investigate a kinetic model of cooperative dynamics
within the landscape paradigm for the dynamic heat cap&ity, T) behavior. In this picture, the
B-process is modeled as a thermally activated event in a two-level system amdptiogess is
described as @-relaxation mediated cooperative transition in a double well. The model resembles

a landscape picture, apparently first conceived by Stillin§eience267, 1935(1995], where an
a-process is assumed to involve a concerted serigsprbcesses. The model provides a description

of the activated hopping in the energy landscape in close relation with the cooperative nature of the
hopping event. For suitable choice of parameters, the model predicts a frequency dependent heat
capacity that reflects the two-step relaxation behavior. The separation between the two peaks grows
as the temperature drops, indicating the stringent constraint onathecess due to the
cooperativity requirement. The temperature dependence of the position of the low-frequency peak,
due to thea-relaxation, shows a non-Arrhenius behavior as observed experimentallgh@peof

the a-peak is, however, found to be temperature independent. The high-frequency peak appears with
considerably larger amplitude than thepeak. We attempt a plausible reason for this observation
that is in contrast with the general feature revealed by the dielectric spectroscopy. The relative
amplitudes of theB- and a-peaks in the present framework are found to depend on several
characteristic features of the energy landscape, including the extent of cooperativity requirement for
the a-relaxation and the asymmetry of the double well.

I. INTRODUCTION lowing a relevant fluctuation-dissipation theorem derived ex-

plicitly by Nielsen and Dyre for a system whose dynamics is

Understanding the complex relaxation phenomena in SUescribed by a master equatinin this work, we do so for

percooled liquids has motivated much scientific efforts over_ .~ . . .
decaded:3 The measurement of frequency dependent spef-i kinetic model of glassy dynamics that invokes the concept

cific heat, pioneered independently by Birge and Nagatl p-organizeda-proces” within the landscape paradlgm_._

by Christensehin the year 1985, opened up another ap- The measurements_of frgquency dependent specific heat
proach to this goal. Zwanzig subsequently showed on thgurrently suffer from a I|m|tat|9n that frequency range up to
basis of linearized hydrodynamics tha{ ), the frequency 104_HZ can only be probed with the presently available ex-
dependent specific heat at constant pressure, could be dqganmental setup. Therefore, the experlmentall){ obtained fre-
rectly related to the frequency dependent longitudinal viscosdU€Ncy spectra c?pture only tlae_relaxatlolq regime of su-

ity 7,(w).® The frequency dependent specific heat has, howpPercooled liquid$? However, Sceidleet al'* have recently
ever, continued to get explored from both experiménfal carried out a computer simulation study of a system that
and theoreticdP~** perspectives in anticipation that specific Models amorphous silica, where they could scan the whole
heat spectroscopy would provide an insight into the energfrequency range of interest, revealing the two-peak structure
landscape dynamics. with a notably dominant high-frequency peak. The high-

In practice, one measures the frequency dependent spiequency peak shows only a weak temperature dependence
cific heat in the linear response regime following an arbitraryand has been ascribed to the vibrational excitations of the
small thermal perturbation that takes the system slightlysystem. In their work? they have applied the Mori—Zwanzig
away from the equilibriurﬁ.cp(w) is a linear susceptibility —projection operator formalism and made use of an exact
describing the response of the system to this perturbatioriransformation formula, due to Lebowiet al.® to derive a
One can, however, calculate the frequency dependent speelation between the frequency dependent specific heat
cific heat in terms of equilibrium fluctuation of energy fol- ¢,(w) and the autocorrelation function of the temperature

fluctuations in the microcanonical ensemble. This relation-

dAuthor to whom correspondence should be addressed. Electronic maiﬁhip' Wf;i(.:h is identical to the Qne d?ri\_/ed_independemly by
bbagchi@sscu.iisc.eret.in Nielsert® in terms of a fluctuation-dissipation theorem, has
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FIG. 1. A schematic representation of the potential energy landscape show-
ing motions within and between metabasins. FIG. 2. A schematic representation of the model under consideration. The

horizontal lines within a well represent different excitation levels. Note that
the energy levels are in general degenerate, as they correspond to the sum of
the energies of individual TLSs in the collection.

