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An Overview of Neural Network Based Modeling in Alloy Design
and Thermomechanical Processing of Austenitic Stainless Steels
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This overview reports some of the research works carried out by us in recent past on the application of artificial neural network (ANN) based
modeling in alloy design and thermomechanical processing of austenitic stainless steels. Different ANN models were created in order to simulate
various correlations and phenomena in austenitic stainless steels. These include: prediction of mechanical properties of alloy D9 from its alloy
content, modeling constitutive flow behavior of austenitic stainless steels, and prediction of torsional flow behavior of type 304L stainless steel.
Attempt has been made to explain the simulated results by relevant fundamental metallurgical phenomena.

Keywords Alloy composition; Alloy design; Artificial neural network (ANN); Austenitic stainless steel; Constitutive flow behavior; Deformation
behavior; Flow stress; Mechanical property; Modeling simulation; Process variables; Recrystallization; Thermomechanical processing; Torsion.

1. Introduction

It has long been known that the mechanical properties
of austenitic stainless steels at room temperature and at
elevated temperature are related to their alloy composition.
The addition of alloying elements to this steel alters the
strength of the austenite as 1) the element can dissolve
interstitially or substitutionally to form a single phase
solid solution so that the austenite is strengthened and
2) the elements can combine with carbon to form fine
precipitates so that austenite is strengthened by precipitation
strengthening. However, to date, limited progress has been
made in predicting the mechanical properties of materials
from their alloy content from physical metallurgy point of
view. This is due to the complexity of the relationship
between the mechanical properties of the material and
the alloy content. Further, non-availability of the relative
contributions of the two mechanisms as well as synergistic
influence of the alloying elements and the two strengthening
mechanisms makes the prediction difficult.
Thermomechanical processing like rolling, forging, and

extrusion are extensively used in the first step of converting
a cast ingot into a wrought product. Understanding the
constitutive flow behavior, linking process variables such as
strain, strain rate, and temperature to the flow stress of the
deforming materials is necessary in order to determine the
load required to carry out these operations. Warm and hot
deformation behavior of materials is always associated with
various interconnecting metallurgical phenomena like work
hardening, flow instabilities, dynamic recovery (DRV),
dynamic recrystallization (DRX), and thereby complex
in nature. In the past, various internal state variables
phenomenological models [1, 2] or empirical/semi-
empirical equations [3, 4] have been developed to predict
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Address correspondence to Sumantra Mandal, Metallurgy and

Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam,
TN 603102, India; Fax: +91 44 27480075; E-mail: sumantra@igcar.gov.in

the constitutive flow behavior of materials during hot
working. Although these approaches attempt to represent
the nonlinear relations between flow stress, strain rate,
strain, and temperature, these are usually restricted to some
limited processing domain where a specific deformation
mechanism operates and breaks down across deformation
mechanism domains. Therefore, separate equations and/or
various equation parameters are needed to represent the
complete hot deformation behavior.
In the light of the above discussion, artificial neural

network (ANN) provides an efficient alternative. Recently,
ANN has been successfully applied to model different
metallurgical phenomena in a wide range of metals and
alloys [5–11]. This overview reports some of the research
works carried out by us in the recent past on the
application of ANN-based modeling in alloy design and
thermomechanical processing of austenitic stainless steels.
Different models were created in order to simulate various
correlations and phenomena in austenitic stainless steels.
These include: prediction of mechanical properties of alloy
D9 from its alloy content, modeling constitutive flow
behavior of austenitic stainless steels, and prediction of
torsional flow behavior of type 304L stainless steel. Since
designed models are “statistical” models, i.e., they are not
based on any physical theories, simulated results from
the models have been explained by relevant fundamental
metallurgical phenomena.

2. Methodology

A Gaussian process model was employed to predict the
tensile properties of alloy D9 from its alloy content. This
modeling technique has found a variety of applications
in the field of materials science [12, 13]. We have
adopted a Bayesian approach in the model, which allows:
(1) automatic control of the complexity of the nonlinear
model; (2) calculation of error bars describing the reliability
of the model prediction; (3) automatic determination of the
relevance of the various input variables. A three-layer feed-
forward network, on the other hand, has been employed
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220 S. MANDAL ET AL.

to develop the ANN models related to thermomechanical
processing discussed in this article. The feed-forward
networks were trained by back-propagation type algorithm.
A logistic sigmoid function, expressed as, f �x� = 1

1+exp�−x�
,

was employed as the activation function.

