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We study effective actions for order parameter fluctuations at low temperature in
layered d-wave superconductors such as the cuprates. The order parameter lives on
the bonds of a square lattice and has two amplitude and two phase modes associated
with it. The low frequency spectral weights for amplitude and relative phase fluc-
tuations is determined and found to be subdominant to quasiparticle contributions.
The Goldstone phase mode and its coupling to density fluctuations in charged sys-
tems is treated in a gauge-invariant manner. The Gaussian phase action is used to
study both the c-axis Josephson plasmon and the more conventional in-plane plas-
mon in the cuprates. We go beyond the Gaussian theory by deriving a coarse-grained
quantum XY model, which incorporates important cutoff effects overlooked in previ-
ous studies. A variational analysis of this effective model shows that in the cuprates,
quantum effects of phase fluctuations are important in reducing the zero temperature
superfluid stiffness, but thermal effects are small for T ≪ Tc.

PACS numbers: 74.20.-z, 74.20.De, 74.72.-h, 74.25.Nf

I. INTRODUCTION

The high temperature cuprate superconductors (SCs) differ from conventional SCs in several respects: a d-wave gap
with gapless quasiparticle excitations, a small superfluid phase stiffness, a short coherence length and strong electron
interactions. It is therefore of interest to examine some of these unconventional aspects and their interplay in simple
models of high Tc systems. With this motivation, we study in this paper, the low temperature collective properties
of charged, layered d-wave SCs with a short coherence length and small superfluid stiffness.

The superfluid phase stiffness, Ds = ns/m
∗, is a fundamental property characterizing SCs [1], which is directly

related to λ, the experimentally measured magnetic penetration depth [2] in the London limit . The low temperature
behavior of Ds contains information on the low-lying excitations in these systems. Experimentally, λ(T ) is found to
increase linearly with T in the high Tc SCs [3], implying a linearly decreasing Ds. This linear drop in Ds has been
attributed to quasiparticle excitations near the nodes of the d-wave gap. Alternatively, it has been suggested that
this effect could arise entirely from classical thermal phase fluctuations [4,5] and quasiparticles can be ignored [4,5].
It is then clearly of interest to identify the important low energy excitations in these systems, from the point of view
of understanding the penetration depth data, as well as other thermodynamic properties and response functions.

From a theoretical perspective, the physics of a system with a small superfluid stiffness and short coherence length
has been studied in detail in case of neutral s-wave SCs [6,7]. In this case, the fermionic excitations and fluctuations
in the order parameter amplitude are gapped, and phase fluctuations are the only important excitation at low tem-
perature. It is of interest to compare this with the behavior in models which support an anisotropic order parameter
with low lying fermionic excitations, such as a d-wave SC.

We approach the problem by deriving and analyzing effective actions for a d-wave SC within a functional integral
framework, which allows us to focus on the collective (order parameter) degrees of freedom. We note that our
effective actions are derived by looking at fluctuations around a BCS mean field solution. We believe that such an
approach is valid for the SC state of the high Tc materials, at least for T ≪ Tc. There is considerable experimental
evidence for sharply defined quasiparticle excitations about the d-wave SC state, and thus the ground state and low-
lying excitations appear to be adiabatically connected to their BCS counterparts. We thus expect that while strong
correlations will modify the coefficients of the phase action, they will not change its qualitative form.

Our main results can be summarized as follows:
1. We find that the d-wave SC state is characterized in terms of an order parameter which lives on the bonds

of a square lattice. The bond order parameter leads to two amplitude and two phase modes in contrast to s-wave
SCs. One of the phase modes is identified as the usual (Goldstone) phase mode while the other, which we call the
“bond phase”, is the relative phase between the x and y bonds at a site. The latter can be thought of as representing
fluctuations from the d-wave state towards an extended s-wave state. The amplitude and bond-phase fields have spin
zero and couple to the particle-particle channel.
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2. We study the spectral weight for fluctuations of the amplitude and bond-phase fields and find that they are
not gapped but rather exhibit power laws down to zero energy. However, the low energy spectral weight in these
fluctuations is very small compared to the quasiparticle contribution.

3. We derive an effective Gaussian action for the usual phase variable in charged systems, since this couples
directly to the electromagnetic potentials. The large in-plane plasma frequency, which is relatively unaffected by
superconductivity, and the low energy c−axis Josephson plasmon at zero and finite temperatures are studied in a
unified manner within the same formalism. We emphasize the relation between unusual aspects of the c-axis optical
conductivity and the Josephson plasmon. We also discuss the plasmon dispersion in layered systems.

4. We extend the above formalism to consider the effect of phase fluctuations beyond Gaussian level on the superfluid
stiffness in charged systems. The quantum XY model [8] is usually used for such an analysis, motivated by studies
of Josephson junction arrays and granular SCs. We emphasize that there are important differences when considering
low temperature bulk SCs, and derive a quantum XY phase action suitable for our problem, correctly taking into
account appropriate momentum and frequency cutoffs, missed in earlier studies.

5. The low temperature renormalization of Ds by phase fluctuations is studied within a self-consistent harmonic
approximation. For parameter values relevant to the cuprates near optimal doping, quantum phase fluctuations are
shown to lead to a sizeable renormalization of the superfluid stiffness. However, thermal fluctuations are found to
have no effect at low temperatures, unlike the results of earlier studies [4,5]. These studies focussed on the effect of
thermal phase fluctuations, but Coulomb effects were considered to be unimportant, in contrast to the present work.

6. As part of our analysis, we also touch upon certain formal issues which may be of some general interest. Among
these are: (a) how gauge invariance can be understood in a simple manner within the functional integral language;
(b) the role of the linear time derivative term iρ∂τθ in the phase action; and (c) the problems involved in deriving
local phase actions which respect 2π periodicity starting from a fermionic model.

The paper is organized as follows. In Section II, we present the Hamiltonian for our model, and discuss the effective
action and mean field theory in Section III. Section IV contains a discussion of fluctuations of the amplitude and
bond-phase fields with some of the details discussed in Appendix A. In Section V, we turn to phase fluctuations and
derive effective phase-only actions for neutral and charged systems. The linear time derivative term in the action
which arises in this context is briefly discussed in Appendix B. We then derive gauge invariant density and current
correlations, leaving details of the algebra to Appendix C. In Section VI we discuss collective in-plane and c−axis
plasmons. In Section VII we present the derivation of a quantum XY model appropriate for charged, layered SCs.
We analyze this action and compute the renormalization of the phase stiffness by longitudinal phase fluctuations in
Section VIII and discuss experimental implications. We conclude in Section IX with a discussion and summary of our
results.

II. THE HAMILTONIAN

We consider a system of fermions with kinetic energy K =
∑

k,σ ξkc
†
k,σck,σ (where ξk = ǫk − µ with ǫk the 2D

dispersion and µ the chemical potential) interacting via a separable potential which is attractive in the d-wave channel.
We will show that in coordinate space this interaction leads to the superexchange term of the t-J model.

Let us begin with

H ′
pair = − g

N

∑

k,k′,q

ϕd(k)ϕd(k′)c†
k+q/2↑c

†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ (1)

where ϕd(k) = (cos kx − cos ky). and we work on a 2D square lattice with lattice spacing a. Ω denotes the volume
of the system with N sites. We set a = 1 in most equations, but retain it in some for the sake of clarity. Fourier
transforming to real space, we get

Hpair = −g
4

∑

〈r,r′〉

B†
r,r′Br,r′ =

g

2

∑

〈r,r′〉

(Sr · Sr′ −
1

4
nrnr′). (2)

(The prime on Hpair is omitted in going from (1) to (2) for reasons explained below). Here 〈r, r′〉 are nearest neighbour

sites, and B†
r,r′ ≡ c†r,↑c

†
r′,↓ − c†r,↓c

†
r′,↑ creates a singlet on the bond (r, r′), while Sr and nr are the spin and number

operators. Clearly this is the interaction term of the t− J model with g = 2J .
There is a subtlety involved here; on transforming (2) back to k−space we do not recover the original expression

(1) we had started with. Instead we obtain, using from now on g = 2J ,
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Hpair = − J

N

∑

k,k′,q

[ϕd(k)ϕd(k′) + ϕs(k)ϕs(k
′)] c†

k+q/2↑c
†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ (3)

where ϕs(k) = (cos kx + cos ky). The reason for two different k-space interactions leading to the same real space
expression is the following operator identity on a 2D square lattice:

∑

k,k′,q

[ϕd(k)ϕd(k′) − ϕs(k)ϕs(k
′)] c†

k+q/2↑c
†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ ≡ 0 (4)

It can be shown that (2) and (3) both lead to the same self consistent BCS gap equation. Thus we will use the
interaction in (3), and not (1). From the form of (3), it is clear that Hpair has attraction in both the d-wave channel,
with a ϕd(k) order parameter, and in the extended s-wave (s∗) channel, with a ϕs(k) order parameter.