allowed the determination af,(w) from computer simula-

tions in equilibrium. A mode-coupling theo§MCT) based ) ]
calculation has also shown the two-step relaxation behavidinde! predicts a frequency dependent heat capacity that cap-

in the predicted frequency spectrum of the specific heat. tures many of the features of the two-step relaxation behav-

The dominance of the high-frequency peak is, however, nd®" in supercooled liquids. Some of the predictions of our

evident in this work. model are in good qualitative agreement with the available
The measurements of frequency dependent specific he§XPerimental and computer simulation results.

in specific heat spectroscopy supplemented by computer The o_utline of the paper is_ as follows:_lnthe next secti_on
simulation studies may prove to be useful in providing in-we describe the model. Section Ill provides the theoretical

sight into the landscape dynamics of supercooled liquidsiréatment. We present the results along with discussion in
The landscape paradidfit?: has been widely used to eluci- Sec. IV. Section V concludes with a summary of the results

date dynamics of liquids in the supercooled regime. Thind & few comments.

framework involves the division of the multidimensional

configuration space into so callegetabasin®n the basis of || DESCRIPTION OF MODEL

a transition free-energy criterion. Two vastly different time ) )

scales thus get entailed, the smaller one due to motions e model ag-process as an activated event in a two-
within the metabasins and the longer one due to exchandgVe! System(TLS). We label the ground level of a TLS as 0
betweerthe metabasins involving much larger free-energy Ofa_md the excited level as 1. The wam_ng time before a transi-
activation. In particular, the3-processes are visualized to tiOn can occur from the leve(=0,1) is assumed to be ran-
originate fromactivated dynamics within a metabasishile ~ d0m and is given by the Poissonian probability density func-
escape from one metabasin to anotieetaken to describe an 10N

a-proces<? See Fig. 1 for a schematic representation of the 1

two processes. It is important to recognize that such a de- #i(1)=_—exp(—t/7), =01, 1)
scription of B-process within the landscape paradigm corre- '

sponds to what is known as the Johari—Goldstein relaxatioWhere 7; is the average time of stay at the levelf p;(T)

or “slow” ﬁ.process that is believed to involve local denotes the canonical equilibrium probability of the level
rearrangementS:?>??This B-process is so called to distin- @ TLS being occupied at temperatdrethe equilibrium con-
guish it from an even fastes-process that is predicted by the stantK(T) for the population in two levels at temperature
mode-coupling theorgﬁ__zs Note that the breakdown of the is given by the following relation that obeys the detailed
MCT is ascribed to the dominance of relaxation by the therbalance:

mally activated hopping event&?” which are unaccounted 0u(T)  7(T)

for in the ideal version of MCT. Recent computer simulation K(T)= r - =exq —e/(kgT)], (2)
studie4®~3! have further revealed that hopping is a highly Po(T) 7o(T)

cooperative phenomenon promoted by many body fluctuawheree is the energy separation between the two levels in a
tions; hopping of a tagged particle is often preceded byTLS, andkg is the Boltzmann constant. Here the level O is
somewhat larger than normal, but still small amplitude mo-taken to have a zero energy.

tion of several of its neighbor.A rather different stringlike Within the framework of the present model, a metabasin
cooperative motion has also been found to occur in a modés characterized by aM; number of such noninteracting
glassforming liquicf? two-level systemgTLSs). A given minimum number among

In the present work, we employ a kinetic model of the total numbeN of TLSs must simultaneously be in the
glassy dynamics that attempts to provide a description of thexcited levels for the occurrence of anprocess. We here
activated hopping within the landscape paradigm in close&oncentrate on two adjacent metabasins, which we label as 1
connection with the cooperative nature of the hopping eventand 2 and together call a double well. Figure 2 shows a
We follow a procedure, as outlined by Nielsen and D¥ey ~ schematic diagram of two adjacent metabasins with illustra-
compute the frequency dependent heat capa®fty,T) for  tion of dynamics within and between them. The respective
our model system. For suitable choice of parameters, thaumbers of TLSs that comprise the metabasinﬁ\ég‘é and



