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We present a study of the anisotropy in the superconducting energy gap in a single crystal 

of YNi2B2C (Tc~14.6K) using directional point contact spectroscopy. The 

superconducting energy gap at 2.7K, when measured for I||c, is 4.5 times larger than that 

for I||a. The energy gaps in the two directions also have different temperature 

dependences. Our results support a scenario with s+g like symmetry.  
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Determination of the symmetry of the order parameter is a central step in understanding 

the pairing mechanism of any superconducting system. Conventional superconductors, 

i.e. elemental superconductors and a vast majority of their alloys, are characterized by an 

isotropic energy gap with s-wave pairing symmetry. The interest in the pairing symmetry 

has revived with the discovery of a new class of superconductors, where the pairing is 

highly anisotropic with the gap function going to zero for certain k directions1. These are 

the high Tc cuprates2, the triplet superconductor3 Sr2RuO4, organic superconductors4,5 and 

several heavy Fermion compounds6,7. Since a zero in the gap function can arise only from 

a non-trivial representation of the symmetry group, such gap structures point towards 

unconventional pairing interactions mediating the superconductivity. Superconductivity 

in these materials is widely believed to originate from interactions of purely electronic 

origin1. 

 

In this work, we focus our attention on one member of another class of novel materials, 

namely, the quaternary borocarbide superconductor, YNi2B2C. Ten years after 

superconductivity was reported in this compound8,9, the symmetry of the order parameter 

in YNi2B2C has still remained an outstanding issue. YNi2B2C has a tetragonal crystal 

structure with a=3.526Å and c=10.543Å. Early studies on this compound suggested a s-

wave symmetry10,11,12 mediated by conventional electron-phonon interaction. However, 

in recent years several experimental studies such as thermal conductivity13,14, specific 

heat15, tunneling spectroscopy16 and photoemission spectroscopy17 have not only 

provided evidence of a large anisotropy but also the existence of nodes in the 

superconducting gap function. Furthermore, the angular variation of the various physical 



properties such as thermal conductivity13, critical fields etc. shows a robust 4-fold 

anisotropy in the a-b plane in the superconducting state, while the normal state properties 

remain almost isotropic18. These results provide indirect evidence of a strong anisotropy 

in the superconducting order parameter, and have been interpreted based on either 

anisotropic s-wave (s+g wave)19 with point nodes or d-wave symmetry20 with line nodes. 

Considering that d and s+g wave symmetries are likely to have their origins from very 

different pairing interactions, more direct information regarding the gap anisotropy in 

YNi2B2C is highly desirable. 

 

 

Directional point contact (DPC) spectroscopy, i.e. where conductance spectra (dI/dV 

versus V) are recorded by injecting current through a ballistic point contact along 

different crystallographic directions in the superconductor, is a powerful tool to 

investigate the gap anisotropy in unconventional superconductors21. This technique 

allows a direct determination of the gap and its temperature dependence along various 

directions in the crystal. In this paper, we report the DPC measurements in a high quality 

single crystal of YNi2B2C. The spectra were recorded by injecting the current either along 

c or along a, thereby measuring the gap along these two directions in the temperature 

range 2.6K-15K. Since the structure of the gap function for s+g symmetry and d-wave 

symmetry would be different along these two directions, the above measurements allow 

us to distinguish between these two symmetries. Our results provide evidence of sharp 

minima in the gap structure of YNi2B2C in the basal plane, consistent with the s+g-wave 

scenario. Furthermore, normalized energy gap along different crystallographic directions 



have different temperature dependences suggesting that the amplitude of s and g in the 

order parameter have different temperature dependence. 