We will now analyze the Hamiltonian H = K + Hpair. Later, we will also add to it the Coulomb interaction
appropriate to layered systems (see Section V.B).

III. MEAN FIELD THEORY

The partition function at a temperature T is written as the standard coherent state path integral with the ac-

tion
∫ 1/T

0 dτ
[

∑

r,σ c
†
r,σ∂τ cr,σ +H

(

c, c†
)

]

. We decouple Hpair with a complex field ∆r,r′(τ) using the Hubbard-

Stratonovich transformation:

exp

(

J

2
B†

r,r′(τ)Br,r′(τ)

)

=

∫

D (∆ ∆∗) exp [−L(r, r′; τ)] (5)

where

L(r, r′; τ) =
1

8J
|∆r,r′(τ)|2 −

1

4

(

∆r,r′(τ)B
†
r,r′ (τ) + h.c.

)

. (6)

We thus obtain the action

S =

∫ 1/T

0

dτ





∑

k,σ

c†k,σ(τ) (∂τ + ξk) ck,σ(τ) +
∑

〈r,r′〉

L(r, r′; τ)



 . (7)

The fermion fields can then be integrated out to obtain the effective action exp (−Seff [∆,∆∗]) =
∫

D
(

c, c†
)

e−S.
The d-wave saddle point is given by ∆r,r+x̂(τ) = −∆r,r+ŷ(τ) = ∆d, a (r, τ)-independent real number, obtained

from δSeff/δ∆d = 0, which leads to the BCS gap equation

1

J
=

1

N

∑

k

ϕ2
d(k)

2Ek

tanh(Ek/2T ) (8)

whereEk =
√

ξ2k + ∆2
k and ∆k = ∆dϕd(k)/2. The same gap equation can be obtained by starting from the momentum

space potential in (3) and decoupling in the d-wave channel.
Given Hpair of (3) one could equally well look for possible extended s-wave (s∗) saddle points with ∆r,r+x̂(τ) =

∆r,r+ŷ(τ) = ∆s. However, for our choice of dispersion [9] (which includes nearest and next nearest neighbour hopping
with opposite signs) we have found by numerical solution of the gap equation that the d-wave saddle point is stable
relative to the s∗ solution. The reason for this can be seen as follows: ϕs(k) is small over most of the Fermi surface
for the fillings of interest, while ϕd(k) vanishes only on the nodes. Thus the condensation energy gained by the s∗

state is smaller than the d-wave state. Further, if we consider the large on-site repulsion between electrons (which we

have not done here, but is certainly an essential part of the full t− J model) and demand 〈c†r,↑c
†
r,↓〉 = 0, then we have

∑

k ∆k/2Ek = 0. This is automatically satisfied for the d-wave state at any filling, but not for the s∗ state. In this
work, we rely on the former “Fermi surface effect” to stabilize the d-wave state.
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IV. FLUCTUATIONS

To treat fluctuations in the order parameter we write ∆r,r′(τ) = |∆r,r′(τ)|eiΦ
r,r′ (τ). The phase Φr,r+x̂(τ) = 0 and

Φr,r+ŷ(τ) = π at the d-wave saddle point. We now divide the phase field into two parts; following Ref [10], we set
Φr,r+x̂(τ) = θ(r, τ) and Φr,r+ŷ(τ) = π + φ(r, τ) + θ(r, τ).

We next assume that the spatial variation of θ(r, τ) is small on the scale of the lattice spacing, which allows us
to set Φr,r+x̂(τ) ≈ 1

2 [θ(r, τ) + θ(r + x̂, τ)] and Φr,r+ŷ(τ) ≈ π + φ(r, τ) + 1
2 [θ(r, τ) + θ(r + ŷ, τ)]. While we lose the

θ(r, τ) → θ(r, τ) + 2π invariance of the action with this approximation, it is nevertheless useful in isolating that part
of the phase field which couples to electromagnetic fields as we will see below. We can now transform to new fermion
variables given by c†r(τ) → c†r(τ)e

−iθ(r,τ)/2 [11,12]. As a result of this “gauge transformation” the action of (7) gets
modified to

S =

∫ 1/T

0

dτ [L0 + L1] (9)

with

L0 =
∑

r,σ

c†r,σ(τ)e−iθ(r,τ)/2(∂τ − µ)cr,σ(τ)eiθ(r,τ)/2 − 1

2

∑

r,r′,σ

t(r − r′)
[

c†r,σ(τ)cr′,σ(τ)e−i[θ(r,τ)−θ(r′,τ)]/2 + h.c.
]

(10)

where t(r − r′) is the hopping matrix element between point r and r′, so that ǫk =
∑

r−r′ e
ik·(r−r′)t(r − r′) and

L1 =
1

8J

∑

〈r,r′〉

|∆r,r′(τ)|2 −
1

4

∑

r

|∆r,r+x̂(τ)|
(

B†
r,r+x̂(τ) + h.c.

)

+
1

4

∑

r

|∆r,r+ŷ(τ)|
(

B†
r,r+ŷ(τ)eiφ(r,τ) + h.c.

)

. (11)

In the following Sections we shall integrate out the fermions and examine the resulting effective actions for the
amplitude, φ and θ fields.

A. Amplitude fluctuations

Amplitude fluctuations can be considered by setting |∆r,r+α̂(τ)| = ∆d(1 + ηα(r, τ)) in (11), where α = x, y. The
transformation from ∆α,∆

∗
α to ηα, θ, φ has a Jacobian 4∆4

d(1+ηx)(1+ηy) at every point (r, τ), leading to an additional
term

∫ 1/T

0

dτ L2 = T

∫ 1/T

0

dτ
∑

r,α

ln (1 + ηα(r, τ)) ≈ T

∫ 1/T

0

dτ
∑

r,α

[

ηα(r, τ) − 1

2
η2

α(r, τ)

]

(12)

in the action in (9). For (q, ω) 6= (0, 0), the linear term in (12) can be set to zero and only the quadratic term
contributes. However, even this term is zero at T = 0 and can be ignored at low T .

From (11) we see that the spin zero amplitude fields ηα couple to singlet pairs. Their coupling to the φ-field can
be shown to be small at small momentum and frequency. In particular, for static uniform distortions of φ and η

α
the

energy has to be even under φ→ −φ and terms like φη
α

cannot appear in the action on integrating out the fermions.
The mixing of ηα with the phase θ and electromagnetic potentials can also be shown to be negligible at small q, ω
since ηα couples to the particle-particle channel while the θ and electromagnetic potentials couple to the particle-hole
channel. The mixing then involves integrals over products of ordinary and anomalous Green functions which vanish
using particle-hole symmetry near the Fermi surface and the k−dependence of ∆k. This lack of mixing of amplitude
and phase modes is similar to the well known weak coupling result for s-wave superconductors [7].

Unlike the s-wave case, however, the amplitude excitations have low frequency spectral weight in d-wave SCs which
we now estimate. Setting the phase fields to saddle point values and integrating out the fermions we obtain an
effective action for amplitude fluctuations. Transforming to new variables ηs = (ηx + ηy)/

√
2 and ηd = (ηx − ηy)/

√
2,

diagonalizes the action for η fields at q = 0 and is a good starting point to consider small q fluctuations. We obtain,
to Gaussian order, S[η] = 1

2T

∑

q,n,i=s,d η
∗
iM

−1
i (q, iωn)ηi, where ωn = 2πnT . We have made the approximation of

ignoring the coupling between ηs and ηd, which can be shown to be negligible at small momentum.
The low energy density of states is given by Ni(ω) = 1

N

∑

q ImMi(q, ω)/π with |qx|, |qy| < π/ξ0. The cutoffs arise
since the fluctuations must have an energy lower than the condensation energy as discussed in more detail later, in the
context of phase fluctuations. From a numerical calculation of Ns,d(ω) we find that Ns(ω)/Nqp(ω) ∼ ω2/(∆dvF

/a)
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and Nd(ω)/Nqp(ω) ∼ ω4/(∆3
dvF

/a) where Nqp(ω) ≡ k
F
ω/(πv

F
∆d) is the density of states per spin for quasiparticle

excitations. These results can also be understood from an approximate analysis of the form of Ms,d(q, ω) discussed
in Appendix A.

We see that both Ns(ω) and Nd(ω) are much smaller than Nqp(ω) for ω ≪ ∆d,and thus conclude that amplitude
fluctuations are unimportant for low temperature properties which will be dominated by the quasiparticle contribution.

B. The “bond-phase” field φ

We next study the field φ. We note from (11) that a uniform φ = π would lead to extended s-wave (s∗) order. One
can therefore think of φ as representing fluctuations of s∗ character about the d-wave saddle point. From (11) we see
φ is a spin zero field which couples to pairs.