N&). For a collection oN{}) (i=1,2) TLSs, avariablg|(t), ~ Here the lowest level of the well 2 is taken to have zero
(j =1,2,...N2)) is defined, which takes on a value 0 if at the energy andP;(n;t,T) denotes the probability that the sto-
given instant of timet the level O of the TLY is occupied chastic variableQ; takes on a value in theith well at time
and 1 if otherwise{j(t) is thus an occupation variable. The t and temperaturd. The evolution of these probabilities

collective variablex;(t) (i=1,2) are then defined as obeys the master equatin
5 PPN LN 1)/ 7(T)JPy (= 1:4,T)
V=2 ¢(). () at b mol DI

Qi(t) is therefore a stochastic variable in the discrete integer L+ 1)/ (T)]Pin+1:T)

space[O,N([?]. Qi(t) serves as an order parameter for dy- —[(Ng)—n)/ro(T)]Pi(n;t,T)

namical change involving metabasinHerean a-process is

assumed to occur only when all tieprocesses (TLSs) in a _(”/Tl(T))Pi(”;t'T)_k‘sn,Ng)Pi(”?t'T)
metabasin are simultaneously excited, i.e., wher QY. . _

There is a finite rate of transitidafrom each of the metaba- + kénlNgil)éiv‘ilpi(n’t’T)’ 6
sins when this condition is satisfied. Within the general,nare the “+” and “ —” signs in the indices of the Kro-
framework of the model, the double well becomes asymmety,ocker delta are for=1 and 2 respectively

ric whenN’#Nf, as shown in Fig. 2. One can have the following compact representation of

It is Worthwhile Fo note the_ correspondence Of'the.the set of equations given by E@) for all possiblen andi
present description with real physical processes occurring i) es

glassformers. Thex-process may correspond to large-scale
hopping of a particle. For this hopping to occur, however, ~ JP(t,T)
many small reorientations/rearrangements/displacements are at
requwe_d sn_nqltaneously among its neighbors. The e_lctlvategvhere P,(n:t,T) for n=0,1,..ND and P,(n:t,T) for n
dynamicswithin a TLS may well represent small rotatiotfs. ~0.1,...N@ together comprise t[;1e clements of the column
In the case of polymer melts which exhibit glassy behavior, ™" "5 9 comp o .

) ) . > ) ._Vector P(t,T) and A is the transition matrix of ordeN
the B-relaxation may involve the motion of side chains. ThIS—N(1)+N(2)+2 If G1(i,1]j,0) be the G 's function that
picture apparently differs from the one drawn by Dyte, . A B : 1(1,1]],0) be the Green’s function tha

who has argued that large-angle rotations are “causes” an Ives the probat_)iIiFy to be ir_1 the. statat a later timd given
small-angle rotations are “effects.” The present picturet at the system is in the stgtat timet’ =0, the temperature

however, contains Dyre’s one in the sense that small-angl eing kept constant at temperatifethe matrix of Green's

rotations indeed occur following a large-scale jump motion unctions also satisfies the rate equation
for the completion of relaxation as evident in Fig. 2. The dGq(t)
present model is built on a rather symmetrical picture that ~—q;  ~A(TGr() €)

also necessitates small-angle rotations for a large-angle rota- o . ) ) )
tion to occur. with the initial conditionG1(0)=1, wherel is the identity

matrix of orderN. In terms of Green’s functions, one can
IIl. THEORETICAL TREATMENT then rewrite the energy autocorrelation function as

N N
From a theoretical point of view, the treatment of fre- B S :
guency dependent heat capacity can be carried out by em- <E(t’T)E(O’T)>_i:21 ,Zl (it OEE Pedj.T),
ploying the linear response assumption. Following Nielsen 9
and Dyre!? the frequency dependent heat capa€iyw, T)
of our system at temperatuilecan be given by

(EX(T)) B
kgT?  kgT?