 

 

The YNi2B2C single crystal was grown by traveling solvent floating zone method using 

an image furnace. The crystal was then cut into a rectangular parallelepiped of size 

0.5mm×0.5mm×2mm with the long axis along a. This allowed us to have relatively large 

facets on the [100] and [001] planes. The Tc~14.6K was determined from ac susceptibility 

measured at 15kHz (Fig.1). Under the application of a dc magnetic field, H||c, the 

signature of a “peak effect”, i.e. a dip in the real part of the ac susceptibility (χ') 

associated with an order-disorder transformation of the vortex lattice, was observed down 

to 1000 Oe. Since the inter-vortex spacing for this field (~1500Ǻ) is larger than the 

penetration depth22 (λ∼1000Ǻ), this points towards the very low defect density in the 

crystal. The crystal quality was further confirmed from the observation of dHvA 

oscillations. Resistivity measurement on similar crystals showed the residual resistivity to 

be ~4µΩ-cm, corresponding to a mean free path ~110Å at low temperatures23. The 

crystal facets were polished with fine emery paper followed by 5µm size alumina powder 

to obtain a mirror-finished surface prior to the point contact measurement. For the point 

contact measurement, a mechanically cut fine tip made of 0.25mm thick gold wire was 

brought in contact with the [100] or [001] facet (for I||a and I||c respectively) of the 

crystal using a 100 threads per inch differential screw arrangement in a liquid He 

cryostat. The temperature stability was better than 10mK in temperature range of our 

measurement, i.e. 2.6K-15K. To establish a ballistic contact the tip was first engaged on 



the sample and then gradually withdrawn in small steps till a ballistic contact was 

established. Details of this method have been described elsewhere24. For all the spectra 

reported in this paper the point contact resistance (RN) in the normal state was in the 

range 10-20Ω, from which the point contact diameter (d) was estimated to be25, 
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30-40Å. Therefore our measurements were well into the ballistic 

limit (d<l) of the point contact. A four-probe (constant current) modulation technique 

operating at 372 Hz was used to directly measure the differential resistance (Rd=(dV/dI)) 

as a function of voltage from which the differential conductance (G=1/Rd) was 

calculated. 

 

 

Figures 2(a) and 2(b) show two sets of point contact spectra for I||a and I||c, respectively 

measured in the temperature range 2.6K to 15K. A gap related feature, is clearly 

discernible in the spectra in both directions at the lowest temperature. However, even a 

visual inspection shows that the gap value is much larger for I||c than for I||a. For I||c, the 

gap feature in the spectra can be observed up to 14K. However, for the “small gap” 

direction I||a, no feature was resolved in the conductance curve for T>7K. The 

conductance curves were fitted with the ususal Blonder-Tinkham-Klapwijk model26 

(solid lines) using the superconducting energy gap ∆, the barrier height coefficient Z and 

the broadening parameter27 Γ as fitting parameters. Ιn addition to the kind of spectra 

shown in Fig. 2 for some contacts on the [010] facet, we encountered some spectra, 

where the fitted gap value was intermediate between these two values. These contacts 



were however very unstable and slight modification of the contact by mechanical 

vibration or while trying to heat the sample above the base temperature resulted in a 

spectrum such as the one shown in figure 2(b). We believe that these spectra resulted due 

to the current not being injected perpendicular to the [010] facet due to surface 

roughness.  

 

 

We first concentrate on the G-V curves at the lowest temperatures (2.7K). From the best 

fit parameters, the superconducting gaps in the two directions were determined to be 

∆I||c=1.8±0.1meV and ∆I||a =0.415±0.08meV, respectively. This corresponds to a gap 

anisotropy of ∆I||c/∆I||a~4.5. However, it is important to note that for a ballistic contact, 

when I is injected along a particular direction n, the current results from an average over 

the entire Fermi surface though dominant contribution comes from Fermi surface regions 

close to kFn , while the contribution from Fermi surface regions perpendicular to n is 

zero28. Therefore, the maximum (∆max) and the minimum (∆min) values of the gap are 

actually larger and smaller than ∆I||c and ∆I||a respectively. Thus ∆I||c/∆I||a gives a lower 

bound of the gap anisotropy on the Fermi surface. The relative broadening of the spectra, 

characterized by Γ/∆ in the two directions is also different: (Γ/∆)∼0.32 for I||c and 

(Γ/∆)∼0.77 for I||a.  