3. Results and discussion

3.1. Prediction of Mechanical Properties of Alloy D9
The aim of this study is to predict the tensile properties

of alloy D9 (20% cold worked) at room temperature and
at 923K from its alloy content namely C, Ti, Ni, Cr,
and Mn. To this end, alloys of different compositions
with varying C levels in the range 0.026–0.13 and Ti/C
ratios in the range 3–8 were prepared in Balzer’s VSG30
vacuum induction melting (VIM) and casting unit. Button
head type specimens of 26mm gauge length and 4mm
gauge diameter were employed for tensile testing. Tensile
tests were carried out on 20% cold worked condition in
a universal testing machine, at a strain rate of 3�14 ×
10−4 s−1 at room temperature as well as at 923K. The
details of experiments, testing, and data evaluation could
be found elsewhere [14]. The input parameters of the
model are the alloy composition while the yield strength
(YS), ultimate tensile strength (UTS), percentage uniform
elongation (UE%), percentage total elongation (TE%), and
percentage reduction in area (RA%) were obtained as the
output.
The Gaussian Process model was run using data from

70 samples each at room temperature and at 923K of
different alloy content for the prediction of various tensile
properties of alloy D9. Normally to assess the predictive
capability of such a model, half the data is used for training
and the other half for testing. However, our data set is too
small to train the model on just half of the data and hence,
we have used a one-by-one analysis technique, which still
has the virtue that the model has no prior knowledge of
the outcome of the test results. In this procedure, 69 data
sets are used for training and the outcome of the 70th value
of the concerned mechanical property is predicted. This
procedure is then repeated for each of the other 70 data
sets. The results of the prediction of 70 similar models are
plotted as the true values on the X-axis and the predicted
data on the Y -axis. Figure 1 shows a typical plot of true
against predicted data for UTS for the specimens tested at
room temperature. On this figure, the difference between the
true value and the predicted value is denoted as �Z. This
is also the distance of the ordinate of the predicted value
from the straight line (AB) having gradient equal to one.
In certain circumstances, the plot of predicted vs. measured
data exhibits a strong level of correlation, but the gradient
is not equal to one. The straight line CD is the least squared
fitted line of the predicted results having a gradient m. �Y
is the distance of the ordinate of the predicted points from
this line. The Gaussian process model also estimates the
uncertainty (standard deviation �) of the prediction of each
datum. Consequently, the following metrics have been used,
and the uncertainty (R, r and ���Z/���) has been estimated
based on the following mathematical formulae:

R = 1

N

{∑
��Z�2

} 1
2 (1)

Figure 1.—True against predicted values of UTS at room temperature on
which the schematic depiction of how the metrics are estimated is shown.

r = 1
N

{∑
��Y �2

} 1
2 (2)

���Z/��� = 1
N

{∑
��Z/��2

} 1
2 � (3)

where N is the number of data points. In principle, for
the ideal case, the gradient m should be one and the other
coefficients R and r should be zero. The coefficient R
measures the root mean square (rms) error in the prediction
and r measures the rms deviation of the predicted points
from the least squared fitted straight line. The rms ���Z/���
is useful because large differences between the model and
the observed value are more serious when the model has
inferred a high level of certainty in the prediction, while
large differences between the model and the observed value
would be expected if a large uncertainty was associated with
the prediction of that point. Thus ���Z/��� also signifies
the average number of standard deviations from which the
predicted value differs from the target value.
Figure 2 shows True vs. Predicted values of UTS at

923K. The estimated values of the metrics R, r , and
���Z/��� for different predictions are given in Table 1. The
metrics in this table obviously demonstrate that the models
for the prediction of various mechanical properties have
generalized well, and therefore have captured the underlying
relationships in the training data. In Table 1, the values
of the metrics at the bottom are for absolutely correlated
and random vectors. These values give the idea of the two
extreme possible values of the metrics. From this table,
it is quite apparent that the predictions of YS, UTS, UE%
(at 923K), and UTS measured at room temperature are
very good. In general, the predictions are better for the
mechanical properties of D9 materials measured at 923K.
Uncertainties in the predictions of mechanical properties are
mainly due to the noise present in the data set.
Table 2 gives the relevance of the different alloying

elements in the prediction of different mechanical
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Figure 2.—True against predicted values of UTS at 923K.

properties. The relevance factors mentioned in the Table 2
are in the form of numbers ranging from 1 (highest
relevance) to 5 (least relevance) according to its importance.
From Table 2, it could be seen that C shows high relevance
for the prediction of almost all the mechanical properties
compared to any other alloying elements present in the
matrix. C dissolves interstitially in the austenitic phase
and interstitial strengthening is superior to substitutional
strengthening in austenite. Hence, the observed high
relevance of C from the models matches with the
well established knowledge of Metallurgy. The observed
relevance of C for the prediction of the different mechanical
properties at 923K is more than that observed at room
temperature (RT). This is attributed to the fact that at
923K the formation of fine TiC precipitates is expected
which contributes to better elevated temperature properties.
It can also be noticed that higher relevance of Ti at
923K is also due to the same effect. Therefore, it is
demonstrated that the model is robust and the findings
are well in conformity with the fundamental metallurgical
understanding. In contrast, Cr has shown higher relevance
for strength at RT when compared to those at 923K.
This is due to the fact that solid solution strengthening is
responsible for RT strength and strength due to precipitation

Table 1.—The values of the metrics for the predictions of the mechanical
properties.