=A(MP(L,T), )

whereP¢((j, T) is the equilibrium probability of the stajeat
T. We write G+(i,s|j) as the Laplace transform of
G+ (i,t[j,0):

Clw,T)= the—S%E(t,T)E(o,T»,

° 7 Goliglj) = J':dte*StGT(i,tU,O). (10)

wheres=iw, w being the frequency of the small oscillating

perturbation,i=+—1, and the angular brackets denote anThe frequency dependent heat capacity is then given by

equilibrium ensemble averaging(t,T) stands for the total B (EX(T))
energy of the system at timend temperatur@ and is given w,T)= Ko T2
by B
(1) S NN
: — 52 2 GrliSlEEPefi T). (1)
E(t,T)=2 Pymt, (NG -NP+n)e keT2i=2 /51" EiPed
n=0
The computational procedure involves the numerical evalu-
NS : ) ) : . =
B ation of the Green’s functions by an inversion of matrix:
+ P>(n;t,T)ne. 5 ~
2, PanitTne © Gr(s)=(sl—A(T)) %, (12
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FIG. 3. Frequency dependence of the imaginary part of the dynamic heat -0 8 -6 4 -2 0 2 4
capacityC"(w*,T*) for our model system witiN{)=3 andN{’=5, at log®

three dimensionless reduced temperatufés=0.9 (solid line), T*=0.8

(dashed ling andT* =0.7 (dotted—dashed lineTemperaturd is scaled by FIG. 4. Frequency dependence of the real part of the dynamic heat capacity
the melting temperatur€,, to have a reduced temperatiré=T/T,,. Fre- C’(w*,T*) for our model system at three reduced temperatiies 0.9
quency is also scaled by the inversem{T,,) to get a dimensionless re- (solid line), T* =0.8 (dashed ling andT* =0.7 (dotted—dashed line

duced frequency* = w7(T,,). As in the earlier workRef. 15 we setk

=2.0 in the reduced units, are=2kgT,, ande;=18kgzT,,, the latter being

the energy barrier to the transition from the level 1 in a TLS. The presence . T .
of a fixed energy barrier to transition from one level to the another within aberature is loweredThis is indicative of the stringent con-

TLS is expected to impart an Arrhenius temperature dependence of thétraint on thea-process that arises from the cooperativity
B-relaxation within the present framework. The laboratory glass transitionrequiremem_

temperatureT y occurs at a temperature around (Z/3)(Ref. 1). All tem- _ ;
peratures investigated here therefore fall betw&gnand (2/3),,. The The features of the two-step relaxation also get refiected

same set of parameter values has been used for all calculations in the presgﬂtthe frequency spectr_a Of_ the real part Of_ the heat capacity
work unless it is specifically mentioned otherwise. C'(w*,T*) as shown in Fig. 4 at three different tempera-

tures. This is expected on the basis of the Kramers—Kronig

relation that relates the real and imaginary parts. Whenever
and that ofP,(T) from the eigenvector corresponding to the o~ 1 is on the order of the time scale of a characteristic
zero eigenvalue ofA(T). In the next section, we present the relaxation process, the system takes up energy inducing an
results with discussion and note the relevance of our resulténcrease in the real part of the heat capacity around that

The dynamical response of the system in the preserftequency. The dominance @-relaxation is again evident

framework is expected to be determined by a set of paranfrom a much larger increase at the high frequencies. The
eters that includes the numbhi; of TLSs in a metabasin, low-frequency limit corresponds to the static heat capacity of
the energy separationbetween the two levels of a TLS, the the system.
energy of activatiore* for barrier crossing within a TLS, the Let us now discuss the temperature dependence of the
energy asymmetrnA between the two adjacent metabasins,positions of the peaks as they appear in the frequency spectra
and the critical numbeN, of TLSs required to be in the of C"(w*,T*). The temperature dependence of thpeak
excited levels at a particular time for therelaxation to oc-  positionw ,(T*) in the reduced scale is shown in Fig. 5 in
cur. The choice of these parameters has been kept simple in
this work though at the expense of being ad hoc at least in

some cases. For example, we have takierto be equal to -3
Ng and the value ot has been taken of the order kofT,,
T, being the melting temperature. An approximate estimate
of N has been taken from simulation resifts’ The value 1
of the activation energy is a rather difficult guess. We have s
used the guidance provided by an earlier work of dars. st
=