 

 



We can now compare these results with the two order parameter symmetries proposed for 

this compound, namely, d and s+g 19,20. The gap functions corresponding to these two 

symmetries for a 3 dimensional Fermi surface in polar co-ordinates are ∆(k)= 

∆0[sin2θsin(2φ)] and ∆(k)= (∆0/2)[1−sin4θcos(4φ)], where the convention for θ and φ are 

the same as in Ref.13. These two symmetries are schematically shown in figure 2. For the 

d-wave symmetry the gap function has line nodes perpendicular to the basal plane 

extending to the poles. Therefore, the gap function has nodes along both [100] and [001] 

directions. For s+g symmetry (with equal amplitude of s and g) on the other hand, the gap 

is fully formed close to the poles and has point nodes only along [100] and [010]. Though 

our point contact measurement cannot unambiguously identify a node in the gap function 

due to Fermi surface averaging described before, the large value of ∆I||c/∆I||a observed at 

low T suggests that the gap function has sharp minima in the basal plane and a fully 

gapped nature close to the poles. This is clearly consistent with the s+g symmetry.  

 

 

We now look at the anisotropy in Γ/∆ in the two directions. Though Γ is commonly 

attributed to the quasiparticle lifetime limited broadening of the spectra, in a 

superconductor with an anisotropic gap function, a broadening in the point contact 

spectrum is also expected to arise from the averaging over the superconducting energy 

gap. The latter, though physically distinct in origin from the former, is indistinguishable 

within experimental errors. To illustrate this point, we have simulated a set of spectra 

using a distribution of superconducting energy gaps, keeping the mean value of the gap 

<∆>=0.6meV and setting Γ=0. The G-V curves are computed from 



( )∑ =Γ∆==
i

iBTK VTZII ,0,,,4.0 , where IBTK is the well-known BTK expression for 

the current26 and the sum runs over the distribution of gap values. Four G-V curves 

(normalized with respect to their conductance values at high bias) with varying 

distribution of gap values are shown in Figure 3. All the curves could be fitted (solid 

lines) using a single BTK function when the broadening parameter Γ is used as an 

additional fitting parameter. The deviation of the fitted curve from the original curve is 

smaller than our level of experimental accuracy. Furthermore, the fitted value of Γ/∆ 

increases monotonically with the standard deviation of the distribution over ∆, i.e. 

( ) ( )∑ ∆−∆=∆
i

i

2σ , showing that Γ/∆ is a measure of the variation is 

superconducting energy gap values (see inset Figure 3). Therefore the larger value of 

(Γ/∆)Ι||a compared to (Γ/∆)Ι||c in our measurements suggests that the superconducting 

energy has a larger variation close to the poles than in the basal plane along [001]. Since 

in the s+g symmetry the gap function is “flat” close to the poles but has a sharp variation 

from zero close to the point nodes along [100] the larger Γ/∆ value for I||a further 

supports s+g scenario29,30. 

 

 

Finally, we concentrate on the temperature dependence of the superconducting energy 

gap. Figure 4 shows the temperature variation for ∆Ι||c and ∆Ι||a extracted from the BTK 

fits of the spectra at various temperatures. There is a clear deviation from the expected 

temperature variation for an isotropic BCS superconductor for both I||a and I||c with the 



gap decreasing faster than the BCS prediction. This is consistent with the existence of 

gap zeros21. However, the striking observation is difference in the temperature 

dependence of the normalized energy gap in the two directions (inset of figure 4). For I||c 

the gap persists up to 14K. For I||a the gap decreases rapidly from its low temperature 

value and no gap can be resolved at temperatures >7K. Even taking into account the fact 

that a small gap will get smeared due to thermal broadening at higher temperatures the 

rapid decrease in ∆I||a from the low temperature value is beyond any experimental error. 

This cannot be explained for a gap function of the form ∆(k)=∆0f(k) where the 

temperature dependence comes from ∆0 alone, and therefore should be same for all k. It 

has to be however kept in mind that in the s+g model the amplitude of the s and g are fine 

tuned to be equal to obtain point nodes along [100] and [010] directions. The equality in 

amplitude of inequivalent representations like s and g however seems “accidental”, with 

no symmetry reason why they should even be close19. Experimentally on the other hand 

the ratio of ∆max/∆min has been estimated to be between 10-100 from different 

experiments13,14. It is therefore possible that the s and g amplitude following different 

temperature dependences with the gap zero being present only at low temperatures. This 

would give rise to a gap function of the form ∆(k)=∆0s+∆0gg(k) with different 

temperature dependence31,32 of ∆0s and ∆0g. In this situation the shape of the gap function 

would be temperature dependent giving rise to different temperature dependence of the 

gap along different directions.  