For reasons similar to those explained above for amplitude fluctuations, the coupling of φ to other fields is
weak and may be ignored at low momentum and frequency. We therefore derive a Gaussian action for φ by
setting θ = η

δ
= 0, their saddle point values, and integrating out the fermions. This leads to the action

S[φ] = 1
T

∑

n,qM
−1
φ (q, ωn)|φ(q, ωn)|2. Since the φ field has low frequency spectral weight, we compute its density

of states Nφ(ω) = 1
Nπ

∑

|q|<π/ξ0
ImMφ(q, ω + i0+). From numerical calculations, as well as simpler approximations

discussed in Appendix A, we find Nφ(ω)/Nqp(ω) ∼ ω2/(∆dvF
/a). We thus see that φ fluctuations are much less

important than quasiparticles at low temperatures.

V. PHASE FLUCTUATIONS

From action of (10) we see that uniform shifts in θ do not cost any energy, and θ is the Goldstone mode of the
superconducting state.

We now obtain the action for θ−fluctuations coupled to fermions, setting ηα = φ = 0 (their saddle point values) in
(10) and (11). For slow spatial fluctuations, the deviation from the mean field action, obtained from (10) with θ = 0,
is given by

δS[c†, c, θ] =
1

2N

∫ 1/T

0

dτ
∑

k,q,σ

c†k,σ(τ)ck−q,σ(τ) [i∂τ − i(ξk − ξk−q)] θq(τ) (13)

− 1

8N

∫ 1/T

0

dτ
∑

k,q,q′,σ

c†k,σ(τ)ck−q−q′,σ(τ)θq(τ)θq′ (τ) (ξk + ξk−q−q′ − ξk−q − ξk−q′)

Using θq(τ + 1/T ) = θq(τ), an assumption discussed in detail in Appendix B, and making a small q expansion, we
arrive at

δS[c†, c, θ] =
1

2TN

∑

k,q,σ

c†k,σck−q,σθq [ωn − ivkαqα] − 1

8TN

∑

k,q,q′,σ

c†k,σck−q−q′,σm
−1
αβ(k)qαq′

βθqθq′ (14)

where k ≡ (k, iνm) and q ≡ (q, iωn) with νm = (2m + 1)πT and ωn = 2nπT . We have used ξk−q = ξk − vkαqα +
1
2m

−1
αβ(k)qαqβ + . . . where vkα ≡ ∂ξk/∂kα is the velocity and m−1

αβ(k) ≡ ∂2ξk/∂kα∂kβ is the inverse mass tensor.

A. Neutral Systems

For neutral systems we integrate out the fermions in (14), using a cumulant expansion [13] controlled by small
spatial and temporal gradients in θ, leading to

Sneutral [θ] =
1

T

∑

q,ωn

1

8

[

−χ0ω
2
n + Λ0

αβqαqβ
]

θ(q, iωn)θ(−q,−iωn). (15)

Here, χ0 ≡ − 1
T 〈ρ(q, iωn)ρ(−q,−iωn)〉 is the mean field density-density correlation function given by
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χ0(q, iωn) =
2

Ω

∑

k

(1 − f − f ′)(uv′ + vu′)

[

uv′

iωn − E − E′
− u′v

iωn + E + E′

]

+
2

Ω

∑

k

(f − f ′)(vv′ − uu′)

[

uu′

iωn − E + E′
+

vv′

iωn + E − E′

]

(16)

and Λ0
αβ ≡ 1

Ω

∑

km
−1
αβ(k)〈n̂k〉 − 1

T 〈jα(q, iωn)jβ(−q,−iωn)〉0 is the mean field phase stiffness, with 〈n̂k〉 =

(1 − ξk/Ektanh(Ek/2T )) and the paramagnetic current correlator

1

T
〈jαj∗β〉0 =

2

Ω

∑

k

vkαvkβ(1 − f − f ′)(vu′ − uv′)

[

uv′

iωn − E − E′
+

u′v

iωn + E + E′

]

+
2

Ω

∑

k

vkαvkβ(f ′ − f)(vv′ + uu′)

[

vv′

iωn + E − E′
− uu′

iωn − E + E′

]

(17)

E, u and v refer to standard BCS notation, f = f(E) is the Fermi function, E′ ≡ Ek−q with E ≡ Ek and similarly
for other primed variables. Analytically continuing iωn → ω + iη, and working at T = 0 [14], we obtain in the limit
q → 0, ω → 0, the mean field superfluid stiffness

Λ0
αβ(T = 0) =

1

Ω

∑

k

m−1
αβ

(

1 − ξk
Ek

)

≡ D0
s(T = 0)δαβ (18)

and the mean field compressibility

χ0(T = 0) = − 1

Ω

∑

k

∆2
k

E3
k

≡ −κ (19)

We note that the effective action (15) is appropriate for phase distortions whose energy is smaller than the conden-
sation energy Econd = 1

8D
0
s(π/ξ0)

2. If this energy (density) is exceeded the d-wave BCS saddle point would become

unstable. This leads to the following restrictions in (15): |q| < qc ≡ π/ξ0 and ωn < ωc with κω2
c/8 = Econd. In the

BCS limit,Econd ≃ ∆2
d/vF

k
F

which translates into v
F
qc ∼ ωc ∼ ∆d.

We emphasize that the coefficients in the phase action are not the physical correlation functions. The gauge invariant
correlation functions, obtained by including the effect of Gaussian phase fluctuations, are given by

Λαβ = Λ0
αβ +

Λ0
αµΛ0

νβqµqν

[ω2
nχ0 − Λ0

µνqµqν ]
. (20)

and

χ(q, iωn) =
qαqβΛ0

αβχ0

qαqβΛ0
αβ − ω2

nχ0

. (21)

as shown in Appendix C.
From (20) and (21) we see that Gaussian phase fluctuations do not affect transverse correlation functions. In

particular, the superfluid stiffness is unrenormalized. However, longitudinal correlations are affected in general.
While Λ0 does not satisfy the f−sum rule, Λ does, which implies restoration of gauge invariance. Further, from (21)
we can see that χ has a pole for q → 0 unlike χ0, which leads to a collective mode which we will discuss in the next
Section. However, the static compressibility given by −χ(q → 0, ωn = 0) is unaffected at the Gaussian level.

We clearly see that the gauge-invariant (q, ω) dependent correlation functions are different from the mean field
correlations which appear as coefficients of the phase action. This is not surprising since the phase variable in fact
contributes to the physical longitudinal correlation functions and modifies the mean field result. This is true even for
charged systems as will be shown below.

B. Charged systems

In charged systems we have to take into account the long range Coulomb interaction with energy density
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1

Ω
Hcoulomb =

1

2N

∑

q

Vqρqρ−q (22)

where ρq ≡ 1
Ω

∑

k,σ c
†
k+q,σck,σ is the electron density. In anisotropic layered systems Vq is given by [16,32]

Vq =
2πe2dc

q‖ǫb

[

sinh(q‖dc)

cosh(q‖dc) − cos(q⊥dc)

]

(23)

where q‖, q⊥ denote in-plane and c−axis components of q, dc denotes the mean interlayer spacing, and ǫb is the
background dielectric constant. We assume q‖a≪ 1 always, where the in-plane lattice spacing a = 1. For q‖dc, q⊥dc ≪
1 this reduces to the ordinary 3D result: Vq = 4πe2/(ǫbq

2).
We take our Hamiltonian to be K + Hpair + Hcoulomb. Since the short range attraction of Hpair is important for

small center-of-mass momentum while the Coulomb effects are important for small momentum transfer, we believe
the breakup of the actual interaction in this manner is physically sensible and does not lead to any “overcounting”.

The Coulomb interaction can now be decoupled using a field Uq(τ) as

exp

[

−
∑

q>0

Vqρq(τ)ρ−q(τ)

]

=

∫

D
(

Uq(τ),U∗
q(τ)

)

exp

[

−
∑

q>0

1

Vq

U∗
qUq + i

∑

q>0

(

U∗
qρ−q + Uqρq

)

]

(24)

To integrate over independent modes, since U−q = U∗
q, we only sum over q > 0. The last term in (24) can be recast

as
∑

r U(r)ρ(r). Thus the density ρ couples to the scalar field U in the same way as it couples to ∂τθ in (14).
On integrating out the fermions we arrive at an effective action for the phase θq and the scalar potential Uq, given

by

S[θ,U ] =
1

8T

∑

q,iωn

[

θ∗(q, iωn) U∗(q, iωn)
]

M−1

[

θ(q, iωn)
U(q, iωn)

]

(25)

with

M−1 =





−ω2
nχ0 + Λ0

αβqαqβ 2iωnχ0

−2iωnχ0
∗ 4(−χ0 + V −1

q )



 (26)

where χ0
∗ = χ0(−q,−iωn). Integrating out the field U leads to the action

Scharged[θ] =
1

8T

∑

q,ωn

(

−ω2
nχ

RPA
0 + Λ0

αβqαqβ
)

θ(q, iωn)θ(−q,−iωn) (27)

where the mean field charged system density correlator χRPA
0 = χ0/(1 − Vqχ0). This form of the phase action is

independent of the order parameter symmetry and has been obtained earlier for s-wave SCs [12]. We note that this
form differs considerably from that assumed in Ref. [15], where the physical (q, ω)-dependent longitudinal dielectric
function appears as a coefficient in the action. As emphasized earlier, physical longitudinal correlations cannot appear
as coefficients of the phase action.