IV. RESULTS AND DISCUSSION -6 |

In Fig. 3, we show the frequency dependence of the
imaginary part of the heat capaci’(w*,T*) calculated -7 - e - ),
for our model system at three different temperatures. The 1/T

tWO—ank StrUCturef correspondlng t(? the. bimodal I‘(':'laxat'orllilG. 5. Thea-peak frequencyo;a, on a logarithmic scale vs the inverse
behavior as conceived in the model is evident at all temperaemperature 1. The solid line and dashed line correspond to two nearly
tures investigated. The peak at high frequencigsesponds  indistinguishable fits to the data with the Vogel—Fulcher—Tammann equa-
to the B-relaxation and is remarkably dominanthe low- tion and a three-parameter scaling ldaee text From the fits, Toyer

. - =0.154 andly .= 0.475 in the reduced units. The inset shows the tempera-
frequency peak iglue to thea-relaxation that occurs on a ture dependence of the-peak frequency? . in a loga? . vs 1T* plot
longer time scale. Note thalhe separation between the po- »o o :

- The solid line is a linear fit to the data with a slope of 7.912 in the reduced
sition of the B-peak and that of thex-peak grows as tem- temperature units.
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FIG. 7. Thea-peak frequencyop «» 0n a logarithmic scale vs the inverse
FIG. 6. The frequency spectra of the imaginary part of the dynamic heatemperature I7* for three different sets aiNy” ,N(?} values. For each set,
capacityC"(w*,T*) at different temperatures showing the low-frequency the solid line and dashed line correspond to two nearly indistinguishable fits
a-peak only. From the right to the left* =0.95, 0.9, 0.85, 0.8, 0.75, 0.7, to the data with the Vogel-Fulcher—Tammann equation and a three-
respectively. The inset shows the same curves, in dotted lines, scaled by thrameter scaling law. From the fit§ger=0.174 andT¢~0.485 for
height of the respective peaks vs lag(wy ). The solid line is a fit to the  {4,6} (top), Toyer="0.197 andTg¢=0.496 for{5,7} (middle), and Tqyer
curve forT* =0.7 with a three-parameter equation that is a good frequency=0.203 andT ;.= 0.498 for{6,8} (bottom).
domain representation of the time domain Kohlrausch—Williams—Watts
stretched exponential form. The dashed line is a fit to the same curve with
the Debye response function. The curves along with the two fits are nearly