Mechanical properties R r ��Z/�� M

YS (RT) 0.0149 0.0119 0.1416 0.607
YS (923K) 0.0090 0.0084 0.124 0.8592
UTS (RT) 0.0099 0.0092 0.143 0.8454
UTS (923K) 0.0092 0.0085 0.123 0.8304
UE% (RT) 0.0212 0.0152 0.143 0.4749
UE% (923K) 0.0112 0.0103 0.142 0.8468
TE% (RT) 0.0184 0.0139 0.1368 0.5158
TE% (923K) 0.0211 0.0153 0.140 0.4542
RA% (RT) 0.0183 0.0144 0.138 0.5831
RA% (923K) 0.0170 0.0108 0.141 0.3595
Correlated vectors 1�46× 10−5 1�46× 10−5 0.007 1
Random vectors 0.0634 0.0307 0.3115 −0�0152

Table 2.—Relevance of the different elements for the predictions of the
mechanical properties.

Mechanical
Relevance of elements at RT Relevance of elements at 923K

properties C Ti Ni Cr Mn C Ti Ni Cr Mn

YS 2 4 5 1 3 1 2 3 5 4
UTS 1 5 2 3 4 1 3 2 5 4
UE% 2 3 1 4 5 1 5 3 4 2
TE% 1 2 4 3 5 1 4 5 3 2
RA% 1 2 3 5 4 1 5 4 2 3

is not possible owing to higher affinity of C for the formation
of TiC. Ni showed higher relevance for UTS at room
temperature and at 923K compared to YS. This is attributed
to the change in the strain-hardening behavior with Ni or
increase in toughness with Ni. According to the established
metallurgical knowledge Ni generally increases the ductility
and toughness. Mn showed higher relevance for ductility
(UE%, TE%) at 923K compared to the observed relevance
at room temperature from the models. This observation is
absolutely in conformity with the existing knowledge of
metallurgy, which states that Mn improves ductility.
It is very difficult to analyze the effect of the variation

of the weight percentage of only one alloying element on
the mechanical properties experimentally. This is because to
study this effect experimentally, one has to prepare samples
in which only the concentration of that particular element
is varied systematically whereas the concentration of all
other elements shall remain same. This is very difficult
to realize in practice. However, with our model we could
simulate this effect by systematically varying the alloying
composition and predicting the properties. Towards this end,
we trained the model with the existing data and predicted the
mechanical properties when the weight percentage of four
of the alloying elements was kept constant but the weight
percentage of the fifth element was varied systematically.
From these exercises, we could also find the optimum choice
of the composition to get best values of YS and UTS for D9
alloy at room temperature and at 923K. Typical results of
this analysis are given in Table 3. This is particularly useful
while designing new alloys with specified tensile properties.

3.2. Constitutive Flow Behavior of Austenitic
Stainless Steels
A feed forward ANN model has been developed to

simulate the correlations between alloy compositions,
process variables, and flow stress of austenitic stainless
steels under hot compression. The input parameters of the

Table 3.—Optimum choice of the alloy composition to get higher values of
YS and UTS obtained from the model at 923K and room temperature (RT).

C Ti Ni Cr Mn YS UTS Condition

0.05 0.32 14.96 15.23 1.39 501.8 923K
0.05 0.31 14.94 15.22 1.37 521.4 923K
0.08 0.32 14.69 15.74 1.56 743.0 RT
0.13 0.20 15.67 15.57 1.20 805.0 RT
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ANN are alloy compositions (C, Ni, Cr, Mo, Ti, and N)
and process variables (strain, strain rate, and temperature).
The output is flow stress. A comprehensive database (2128
datasets) has been employed to establish this model. A very
good correlation between the experimental and the predicted
data was obtained. The correlation coefficient for training
and test data are 0.995 and 0.993, respectively. On the other
hand, average absolute relative error for training and test
dataset are found to be 4.65% and 4.82%, respectively.
Since test data were not used for training, it essentially
verified the ability of any ANN model to associate and
generalize a true physical response. The details of the ANN
model is given elsewhere [15].
The developed model was employed to simulate the