The regime of validity for the above action is q <∼ π/ξ0 as for neutral systems (see discussion below (19)). The
frequency cutoff is given by |χRPA

0 (q)ω2
n| <∼ Econd and thus depends on q. In particular, for q → 0, the action remains

valid even at frequencies larger than the gap ∆d and can be used to obtain the q → 0 plasma mode.
The gauge-invariant correlations for the charged system are obtained from the neutral system results (20) and (21)

by replacing χ0 → χRPA
0 , as discussed in Appendix C.

VI. PLASMONS

In the previous Section we have found phase actions of the form S[θ] = 1
T

∑

q,ωn
M−1

θ |θ(q, ωn)|2 for neutral sys-

tems (see eq. (15)) and for charged SCs (see eq. (27)). The dispersion of the collective phase mode is defined by
ReM−1

θ (q, ω) = 0. For neutral systems, we note that this condition is identical to demanding a pole in physical
density-density correlation χ given in (21). Phase and density fluctuations are thus coupled and share the pole of the
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collective mode. This is true even for charged systems, where the plasma frequency, ωp, corresponds to the pole of
the physical density correlator and is given by limq→0 Reχ−1(q, ωp) = 0.

The phase action is valid for all frequencies such that ω2 <∼ EcondVq and thus is valid even for large frequencies for
q → 0. If the plasmon is at finite frequency for q → 0, Landau singularities do not occur at finite temperatures. One
can thus use this action to obtain the q → 0 plasma mode at zero and finite temperatures. Further, to have a sharp
plasmon the damping must be relatively small: ImMθ ≪ ωp.

In this section, we first briefly consider neutral systems followed by a discussion of charged systems. For charged
systems, we study the in-plane plasma mode and then consider c−axis plasmons for systems with a finite c−axis
superfluid stiffness. Our discussion of the c-axis plasmon is to a large extent independent of the details of any c−axis
model. We also make an estimate of the c−axis plasma frequency for Bi2212 obtained within this phase action and
compare it with experiment.

A. Neutral Systems

For neutral systems we have M−1
θ = 1

8 (Λαβ
0 qαqβ − χ0ω

2
n). At T = 0, continuing to real frequency, the collective

mode frequency obtained from above is given by ω(q) = cq where the sound velocity c ≡
√

D0
s/κ. This reduces to

the standard result c = v
F
/
√
d in the weak coupling limit in the continuum, where d is the spatial dimension and v

F

is the Fermi velocity. At finite temperatures, there are Landau singularities in D0
s and χ0 as seen from (16) and (17),

which prevents us from taking the q → 0, ω → 0 limit.

B. Charged Systems

In the action (27), we can set χRPA
0 → −1/Vq in the limit q → 0. Analytically continuing to real frequency, and

setting ReM−1
θ (q, ωp) = 0, we obtain

lim
q→0

[

qαqβReΛαβ
0 (q, ωp(q̂)) −

1

Vq

ω2
p(q̂)

]

= 0, (28)

where ωp depends on the direction of propagation (in-plane or c−axis) in anisotropic systems.

We first consider the in-plane plasmon. For q → 0 (q̂ in-plane) and finite ω we can write Λαβ
0 = δαβ (−iǫb ωσ(ω)/e2)

where σ ≡ σ′ + iσ′′ is the in-plane optical conductivity (including the effects of Gaussian phase fluctuations). The
background dielectric constant enters in this definition of σ since the conduction electrons are affected by the electric
field which has been screened by the background. We thus see that

lim
q→0

Vqq
2 ǫbσ

′′
ab(ωp)

e2
= 4πσ′′

ab(ωp) = ωp (29)

σ(ω) thus governs the location and damping of the plasma mode through a self-consistent equation. This equation is
identical to demanding a zero in the real part of the longitudinal dielectric constant (ǫ), since ǫ = ǫb + 4πiσ/ω in a
gauge invariant theory.

At this stage it is instructive to compare (a) the physical plasma frequency ωp, (b) the conductivity sum rule plasma
frequency ω∗

p defined by

∫ ∞

0

dω σ′(ω) =
e2

ǫb

π

2Ω

∑

k

m−1(k)〈n(k)〉 ≡
ω∗2

pα

8
, (30)

and (c) the superfluid plasma frequency ωps defined by ω2
ps(T ) ≡ 4πe2Ds(T )/ǫb, where Ds(T ) is the T -dependent

superfluid stiffness related to λ(T ), the penetration depth [2]. With this definition, the real part of σ can be represented
as σ′(ω, T ) = (ω2

ps(T )/4)δ(ω)+σreg(ω, T ) where σreg is the regular part. Finally, we have the Kramers-Krönig relation
for σ(ω):

σ′′(ω) =
1

π
P

∫ ∞

0

dω′ σ′(ω′)
2ω

ω2 − ω′2
(31)

We will now try to use these relations and the structure of σ′(ω) to obtain direct information about the behavior of
the plasma mode, which is not directly seen in an optical conductivity measurement.
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Conventional clean 3D s-wave SCs at T = 0 have a very large superfluid stiffness which can be inferred from
penetration depth measurements, and little spectral weight at higher energies. Ignoring interband transitions, we can
then take σ′(ω) ≈ (ω2

ps(0)/4)δ(ω) which leads to ω∗
p = ωps(0) from (30). It also implies σ′′(ω) = ω2

ps(0)/4πω through
the Kramers-Krönig relation (31). Using (29) we then get ωp = ωps(0), a large plasma frequency. In the presence
of weak disorder and at finite T , ωps decreases and the spectral weight in σ′(ω) redistributes, leading to finite σ(ω)

over energy scales τ−1
tr ,∆ which are the quasiparticle transport lifetime and SC gap respectively. Since ωp ≫ τ−1

tr ,∆
to begin with, it is unaffected by this low energy redistribution. This is easy to see from (31) above for σ′′(ω) where
we can set ω′ ≈ 0 in the denominator for the region of interest, and this along with (30) and (29) leads to ωp = ω∗

p,
which is insensitive to the spectral weight redistribution. Further, the small σ′(ωp) implies a sharp plasmon in this
case. Thus for conventional s-wave SCs, we finally arrive at ωp ≈ ω∗

p ≥ ωps(T ). The last relation is satisfied as an
equality only in a Galilean invariant system at T = 0.

For the cuprate superconductors, the in-plane σ′(ω, T = 0) has the following features: (i) a condensate contribution
(e2πD0

s(T = 0)/ǫb)δ(ω) and (ii) absorption by quasiparticles which has low frequency spectral weight (in a d-wave SC)
with features around twice the maximum gap followed by other higher energy features. The condensate contribution
along with the large low energy spectral weight coming from quasiparticles is expected to lead to the large plasma
frequency, as in the case of conventional SCs above. Ignoring interband transitions in calculating ω∗

p, we then arrive
at ωp ≈ ω∗

p > ωps.
The normal state in-plane plasma frequency has been measured to be large (∼ 1eV ) in the cuprates [17] while the

spectral weight rearrangement in σ′ in going from the normal state to the SC state is over smaller energy scales [18].
The high energy normal state plasmon is thus expected to smoothly go over into a high energy SC state plasmon
expected from our above discussion, similar to conventional SCs.

C. Josephson Plasmons along c-axis

To study the c−axis plasmon we assume a non-vanishing c−axis stiffness D
⊥
. We set q̂ along the c−axis in (29),

leading to ωp,c = 4πσ′′
c (ωp,c). We know ωps,c is small in the high Tc systems as seen from the large c-axis penetration

depths, and σ′
c(ω) is measured to be very small over a very large energy range [19]. This is partly due to the form of the

c-axis dispersion which is proportional to (cos kx − cos ky)2 [20], so that nodal quasiparticles which lead to low energy
spectral weight in-plane have a much smaller contribution along the c-axis. Thus at T = 0, the only “free carriers”
come from the condensate, and ω∗

p,c ≃ ωps,c. On using (31) and (30), this leads to ωp,c(T = 0) = ωps,c(T = 0). With
increasing temperature, the spectral weight in σ′′

c gets transferred to very high energies [21]. The plasma frequency
then continues to be given by ωp,c(T ) = ωps,c(T ), which decreases with increasing T and vanishes above Tc as seen
in experiment [19,22,23]. Thus the c-axis plasma oscillations are seen only below Tc, justifying the use of the term
“Josephson plasmon”.