ifndistinguishﬁble. 'Lhe dgtails qf ths fit ar:e gr]]i_vinfin the text. _The range c;f The results presented here until now have been for a
e ot e 0" ey ide dUe © Mingle set oY), N2, ¢ and  values. It is important o0
know how the pred|cted results are dependent on the choice
of model parameters, in particular ot andN{?, before
a Iogw ATF) vs 1m* plot. The data fit weII to one judges the merits of the model. To this end, we have
the Vogel—FuIcher —TammanVFT) equation: w AT%) explored the parameter dependence of the predictions of our
= wovrreXd —Aver/(T* —Tover)]. The small curvature of model. The two-step relaxation behavior has been found to
the fitted curve is, however, notable and has been observdie revealed in the predicted heat capacity spectra of the
experimentally as wefl.As in Ref. 4, we show in Fig. 5 a model for a few other choices ¢N§,N?} as well, spe-
second fit to the data with a scaling Iawo AT%) cifically, for {4,6}, {5,7}, and{6,8;. For each of these param-
=wo sl (T* —Tosc)/ Toscl- The two fits are nearly indistin- eter sets, a similar non-Arrhenius behavior of the tempera-
guishable. The inset of Fig. 5 shows the temperature depetdre dependence of thepeak position has been observed as
dence of thes-relaxation peak positiomy 4,(T*) in a simi-  shown in Fig. 7. The Vogel temperatufg v obtained from
lar plot. The linear fit corresponds to the Arrhenius behaviorthe VFT fit shifts to higher values along the series as one
as expected from the supposition of the model. would expect from an increasingly stringent cooperativity
Since the experiments till date could probe only therequirement. Although the magnitude of the shift is small,
a-relaxation regime of the frequency spectrum, we have inthe trend is quite clear. The shape of thepeak has also
vestigated the features of therelaxation peak as predicted been found to remain independent of temperature along the
by our model system in a bit more detail. In Fig. 6, we Series (data not shown For {6,9, the amplitude of the
concentrate on thex-relaxation regime of the frequency a-peak gets diminished to a large extent by the tifirfe
spectra ofC"(w*,T*) at different temperatures to get an =0.7 is reached, while the two-peak structure does not ap-
enlarged view of thex-relaxation peak. It is evident that the pear at all even at* =0.95 for{6,10. The two-step relax-
area under the-peak becomes smaller as temperature dropsation behavior also does not get evident from the predicted
This implies that the cooperative component of the configudynamic heat capacity spectra in the temperature range ex-
rational part of the heat capacity diminishes with decreasinglored here for evef2,6}. It follows therefore that a differ-
temperature. See Ref. 14 for a detailed discussion. Althoughnce of 4 inN%? andN§” with the set ofe and €] values
the height and the position of thepeak have been found to used here is large enough to suppress any manifestation of
change with temperature, ighapeseems to show no such the two-step relaxation behavior within the present frame-
dependence. This can be evident if one constructs a masteork. On considering varying asymmetry of the two adjacent
plot by scaling both the height of the peak and the frequencynetabasins, we further make an interesting observation as
This is demonstrated in the inset of Fig. 6 where we pIoﬁIIustrated in Fig. 8. Here, we have variéd) with N§, e
C"(0*,T*)IC"(wy ., T*) vs log*/w;,) at different tem-  and e} held fixed. For a symmetric double well, only one
peratures for the frequency range of interest. The curves gteak appears in the frequency spectrum of the imaginary part
different temperatures appear to be superimposed on eacii the dynamic heat capacity. Thepeak disappears as an
other with negligible error. It is therefore reasonable to con-a-process is inconsequential from an energy consideration
clude that the shape of thepeak here does remain indepen- for the symmetric double well. The amplitude of thepeak
dent of temperature. The computer simulation study reportet the largest with the least asymmetry and gradually dimin-
in Ref. 14 makes a similar observation on the shape of théshes with growing asymmetry before it gets suppressed
a-peak. completely. The results suggest that the relative amplitudes
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FIG. 9. The frequency spectra of the imaginary part of the dynamic heat
FIG. 8. The frequency spectra of the imaginary part of the dynamic heatapacityC"(w*,T*) at temperaturd™* =0.9 for four sets off N N}
capacityC’(w*,T*) at temperaturd* =0.95 for four choices oNf with  values withN(®—N{ held fixed: (a) {4,6} (dotted ling, (b) {3,5 (solid
NS kept fixed:(a) {3,3 (solid line), (b) {3,4} (dotted ling, (c) {3,5} (dashed line), (¢) {2,4 (dotted ling, and(d) {1,3 (dotted—dashed line
line), and(d) {3,6} (dotted—dashed line

substantiated in Fig. 9, where we focus on the amplitude of
of the a-peak may provide an insight into the energy asym-the g-peak relative to that of the-peak in the frequency
metry between the metabasins in the energy landscape of thgectra of the imaginary part of the dynamic heat capacity.
system. It may be noted in this context that if {fiprocesses  Note that thea-peak is not distinctly observed fdf,3} as
are not associated with any energy céise., e=0) even the separation between the two peaks is not enough. A de-
though being activated everlise., with a nonzero energy of crease in the requirement of cooperativity for #a@rocess
activation €* for barrier crossing one would expect the s found to result in a fall in the relative amplitude of the
strongly temperature dependent high-frequency peak to diss-peak. One can, therefore, define a param@g as the
appear. ratio of the amplitude of theg-peak to that of thex-peak,