 

In conclusion, directional point contact spectroscopy in YNi2B2C reveals a pronounced 

anisotropy in the superconducting energy gap with a fully gapped structure along the c-



direction and sharp minima in the basal plane. This rules out the possibility of d-wave 

symmetry and is consistent with the s+g scenario proposed in this system. However, the 

normalized superconducting gap have different temperature dependence for I||a and I||c 

suggesting that the ratio of the amplitude of s and g component in the order parameter 

vary with temperature.  
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1)Temperature dependence of ac susceptibility (measured at 15kHz) for YNi2B2C at 

different magnetic fields. Tc at zero field is 14.5 K. Signature of peak effect (shown 

by arrows) is observed down to 1000 Oe.  

 

 

2) Point contact Andreev reflection spectra at different temperatures for (a) I||a and 

(b) I||c. Open circles are experimental data and solid lines are BTK fits to the 

spectra. The conductance curves are normalized by their respective values at high 

bias. (c) and (d) show the gap functions corresponding to s+g and d wave symmetry 



respectively where the radial distance from the origin is proportional to the 

magnitude of the gap in that k direction. 

 

3) Simulated spectra at 2.7K (open circles) assuming different distribution of ∆. For 

(1) ∆i=0.6. For (2) ∆i=0.4, 0.6, 0.8 meV, for (3) ∆i=0.2, 0.4, 0.6, 0.8, 1.0meV and for 

(4) ∆i=0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2meV respectively. Simulated curves are fitted 

(solid lines) with BTK theory with broadening parameter Γ included. The best-fit 

parameters for ∆ and Γ are also shown in the figure. inset : evolution of Γ/∆ with 

σ(∆). 

 

4) Temperature dependence of ∆ I || c (solid circles) and ∆I || a (open boxes). Solid lines 

show the expected temperature variation from BCS theory for an isotropic gap. 

inset: Temperature variation of the normalized energy gap  for I||c and I||a. ∆ is 

normalized to its value at the lowest temperature. The solid lines are guides to the 

eye. 

 



Figure 1 

 



 

Figure 2 



 

Figure 3 



 

Figure 4 

 

                                                 

1  M Sigrist  and K Ueda,  Rev. Mod. Phys. 63, 239 (1991).  

2  C C Tsuei and J R Kirtley,  Rev. Mod. Phys. 72, 969 (2000).  

3  Andrew Peter Mackenzie and Yoshiteru Maeno,  Rev. Mod. Phys. 75, 657 (2003).  

4  K Izawa, H Yamaguchi, T Sasaki, and Y Matsuda,  Phys. Rev. Lett. 88, 027002 (2002).  



                                                                                                                                                 

5  I J Lee, S E Brown, W G Clark, M J Strouse, M J Naughton, W Kang, and P M 

Chaikin,  Phys. Rev. Lett. 88, 017004 (2002).  

6  G R Stewart,  Rev. Mod. Phys. 56, 755 (1984).  

7  Robert Joynt and Louis Taillefer,  Rev. Mod. Phys. 74, 235 (2002).  

8  R Nagarajan, C Mazumdar, Z Hossain, S K Dhar, K V Gopalakrishnan, L C Gupta, C 

Godart, B D Padalia, and R Vijayaraghavan,  Phys. Rev. Lett. 72, 274 (1994).  

9  R J Cava, H Takagi, H W Zandbergen, J J Krajewski, W F Pock, Jr, T Siegrist, B 

Batlogg, R B van Dover, R J Felder, K Mizuhashi, J O Lee, H Eisaki, and S Uchida,  

Nature (London) 367, 282 (1994).  

10  S A Carter, B Batlogg, R J Cava, J J Krajewski, W F Peck, Jr, and H Takagi,  Phys. 

Rev. B 50, 4216 (1994).  

11  H Michor, T Holubar, C Dusek, and G Hilscher,  Phys. Rev. B 52, 16165 (1995).  

12  L F Mattheiss,  Phys. Rev. B 49, 13279 (1994).  

13  K Izawa, K Kamata, Y Nakajima, Y Matsuda, T Watanabe, M Nohara, H Takagi, P 

Thalmeier, and K Maki,  Phys. Rev. Lett. 89, 137006 (2002).  