A model which assumes disordered quasiparticle transport along the c-axis [24] and a model which only permits
pair tunneling [25] both appear to lead to this behavior for ωpc(T ). Presumably the main effect of disorder in the
first model is to suppress single particle tunneling leading to pair tunneling as the dominant process below Tc; it then
appears that the two models are similar in spirit. The disorder scale required to reproduce the experimental results
in the first model appears to be large, of the scale of the one particle tunneling bandwidth. One reason for the large
disorder scale could be that the c-axis dispersion in this calculation has been chosen to be independent of kx, ky, while
the actual (cos kx − cos ky)2 dependence would already suppress single-particle tunneling near the nodes in the clean
case. This might then lead to a smaller disorder scale required to suppress this tunneling process completely.

We finally proceed to compare the c-axis plasma frequency with the stiffness obtained from penetration depth
experiments in Bi2212. We consider only the in-phase c-axis plasmon and ignore the “optical mode” corresponding to
out-of-phase fluctuations arising from the bilayer structure, which is expected to be at a higher energy [26,27]. This
leads to

ω2
p,c =

4πe2

ǫb
D

⊥
=

c2

ǫbλ2
c

(32)

where c is the velocity of light and λc is the low temperature c−axis penetration depth. λc in Bi2212 has been
measured [28] to be about 100 microns. Using this and setting ǫb ≈ 10, we get ωp,c ≈ 7K. This is in reasonable
agreement with ωp,c ≈ 8-10K extracted from experiment [29–31] given experimental errors, and uncertainties in the
estimate of ǫb.
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D. Plasmon dispersion

In order to understand the plasmon dispersion and the variation of the plasma energy with direction of propagation,
we consider a simplified model for the in-plane and out-of-plane conductivity. Since ωp,ab ≈ ω∗

p and is large for the

in-plane plasmon, we set the in-plane conductivity σ′(ω) = (ω2∗
p /4)δ(ω), consistent with the conductivity sum rule,

which then reproduces the large in-plane plasma frequency. We emphasize that this simplified form for the in-plane
conductivity is valid only at large frequency, for studying the high energy in-plane plasmon. It is not valid for
considering low energy in-plane physical observables, such as the superfluid stiffness. Using this form for the real
conductivity, σ′′

ab(ω) = ω∗2
p /4πω. The c-axis conductivity is given by σ′

c = (ω2
ps,c/4)δ(ω) as discussed in the last

Section, which leads to σ′′
c (ω) = ω2

ps,c/4πω. This simplified model is tailored to capture the correct plasma frequency
for propagation along the in-plane and c-axis directions. For an arbitrary direction of propagation, we expect to
obtain a reasonable interpolation.

For general q, in the absence of detailed information on the σ(q, ω), we assume that the conductivity is independent
of q. This appears to be a reasonable assumption at high energy, and leads to the plasma frequency being given by

ωp(q) =
Vqǫb
e2

(

σ′′
ab(ωp)q

2
‖

+ σ′′
c (ωp)q

2
⊥

)

(33)

The plasma frequency for |q| → 0 is a function of the angle of propagation, ψ, measured with respect to the ab-plane
and given by ω2

p(ψ) =
(

ω∗2
p cos2(ψ) + ω2

ps,c sin2(ψ)
)

and varies smoothly from the low energy Josephson plasmon for
c-axis propagation to the high energy plasmon in-plane. In order to examine the plasmon dispersion in a particular
case, we consider the limit q

⊥
= π/dc and study ωp as a function of (q

‖
a). Normal state data for LSCO [17] shows

ωp,‖(q⊥ = 0,q
‖
→ 0) ∼ 1eV ; we assume a similar value for Bi2212 with ωp,‖(q⊥ = 0,q

‖
→ 0) ≈ ω∗

p. Using dc/a ≈ 4

and ωpc = ωps,c ∼ 1.0meV [29–31], we plot the plasma frequency in Fig.1. This crosses over from a low energy
Josephson plasmon for q

‖
→ 0, corresponding to c-axis propagation, to a nearly two dimensional plasmon dispersing

as
√
q
‖

at larger q
‖
. At small q

‖
, the dispersion is known to be acoustic for ωps,c = 0 [32]. It appears to be acoustic

in Bi2212 at small q
‖

(see Fig. 1) due the extremely small value of ωps,c, but finally levels off leading to a finite
Josephson plasmon gap for q

‖
→ 0 as shown in the inset in Fig.1. The 2D

√
q
‖

dispersion is obtained mathematically

in the limit of large dc/a and is given by ωp,2D(q‖) = (ω∗
p/
√

2)
√

q
‖
dc and we plot this in Fig.1 for comparison. It must

be emphasized that plasmon damping would be important in the real system and would have non-trivial dependence
on the angle of propagation. The sharp plasmon we obtain in the above cases is an artifact of our simplified model
for the conductivity.

VII. QUANTUM XY MODEL

The superfluid stiffness obtained above D0
s(T ) = 1

Ω

[
∑

km
−1
xx (1 − ξk/Ek) − 2

∑

k v2
x (−∂f/∂Ek)

]

is unaffected by
Gaussian phase fluctuations. Corrections to this result are unimportant in conventional superconductors which have a
large coherence length and a largeD0

s(T = 0). However, as we show below, effects beyond the Gaussian approximation
could lead to large corrections in systems with a small coherence length and small D0

s . To study such effects we derive
in this Section a quantum XY model and analyze quantum and thermal phase fluctuations in the following Section.
For clarity of presentation, we outline the derivation for a d-dimensional isotropic system; the generalization to the
anisotropic case is straightforward.

The quantum XY model describes the dynamics of the phase variables θR(τ) defined on a lattice with lattice spacing
ξ0, the coherence length. The simplest action periodic under θR(τ) → θR(τ) + 2π is given by

SXY [θ] =
∑

Q,ωn

A(Q)ω2
n|θ(Q, iωn)|2 +B

∫ 1/T

0

dτ
∑

〈R,R′〉

[1 − cos(θR(τ) − θR′(τ))] , (34)

where 〈R,R′〉 are neighboring sites. It is important to emphasize that, given the cos(θR − θR′) form, there are no
constraints on the spatial gradient of the phases defined on the coarse-grained scale of ξ0. This is in contrast to the
Gaussian action (27), derived on the scale of the microscopic lattice spacing a, which could only describe slow spatial
fluctuations of the phase whose energy did not exceed the condensation energy.

Our task now is to determine the coefficients A(Q) and B of this effective action. Unlike in some other cases
[33] it is not possible to directly derive the quantum XY action from the underlying fermionic Hamiltonian, since
the cumulant expansion we used to derive effective phase actions was controlled by the smallness of spatio-temporal
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gradients in θ. We therefore proceed as follows: we compare the action (34) in the limit of slow spatial variations on
the scale of the coherence length and match coefficients with those of the Gaussian action:

S[θ] =
1

8T

∑

q,ωn

′′ ω2
na

d

V (q)
|θ(q, iωn)|2 +

1

8

∫ 1/T

0

dτ
∑

r,α

D0
sa

d−2 [θr(τ) − θr+α(τ)]
2

(35)

where V (q) is the generalized d-dimensional Coulomb interaction. For the (q, iωn) of interest, we have set χRPA
0 ≈

−1/V (q) and Λ0 = D0
s(T ). The double prime on the summation denotes momentum and frequency cutoffs

|q| < qc ≡ π/ξ0 and ω2
n ≤ (2πncT )2 ≡ D0

s

(

π

ξ0

)2

Vq (36)

which arise from demanding that the energy cost of the terms in (35) to be less than the condensation energy
Econd = 1

8D
0
s(π/ξ0)

2. The q cutoff can also be viewed as a representation of the q-dependent stiffness being roughly

constant (≈ D0
s) for q < qc and decreasing to zero for q > qc.