In the inset of _Fig. 6, we have also shown a fit_to thewhich is in general temperature dependent. ThaQiE(T)
curve forT* = 0.7 with a three-parameter equafidthatisa =C"(wp 5, T)IC"(wp,q,T). The parameterQff(T) may
good frequency domain representation of the time domaiRerve as a measure of the cooperativity needed for
Kohlrausch—Williams—Watt¢KWW) stretched exponential . re|axation to take place.
form. From the fit parameters we obtain the stretching pa-
rameter Byww=0.94. Such aBxww Vvalue implies very
weakly nonexponential behavior. In fact, a fit with the Debyev' CONCLUSION
response function that corresponds to a single exponential Let us first summarize the present work. We have em-
behavior is found to be reasonable and for some of the othgrloyed a kinetic model of glassy dynamics that considers
sets off N N}, it is found to be as good as the one with cooperativity through the constraint op-organizeda-
the three-parameter equation with a stretching parametgrocesswithin the landscape paradigm. The two-step relax-
very close to unity. This is reasonable as spatially heterogeation behavior as conceived in the model gets revealed in the
neous domains, which is believed to be the primary reasofrequency dependent heat capacity of the model for a reason-
for the stretched exponential relaxation in supercooledble range of parameter values. The analysis of the predicted
liquids 28 has not been considered in the present calculadynamic heat capacity spectra suggests the following emer-
tions. The heterogeneous dynamics in different domains cagent features of our mode(i) The a-peak frequency has a
be included either through a distribution efthe separation non-Arrhenius temperature depender(@ée.The shape of the
between the energy levels within a TL& through a distri- a-peak as it appears in the frequency spectrum of the imagi-
bution of barrier height for transition from one level to the nary part of the dynamic heat capacity is invariant in tem-
other within a TLS. When the heterogeneity is included, theperature.(iii) The amplitude of the3-peak is considerably
exponentBww is expected to decrease considerably as inlarger than that of thex-peak.
deed found in the treatment of structural relaxation within a ~ While the first (the non-Arrhenius temperature depen-
similar model where we have considered a distributiondence of the above conforms to a number of experimental
of €3 results, the second one has been observed in a recent com-

The remarkably dominanB-peak as predicted by our puter simulation study The third one, however, does invite
model merits further consideration. In order to trace back ita few comments. Although a remarkably dominant high-
origin, we note that the constraint of cooperativity on thefrequency peak has been reported in Ref. 14, it is rather
a-relaxation allows the system to take up energy onlyascribed to the vibrational excitations of the system and is
through the localize@-processes unless the condition is sat-likely to be more relevant with the “fast3-process typically
isfied. The system takes up more energy through the excitappearing in the mode-coupling theory predictions. The ac-
tion of individual B-processesthat collectively bring about tivated dynamics with an Arrhenius-type temperature depen-
the a-processthan thea-process itself which corresponds to dence characterizing th@process considered in the present
a transition from one metabasin to another. This argument igork is on the other hand a typical feature of the Johari—