14  Etienne Boaknin, R W Hill, Cyril Proust, C Lupien, Louis Taillefer , and P C Canfield 

,  Phys. Rev. Lett. 87, 237001 (2001).  

15  K Izawa, A Shibata, Yuji Matsuda, Y Kato, H Takeya, K Hirata, C J van der Beek, 

and M Konczykowski,  Phys. Rev. Lett. 86, 1327 (2001); Tuson Park, M B Salamon, Eun 

Mi Choi, Heon Jung Kim, and Sung-Ik Lee,  Phys. Rev. Lett. 90, 177001 (2003).  

16  P  Martínez-Samper, H Suderow, S Vieira, J P Brison, N Luchier, P Lejay, and P C 

Canfield,  Phys. Rev. B 67, 014526 (2003).  



                                                                                                                                                 

17  T Yokoya, T Kiss, T Watanabe, S Shin, M Nohara, H Takagi, and T Oguchi,  Phys. 

Rev. B 85, 4952 (2000).  

18  I R Fisher, J R Cooper, and P C Canfield,  Phys. Rev. B 56, 10 820 (1997).  

19  K Maki, P Thalmeier, and H Won,  Phys. Rev. B 65, 140502 (2002); K Maki, H Won, 

and S Haas, Phys. Rev. B 69, 012502 (2004); H Won, Q Yuan, P Thalmeier, and K Maki, 

Brazilian Journal of Physics, 33, 675 (2003).  

20  Guangfeng Wang and Kazumi  Maki ,  Phys. Rev. B 58, 6493 (1998).  

21  G Goll, H v Löhneysen, and I K Yanson ,  Phys. Rev. Lett. 70, 2008 (1993).  

22  M Yethiraj, D McK Paul, C V Tomy, and E M Forgan,  Phys. Rev. Lett. 78, 4849 

(1997); M R Eskildsen, P L Gammel, B P Barber, A P Ramirez, D J Bishop, N H 

Andersen, K Mortensen, C A Bolle, C M Lieber, and P C Canfield,  Phys. Rev. Lett. 79, 

487 (1997); K J Song, J R Thompson, M Yethiraj, D K Christen, C V Tomy, and D McK 

Paul,  Phys. Rev. B 59, R6620 (1999).  

23  K D D Rathnayaka, A K Bhatnagar, A Parasiris, D G Naugle, P C Canfield, and B K 

Cho,  Phys. Rev. B 55, 8506 (1997).  

24 G Sheet, S Mukhopadhaya and P Raychaudhuri, (to appear in Phys. Rev. B, cond-

mat/0311648) 

25  G Wexler, Proc. Phys. Soc. London, 89, 927 (1966). 

26  G E Blonder, M Tinkham, and T M Klapwizk,  Phys. Rev. B 25, 4515 (1982).  

27  A Plecenik, M Grajcar, S Benacka, P Seidel, and A Pfuch,  Phys. Rev. B 49, 10 016 

(1994).  

28  I I Mazin,  Phys. Rev. Lett. 83, 1427 (1999).  



                                                                                                                                                 

29 Further evidence of s+g symmetry can be obtained from the evolution of the gap with 

the addition of impurities. For s+g symmetry the gap function should become more 

isotropic with the addition of impurities. This is consistent with the photoemission results 

in ref. 17. In contrast for a d-wave superconductor the gap should vanish with the 

addition of impurities.  

30 In principle, different values of the broadening in different directions can also arise 

from the anisotropy of the Fermi surface. However since the normal state properties of 

YNi2B2C are nearly isotropic suggesting a nearly spherical Fermi surface (ref.18), the 

anisotropy in the Fermi surface is unlikely to have a pronounced effect in the spectra 

31  Q Yuan and P Thalmeier,  Phys. Rev. B 68, 174501 (2003).  

32 This possibility has been theoretically explored in ref. 31 using BCS theory. The 

authors indeed observe that a state with equal amplitudes of s and g at T=0 evolves with 

temperature and the amplitudes do not remain equal. Their model calculations however 

show that the deviation is of the order of 1% close to Tc.  