In arriving at (35), we have Fourier transformed the gradient term from the (q, iωn) to (r, τ) variables. While the
above τ -local form of this term is true when all Matsubara frequencies are present, we now determine its regime of
validity given the frequency cutoff in (36). With the cutoff in (36), the gradient term on Fourier transforming is given
by

T

8

∑

q

D0
sa

dq2

∫ 1/T

0

dτ dτ ′θ(q, τ)θ(q, τ ′)K(T (τ − τ ′)) (37)

In terms of the dimensionless quantity z = τT the kernel is given by K(z) = sin [(2nc + 1)πz] / sin(πz) where
nc ≡ nc(q) given by (36). The kernel K(z) is periodic in z, K(z + 1) = K(z), and it is sharply peaked around
z = 0 for large nc. The width of the peak can be estimated from the first zero of K(z) as z0 = 1/(2nc + 1). For
nc

>
∼ 10, z0 ≪ 1 which is true in the low temperature regime that we shall be interested in. We thus approximate

K(z) as a delta function in “time” and work with a local-τ action in (35).
To determine the coupling B in (34), we consider static θ configurations and apply a small external twist Φ which

will be distributed uniformly over the system. For the Gaussian model (35), with lattice spacing a = 1 and N = Ld

sites, the phase twist per link is (Φ/L), while for the the XY model (34), on the “coarse grained” lattice with lattice
spacing ξ0 and (L/ξ0)

d sites, there is a larger phase gradient Φ/(L/ξ0). Since the total energy cost for this phase

twist is the same in the two cases, one obtains D0
sa

d−2
(

Φ/L
)2
Ld/8 = B

(

Φξ0/La
)2 (

La/ξ0
)d
/2, which leads to

B = D0
sξ

d−2
0 /4.

Similarly, for a τ -dependent phase fluctuation at a frequency ωn, (L/ξ0)
d phases contribute in the “coarse grained”

XY model, as opposed to Ld in the Gaussian case. We thus get A(Q)ω2
n(La/ξ0)

d = (ω2
na

d/8Vq)Ld on equating the
first term in the two actions. This leads to A(Q) = ξd

0/8Vq. Finally, noting that the momentum Q = qξ0/a since

the distances in the “coarse grained” lattice are in units of ξ0, this can also be written as A(Q) = ξd
0/8Ṽ (Q), where

Ṽ (Q) = V (Q a/ξ0) = V (q).
Having obtained A(Q) and B in the isotropic d-dimensional case, we generalize to anisotropic systems. We work

with a layered 3D system with lattice spacing a = 1 in-plane and dc along the c-axis. The in-plane coherence length
ξ0 ≫ a and the c-axis coherence length ξ

⊥
= dc. In this case, since ξ

⊥
= dc, we proceed exactly as above but coarse

grain only the in-plane variables. Denoting the Gaussian model stiffness by D0
‖

in-plane and D0
⊥

along the c-axis, we

arrive at the final action

S[θ] =
1

8T

∑

Q,ωn

′ω2
nξ

2
0dc

ṼQ

θ(Q, ωn)θ(−Q,−ωn) +
D0

‖
dc

4

∫ 1/T

0

dτ
∑

r,α=x,y

(1 − cos[θ(r, τ) − θ(r + α, τ)]) (38)

+
D0

⊥
dc

4

(

ξ0
a

)2 ∫ 1/T

0

dτ
∑

r

(1 − cos[θ(r, τ) − θ(r + ẑ, τ)]) .

where Ṽ (Q) = V (Q a/ξ0) and V (Q) is the Coulomb interaction for layered systems given in (23). While all |Q| ≤ π
contribute in (39) above, the prime on the summation denotes the Matsubara cutoff consistent with (36). The
couplings in this action depend crucially on ξ0 and we shall examine the consequences of this below.
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VIII. RENORMALIZATION OF THE STIFFNESS

The quantum XY model action has both longitudinal fluctuations and transverse (vortex) excitations. Near a finite
temperature phase transition, the dynamics is unimportant and we recover the classical XY model with the possibility
of a phase transition in the 3D-XY universality class. In this Section, we examine low temperature properties and
the effect of quantum dynamics. We ignore vortex-antivortex pair excitations since these have a core energy cost
and would be exponentially suppressed at low temperatures. We deal with the longitudinal fluctuations within a self
consistent harmonic approximation (SCHA).

To examine the low temperature in-plane properties, we assume D0
⊥

= 0 in (39) since it is very small in highly
anisotropic systems with a large λ

⊥
. The c-axis stiffness would become important if λ

⊥
<∼ λ

‖
(ξ0/a), which implies

D
‖
<∼ D

⊥
(ξ0/a)

2, leading to the c-axis contribution being important in (39). For Bi2212, detailed calculations, which
we omit here, show that it does not affect our in-plane results.

The SCHA [34,4] is carried out by replacing the above action by a trial harmonic theory with the renormalized
stiffness D

‖
chosen to minimize the free energy of the trial action. This leads to D

‖
= D0

‖
exp(−〈δθ2〉/2) where

δθ ≡ (θr,τ − θr+α,τ ) and the expectation value is evaluated in the renormalized harmonic theory. Explicitly, we get

〈δθ2〉 = 2T

∫ π

−π

d3Q

(2π)3

nc
∑

n=−nc

ǫQ

ω2
nξ

2
0dc/ṼQ +D

‖
dcǫQ

(39)

where ǫ(Q) = 4 − 2 cosQx − 2 cosQy.
We have analyzed the above equations to extract information about the importance of quantum and thermal phase

fluctuations. Our numerical results can be simply summarized as follows: 〈δθ2〉(T = 0) ∼
√

(e2/ǫbξ0)/(D‖
(0)dc)

is a measure of quantum fluctuations, while thermal fluctuations become important above a crossover scale T× ∼
√

(D
‖
(0)dc)(e2/ǫbξ0). These quantities are simply understood as the zero point spread and the energy level spacing

of an oscillator respectively, in the renormalized harmonic theory. The scale T× is also the temperature at which
nc(Q = π) ∼ 1 (giving a broad kernel K(z)), with non-local effects in τ becoming important.

It is easy to see that phase fluctuation effects are negligible in the BCS limit of large ξ0. With e2/ǫba ∼ D
‖
dc ∼ E

F

and ξ0 ∼ vF /∆, one obtains the standard result Econd ∼ ∆2/E
F

per unit cell, and 〈δθ2〉(T = 0) ∼
√

∆/E
F
≪ 1 and

T× ∼
√

E
F
∆ ≫ Tc.

For the cuprates the short coherence length and small D
‖

act together to increase 〈δθ2〉, but they push T× in

opposite directions. For optimal Bi2212 we use e2/ǫba ≈ 0.3eV with ǫb ≈ 10 and ξ0/a ≈ 10. Bi2212 has a bilayer
stacking structure with the planes within a bilayer being much closer than the distance between bilayers. Assuming
the phase within the bilayer to be fully correlated, we set dc to be the mean inter-bilayer spacing and thus dc/a ≈ 4.
Using λ

‖
(0) ≈ 2100Å, we then get the bilayer stiffness D

‖
(0)dc ≈ 75meV [2]. These values lead to Econd ≈ 6K/unitcell

which is somewhat larger than estimates for optimally doped YBCO from specific heat measurements [35]; we are
unaware of similar data for Bi2212. We find that the crossover scale T× ≈ 350K ≫ Tc. Since the bare stiffness
D0

‖
actually decreases with temperature due to quasiparticle excitations, a better estimate of the thermal crossover

scale may be obtained from T× ∼
√

D0
‖
(T×)(e2/ǫbξ0); this results in a crossover scale T× ∼ Tc. Thus, thermal

fluctuations are clearly unimportant at low temperatures T ≪ Tc. Quantum fluctuations are important since we find
〈δθ2〉(T = 0) ∼ 1 at optimal doping.

To study the temperature dependence of λ
‖
(T ) and the bilayer stiffness D

‖
(T )dc [2], we set the bare stiffness

dcD
0
‖
(T ) = dcD

0
‖
(0) − 2α0T , where the linear decrease arises purely from nodal quasiparticle excitations within a

single layer. This implies 1/λ2
‖,0(T ) = 1/λ2

‖,0(0)−
(

4πe2/h̄2c2dc

)

2α0T . We plot the results of a numerical calculation

of 1/λ2
‖
(T ) in Fig (2). Phase fluctuations are seen to lead to a large quantum renormalization of 1/λ2

‖
(0) and to very

little change in the slope of 1/λ2
‖
(T ) [36]. The negligible renormalization of the slope of 1/λ2

‖
(T ) which we find, is true

for a range of parameter values around our specific choice which has been constrained by experiments. It is however
not the case more generally, and the slope could be renormalized by quantum fluctuations for a very different choice of
parameter values. This effect of quantum fluctuations should be contrasted with the effect of classical thermal phase
fluctuations which do not renormalize λ

‖
(0) or D

‖
(0), but increase the slope of 1/λ2

‖
(T ) relative to its bare value.