Goldstein relaxation or “slow’8-process?%22A dominant  sentially follow the description of Lauritzen and Zwarf7ig
B-peak with a strong temperature dependence suggests thatassuming that @-process can be taken to correspond to a
such aB-peak should be observable in the specific heat spedwo-site angular jump of individual molecules by a small
troscopy even with its limited frequency range if it is ex- angle around some axis. These individual, uncorrelated an-
plored at low enough temperatures. We, however, note thagular jumps lead to a partial relaxation of the total electric
the experimentally obtained dynamic heat capacity spectramomentM(t) of the whole systeninote thatM(t) is the
are yet to capture the two-step relaxation behavior evesum of the dipole moment of the individual molecyleBhe
though dielectric spectroscopy has revealed distinct twdalielectric susceptibility spectrum can be obtained from the
peaks for a number of glassformers, and it is rather the@uto-time correlation function o (t) by using the linear
B-peak that is the weaker one. An address to this issue iresponse theof? SinceM(t) is a sum of a relatively large
further detail is beyond the scope of the present work. number of individual dipole moments, the former is a Gauss-
The present work suggests that the relative amplitudes dan Markov process and thus the time correlation function of
the two peaks may provide insight into the microscopicthe S-relaxation mediated part must decay exponentially. As
mechanism of the relaxation processes in deeply supercooléwted earlier, thig-relaxation mediated decay is incomplete
liquids. In view of this, further measurements of frequencybecause all the jumps are small and restricted. Thus, it is fair
dependent specific heat of various glass forming liquids willto assume the following form for the auto-time correlation
certainly be worthwhile. A recent simulation study by van Eefunction of M(t),
et al0 of computer model of amorphous By has shown Cu(t) = (M2)exp(—t/ 75) + ((M2)— (M2))exp(—t/ 7,),
that the hopping mode is not only collective but appears to (13)
involve rather large number of neighbors. This study seems ) )
to support the picture that coherence among neighbors is 4nere 7s and 7, are the time scales qB—reIavatlop and
prerequisite for large scale hopping. Such a scenario is conft-Telaxation, respectively. In the above equatd) is the
patible with our present picture whergprocess may be value by which _the mean-square t_ot_a}l dipole morr21ent decays
identified with small amplitude motion while hopping is the due toa-relaxation alone from the initial value ¢Mg). The
jump between the two minima shown in Fig. 2. We further "€St Of the decay to zero occurs via theprocess. This sug-
argue here that a predominaBipeak would be a character- 9€Sts that with well separateg and, , one woulg observe
istic feature of Stillinger's picture which assumes anPimedaldispersion. However, the calculation( ;) would
a-process to involve a concerted seriesgaprocesse& require a more detailed model than the one attempted here.
Several other comments on the present work are in order.

The present study suggests several future problems.
First, the present model can be taken to belong to the class &St it would be interesting to investigate the frequency
kinetically constrained modéfsthat attempts to provide a dePendence of the specific heat of several molecular liquids
description of glassy dynamics by imposing dynamical conof varying fragility in computer simulations. In some cases,
straints on the allowed transitions between different configu:ct)ne sr:gutl)d bel ablef tp tdlscetrrt] a_threetjpe?k :t:ﬁctl;re. Second,
rations of the system, while maintaining the detailed balanc :j Woud te aso_f_o ;]n etres obmves ('jg? € It d ethrequenc?l/ q
In particular, our model resembles the models of hierarchi- ependent specitic heat can be used to study the so-calle

cally constrained dynamics of glassy relaxation, due origi-Bosog peak which has drawn much attention in recent

nally to Palmeret al,*? in the spirit that brings in cooperat- times_._5 Third, a_comparison of the freq_uency dependence of
ivity. Second, the high-frequency peak for real liquids isSpec'_fIC heat with that of the dyr_1am|c _strl_Jcture factpr of
likely to draw contribution fromg-relaxation as well as vi- certain model systems would provide us insight to decide on

: L - whether the microscopic mechanisms of relaxation vary for
brational excitations. In some cases, specifically at low tem- P y

peratures close to the glass transition, it is possible that thesqéﬁerent modes. Finally, a generalization of the present

two can be sufficiently separated to give rise to an additiona'IT]Odel or an altogether different model to describe the fre-

. . : guency dependence of dynamic heat capacity and that of
peak in the imaginary part of the frequency dependent spej3. . :
o o . dielectric response in the same framework would be a worth-
cific heat. Third, it is imperative to compare the two-peak . .
: : hile undertaking.
structure of the frequency spectrum of the imaginary part of
the dynamic heat capacity with its dielectric analog. In con-
trary to the prediction our model makes on dynamic heaACKNOWLEDGMENTS
capacity behavior, it is rather the predominance of the
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