We note that in the absence of quasiparticles, the superfluid stiffness in this model would have an exponentially small
temperature dependence, arising from phase fluctuations which are gapped. While it might appear that there could
be low temperature crossovers resulting from the c-axis plasmon being at low energy (∼ 10K for Bi2212), the phase
space for these low lying fluctuations is extremely small to lead to a linear T behavior. Even in a purely 2D system,
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which supports (gapless) low energy plasmons dispersing as
√
q
‖
, the phase stiffness would decrease slowly, with a

large power law (∼ T 5). Quasiparticles are thus crucial in obtaining the observed linear temperature dependence.
We find that we have to choose the bilayer stiffness dcD

0
‖
(0) ≈ 130meV corresponding to a bare λ

‖,0(0) ≈ 1600Å

and a slope α0 ≈ 0.35meV/K to obtain the renormalized values dcD‖
≈ 75meV (implying λ

‖
≈ 2100Å) and

α ≈ 0.35meV/K, in agreement with experiment. Thus quantum effects lead to a large (∼ 40%) decrease of 1/λ2
‖
(0),

but no change in its linear T slope [36] for our choice of parameter values.
The bare slope α0 within a theory of non-interacting Bogolubov quasiparticles is given by (k

B
ln 2/π)(h̄vF kF

/∆d).
Using the measured ARPES dispersion [9], this leads to α0 ≈ 0.8meV/K which is much larger than the ’bare’ value
we have used above to obtain agreement with penetration depth experiments. This points to the inadequacy of the
non-interacting quasiparticle picture. The above discrepancy could be accounted for by considering quasiparticle
interaction effects at the mean field level before considering the effect of phase fluctuations. These interaction effects
become more important as one underdopes to approach the Mott insulator [37].

IX. CONCLUSIONS

In this paper, we have focussed on the excitations of a short coherence length d-wave superconductor. These are
nodal fermions and the fluctuations of the amplitude and phase of the order parameter. Using an effective phase-
only action we have discussed collective plasma modes and renormalization of superfluid stiffness by anharmonic
longitudinal phase fluctuations. We summarize below some of our main conclusions.

We have found that the important excitations are the low-lying fermionic states near the nodes and quantum phase
fluctuations of the order parameter. Although the d-wave state supports in addition, two amplitude fields and a
bond-phase field, these have been shown to have negligible spectral weight at low energy and are unimportant for
the low temperature thermodynamics. They could possibly be probed in experiments such as Raman spectroscopy
measurements designed to detect these fluctuations.

Our discussion and derivation of the plasma modes emphasizes a unified way of looking at the in-plane and c−axis
plasmons, in a manner which is relatively independent of detailed models of c−axis propagation. The very different
nature of the two plasma modes, with a small c−axis plasma frequency governed by the c−axis stiffness and a large
in-plane plasma frequency not directly related to the in-plane stiffness, can both be understood within our phase
action. A microscopic derivation of c−axis conductivity sum-rules and T -dependent spectral weight transfers would
depend on specific models [24,25], and we have not discussed these.

Our derivation and treatment of the effective phase-only action emphasizes the crucial role played by the coherence
length in imposing momentum and frequency cutoffs in the phase fluctuations. This allows us to interpolate from the
BCS limit where phase fluctuations are unimportant to a regime of strong quantum fluctuations in the short coherence
length limit. We find that quantum and thermal fluctuations cannot both be present at low temperatures; The short
coherence length increases quantum fluctuations while pushing up the temperature scale at which one crosses over to
thermal phase fluctuations. The strong longitudinal quantum fluctuations of the phase predicted by our calculation
would also imply dynamical charge density fluctuations at low temperatures in the SC phase, which could possibly
be probed in experiments.

It has been pointed out that there is a discrepancy in the magnitude of the linear T slope of the measured penetration
depth and the value calculated using ARPES data assuming free quasiparticles [37]. However, phase fluctuations effects
had not been taken into account before comparing data from the two measurements. We find that even including
the relevant quantum phase fluctuations, a discrepancy is present which points to strong quasiparticle interactions
even at optimal doping. A theory to account for these quasiparticle interactions is however lacking. One possibility
is to invoke a phenomenological superfluid Fermi liquid theory description for the quasiparticles [38,36]. It turns
out however, that such a theory has a large number of free parameters and lacks predictive power although the
experimental results may be easily rationalized.

Finally, we have restricted our study in this paper to the low temperature properties of the SC without addressing
the issue of what happens at higher temperatures within the SC state and in the normal state. This leads naturally
to the problem of fermions interacting with a strongly fluctuating order parameter, which is at present an important
open problem.

Note added in proof: We have recently studied, in some detail, the effect of ohmic dissipation on phase fluctuations
[39]. Such dissipation, arising from a finite low frequency optical conductivity, is seen to reduce the magnitude of
quantum fluctuations and reduce our estimate for the thermal crossover scale. Nevertheless, we find that the crossover
scale is still large, so that our conclusion, about quasiparticles dominating the low temperature behavior of response
functions, remains unchanged.
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APPENDIX A

In this Appendix, we present an approximate analysis of the density of states for the amplitude fields ηs,d and the
bond-phase field φ. This analysis gives us insight into the nature of fermionic excitations which contribute to the low
energy spectral weight for these fields and recovers the power law for the low energy DOS obtained in the numerics.

A.1 Amplitude fluctuations:

The low energy density of states, Ni(ω) = 1
N

∑

q −ImMi(q, ω)/π i = s, d with the restriction |qx|, |qy | < π/ξ0.

The spectral weight ImMi(q, ω) at T = 0 arises from summing over low lying pair excitations at all momenta
(k,k − q). This contributes to absorption at frequencies ω = Ek + Ek−q. For q = 0, the spectral weight extends to
ω = 0 coming from low lying pair excitations from momenta k arbitrarily close to the node. At finite q the absorption
sets in beyond a minimum threshold which corresponds to k at the node and k − q near the node (since q is small

due to the momentum cutoff). The threshold is given by ωmin(q) =
√

q21∆
2
d + q22v

2
F

where q1, q2 refer to components

of q parallel and perpendicular to the Fermi surface respectively, at the node.
We find numerically that the spectral weight for q 6= 0 is nearly the same as for q = 0 beyond the absorption

threshold. We therefore approximate

Ni(ω) ≈
(−1

π

) ∫ π/ξ0

−π/ξ0

d2q

(2π)2
ImMi(q = 0, ω)Θ(ω − ωmin(q)) (40)

where Θ(x) is the unit step function which is 1 for x > 0 and 0 otherwise. For q = 0, the inverse propagator

M−1
s,d =

∆2
d

4J
− ∆2

d

2N

∑

k

ϕ2
s,d(k)

ξ2k
Ek(ω2

n + 4E2
k)

(41)

where ϕs(k) = cos kx + cos ky and ϕd(k) = cos kx − cos ky. Analytically continuing iωn → ω + i0+ and working at
low frequency (ω ≪ ∆d) leads to

− 1

π
ImMs,d = c2s,d

1

N

∑

k

δ(Ek − ω/2) ϕ2
s,d(k) ξ2k/E

2
k (42)

where 2/cs,d ≡ ∆d
1
N

∑

k

(

ϕ2
d/Ek − ϕ2

s,dξ
2
k/E

3
k

)

. We evaluate the ω-dependent momentum sum in (42) analytically

by converting it to a Fermi surface integral and compute the constant cs,d numerically. Finally, doing the q sum to
obtain the density of states leads to:

Ns(ω)

Nqp(ω)
= c2s

ϕ2
s(kF ,n)

16π

ω2

∆dvF

(43)

Nd(ω)

Nqp(ω)
= c2d

1

256π

ω4

∆3
dvF

where ϕs(kF ,n) refers to ϕs evaluated at the gap node point on the Fermi surface and Nqp(ω) ≡ k
F
ω/(πv

F
∆d) is the

quasiparticle DOS per spin which is linear in ω. We numerically estimate cs,d ∼ 10; The prefactors in the (44) are
then of order unity.
A.2 The “bond-phase” field φ:

For the φ−field, pair excitations similar to that for amplitude excitations lead to low energy spectral weight. This
is easy to understand since both fields couple to the particle-particle channel with only different vertex factors. The
behavior of ImMφ(q, ω) is similar to that for amplitude fields with a vanishing threshold for q = 0 and a finite
threshold for q 6= 0. Following similar approximations, we set

Nφ(ω) = − 1

π

∫ π/ξ0

−π/ξ0

d2q

(2π)2
ImMφ(q = 0, ω)Θ(ω − ωmin(q)) (44)
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For T = 0, using particle-hole symmetry near the Fermi surface we find the inverse propagator

M−1
φ (q = 0, ωn) =

∆2
d

16

1

N

∑

k

[

ϕ2
d(k)

Ek

− 8 cos2(ky)
Ek

ω2
n + 4E2

k

]

(45)

Doing the integrals as before, we finally get

Nφ(ω)/Nqp(ω) =
1

8π
c2φ ϕ

2
s(kF ,n)

ω2

∆dvF

(46)

where 1/cφ ≡ ∆d

N

∑

k ϕ
2
s(k)/2Ek. The prefactor here is again of order unity.

APPENDIX B

In this Appendix, we briefly consider the linear time derivative term in the phase action, which we have dropped
in the paper. For notational simplicity, we consider a neutral s-wave SC in 2D with lattice spacing a = 1. In carrying
out the Hubbard Stratonovitch transformation as for the d-wave case, we introduce complex order parameter fields
∆r(τ),∆

∗
r(τ) which are bosonic variables and satisfy the constraint ∆r(0) = ∆r(1/T ). Writing ∆r = |∆r|eiθr , this

translates into |∆r|(1/T ) = |∆r|(0), and θr(1/T ) = θr(0) + 2πmr, and the partition function involves an additional
sum over mr. Working in small θ gradients and doing a cumulant expansion, one arrives at the following form of
phase action for low momenta and frequencies:

Sθ =

∫ 1/T

0

dτ
∑

r

[

iρθ̇ +
1

8
κθ̇2 +

1

8
Ds(∇θ)2

]

(47)

We now make the substitution θ(r, τ) = Θ(r, τ) + 2πTmrτ which implies Θ(r, 1/T ) = Θ(r, 0). Substituting this in
the action, we get

S = 2πiρ
∑

r

mr +
1

2
π2κT

∑

r

m2
r +

Dsπ

6T

∑

r

(∇mr)
2 +

1

2
πDsT

∑

r

∫ 1/T

0

dτ τ(∇Θ) · (∇mr) (48)

+
1

8

∫ 1/T

0

∑

r

(

κΘ̇2 +Ds(∇Θ)2
)

(49)

where the derivatives denote discrete derivatives on the lattice.
Now, at very low temperatures, Ds/T ≫ 1, we must set ∇mr = 0 while at high temperatures, κT ≫ 1, we must set

mr = 0. In either case, the field Θ decouples from the field mr and we get a Gaussian theory of phase fluctuations.
The former condition (Ds/T ≫ 1) is equivalent to the condition that the spatial phase variation due to thermal effects
is small; in particular, vortex configurations are unimportant. The latter condition (κT ≫ 1) is just that the system
starts behaving classically; since the extension along the imaginary time axis is 1/T , there is essentially no dynamics
if 1/T → 0 and κ is finite.

In the presence of vortices, the core would described by a region where the magnitude of the order parameter |∆r|
decreases to zero. Since |∆r| is a bosonic variable, the core would trace a closed loop in “time” 1/T . In this case,
all the electrons which lie inside the loop undergo a phase change of 2π each time the loop is traced while electrons
outside the loop return to their original phase angle. This leads to a Berry phase factor iπρS(Γ) for the loop Γ with
area S(Γ). The effect of this Berry phase factor on vortex dynamics was pointed out by Ao and Thouless [41], except
they obtained a coefficient of ρs (the superfluid density) instead of ρ (the total electron density). Their result is
special to a Galilean invariant systems at T = 0, where ρs = ρ. Our result has also been derived earlier by Gaitonde
and Ramakrishnan [40].

In the paper, we consider only slow spatial variations of the phase and work with just the periodic variable Θ which
we refer to as θ. We note that the linear time derivative term will not be important in the critical regime around
the finite temperature superconductor to normal metal phase transition where dynamics is unimportant. It would
however be important near quantum critical points at T = 0 [42].
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APPENDIX C

Physically relevant correlation functions should be gauge invariant. The functional integral method leads to a very
simple and elegant way of demonstrating the role of phase fluctuations in restoring gauge invariance. (This is, of
course, well known from early work of Anderson and others [43,44]).

To this end we introduce external gauge potentials (A, A0) in the Hamiltonian. This leads to the follow-
ing modifications in the action (9). In the expression (10) for L0 we replace µ by µ + A0(r, τ) and δθ/2 by
δθ/2 − Ar,r′(τ) where δθ ≡ [θ(r, τ) − θ(r′, τ)]. Consider the gauge transformation A0(r, τ) → A0(r, τ) + i∂τα(r, τ)
and Arr′(τ) → Arr′(τ)− (α(r′, τ)−α(r, τ)). Invariance under this gauge transformation implies that the phase field θ
must transform as θ(r, τ) → θ(r, τ)+2α(r, τ) with |∆|, φ and the fermion fields unchanged. The correlation functions

χ0 and Λ0
αβ calculated at the mean field level, setting θ ≡ 0 and φ ≡ 0 are not gauge invariant. From the above

discussion, it is clear that this problem can be solved by allowing for θ fluctuations and integrating over these (rather
than freezing θ ≡ 0). We now proceed to do this at the Gaussian level, which is entirely equivalent to the old RPA
calculation.

Physical correlation functions are obtained by integrating out the fermions and functional differentiation of the
resulting Gaussian effective action with respect to the external sources A0 and A. We emphasize that these sources
couple minimally to the original fermion operators, before the transformation c† → c†e−iθ/2 in Section IV. We then
find the density-density correlation allowing for Gaussian phase fluctuations to be

χ(q, iωn) =
qαqβΛ0

αβχ0

qαqβΛ0
αβ − ω2

nχ0

. (50)

This result obtains diagrammatically as follows. The fermions couple to the external source A0 and to the phase
field θ and we have to integrate out both θ and the fermions. However θ itself does not have a propagator unless the
fermions are integrated out. To simplify the diagrammatic calculation we first introduce a fake term λθ(q)θ(−q) in
the action which leads to the bare θ-propagator 1/λ; we will take the limit λ→ 0 at the end. The diagrams in Fig.3
result for χ. Summing the geometric series leads to

χ = χ0 +
χ0

2ω2
n

λ

[

1 −
(

χ0ω
2
n − Λ0q

2

λ

)

]−1

(51)

Taking the limit λ→ 0 then leads to the result in (50).
We note that the physical static compressibility is given by χ(q → 0, ωn = 0) = χ0(q → 0, ωn = 0), i.e., the mean

field result is unaffected by phase fluctuations at the RPA level.
Similarly, denoting the physical (q, ω) dependent stiffness by Λ, we get

Λαβ = Λ0
αβ +

Λ0
αµΛ0

νβqµqν

[ω2
nχ0 − Λ0

µνqµqν ]
(52)

We see that the transverse phase stiffness, (for instance along the x−direction), given by Λxx(ωn = 0,q⊥ → 0, qx = 0)
is unaffected by the Gaussian phase fluctuations. However, the longitudinal part of the current correlation function
is affected, and

1

T
〈jxjx〉(ωn = 0,q⊥ = 0, qx → 0) =

1

T
〈jxjx〉0(ωn = 0,q⊥ = 0, qx → 0) + Λ0

xx(ωn = 0,q⊥ = 0, qx → 0) (53)

=
1

Ω

∑

k

m−1
xx (k)〈nk〉, (54)

now satisfies the f -sum rule (which was violated at mean field level). Thus gauge invariance is restored.
The derivation remains unchanged in charged systems, with the only difference being that we have to make the

replacement χ0 → χRPA
0 ≡ χ0/(1 − Vqχ0) in all the equations (in this Appendix). This can be easily understood by

comparing (15) and (27) in the text. It is not hard to show that the longitudinal conductivity (σL) defined through
the longitudinal dielectric function by

ǫ ≡ 1

1 + Vqχ
= 1 +

4πiσL

ω
(55)

in a gauge invariant theory, and the transverse conductivity defined by σT (ω) = iΛe2/(ǫbω) (with Λ being the
transverse part of Λαβ) are equal in the limit q → 0. In the text, we omit subscripts and refer to both conductivities
by σ since we work at q → 0. It is easy to see that σT (ω) and hence σ(ω) is unaffected by phase fluctuations within
RPA. However, it is only in a gauge invariant theory, such as the RPA, that (55) holds since it obtains from using the
current conservation equation.
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Layered Plasmon

2D Plasmon

FIG. 1. The plasmon dispersion in a layered system (Bi2212), as a function of q
‖

with q⊥ = π/dc (see text for details and
parameters used). The

√
q
‖

dispersion in the 2D limit is plotted for comparison. The dispersion appears nearly acoustic for
small q

‖
due to the very small Josephson plasma frequency (∼ 10K) but rapidly crosses over to high energies (∼ eV ) with

increasing q
‖
. Inset shows the behavior of the dispersion (in meV ) for q

‖
→ 0.
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FIG. 2. The bare and renormalized 1/λ2

‖
plotted as a function of temperature near optimal doping for Bi2212. We have

chosen bare values such that the renormalized results, λ
‖
(0) ≈ 2100Å and dλ

‖
/dT ≈ 10.0Å/K, are in approximate agreement

with experiment.
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FIG. 3. Low order diagrams for χ: The wavy lines indicate A0, the external scalar potential. The dashed lines contribute
1/λ, the “fake” θ-propagator. The heavy dots refer to vertex factors of ωn arising from the vertex iρ∂τθ. Finally, the bubble
contributions arising out of integrating out fermions are explicitly indicated.
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