influence of alloying elements on flow behavior of austenitic
stainless steel. Influence of Ni (wt%) on the flow behavior
of type 304 stainless steel at various temperature is shown
in Fig. 3. As can be seen, flow stress decreases with
addition of Ni. It is known that increasing the Ni content
increases the stacking-fault energy (SFE) [16] of materials.
This increase in SFE, in turn, facilitates the cross slip of
extended dislocations. As a result, the number of dissociated
dislocations in the matrix decreases which eventually leads
to lower rate of work hardening. The influence of N on
flow behavior of type 316L(N) austenitic stainless steel
is depicted in Fig. 4. It can be observed that addition
of N, particularly in lower hot working temperature range,
increases flow stress. This is attributed to the solid solution
strengthening effect of N. The movements of dislocations
are readily impeded in presence of N which eventually
increases the flow stress. At higher temperature, however,
marked influence of N is not observed. This could be
ascribed to the higher thermal energy available in these
temperature ranges that facilitates to overcome the barrier
offered by nitrogen. The effect of Ti on flow behavior in
alloy D9 is shown in Fig. 5. At low temperature, increase in
Ti causes reduction in flow stress while no significant effect
of Ti is observed at high temperature. Addition of Ti causes
TiC precipitates in the matrix during straining. The TiC
precipitates enhance the rate of nucleation that eventually

Figure 3.—Influence of Ni (wt%) on flow stress in type 304 stainless steel at
various temperatures (strain: 0.5 and strain rate: 10 s−1).

Figure 4.—Influence of N (wt%) on flow stress in type 316L(N) stainless
steel at various temperatures (strain: 0.3 and strain rate: 10 s−1).

favors DRX [17]. At high temperature, on the other hand,
available thermal activation energy is sufficient enough to
supersede the effect of Ti, and therefore no significant effect
on flow stress is observed.

3.3. Torsional Flow Behavior of Type 304L
Stainless Steel
The flow behavior of a material also depends on the

state of stress, and therefore the deformation behavior
of materials during torsion differs significantly from that
in compression. For example, it is well known that
axial stresses develop during torsion of a bar with
end constraints [18]. The state-of-stress in torsion would
therefore be biaxial, and yield occurs at lower stresses than
in compression. At lower temperatures and higher strain
rates, the material exhibits flow instabilities which are more
accentuated in torsion than in compression. In addition, the
flow stresses in torsion are lower because of the absence of
friction and a contribution from the reduced polar moment
of inertia of the cross-section due to the undeformed central

Figure 5.—Influence of Ti (wt%) on flow stress in alloy D9 at various
temperatures (strain: 0.5 and strain rate: 100s−1).
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Figure 6.—Combined influence of temperature and strain rate on torsional
flow behavior of 304L stainless steel at a strain of 0.2.

region [18, 19]. Therefore, an attempt has been made to
predict the deformation behavior of type 304L stainless
steel under warm and hot torsion using ANN. The inputs
of the model are strain, log strain rate, and temperature
while torsional flow stress is obtained as output. A three
layer feed-forward network has been trained with resilient
propagation algorithm. Best performances were obtained
after incorporating 16 neurons in the hidden layer. The
correlation coefficient for training and test data are 0.9963
and 0.9948, respectively. Further, average absolute relative
error for training and test dataset are found to be 3.79% and
4.16%, respectively. The details of the ANN model can be
found in [20].
Synergistic influence of temperature and strain rate on

torsional flow behavior of 304L stainless steel has been
simulated employing the developed ANNmodel. The results
at 0.2 strain level is shown in Fig. 6. Almost similar
trends were obtained at 0.3 and 0.5 strain levels [17].
This emphasises the fact that strain hardening is not
significant during hot deformation. Figure 6 reveals negative
strain rate sensitivity in lower temperature regime (873–
1073K). This could be attributed to the flow localization
that causes instability in the flow behavior of materials.
The flow localization in torsion arises due to the fact
that the state-of-stress in torsion is essentially shear,
which accentuates shear localization. In fact, torsion test is
considered to be ideal for assessing the susceptibility of a
material to undergo flow localization [21]. The instability
in the flow behavior at 1273K, particularly in the strain
rate regime of 10–100s−1, probably arises due to ferrite
formation. It has already been shown that ferrite formation
is favored in torsion as compared to compression [22].
These ferrites are formed due to the deformation heating
at this higher strain rate level. At 1473K, the trend is
quite regular, which signifies that flow behavior in this
temperature regime is mainly governed by work hardening
and dynamic softening. As strain rate increases, the extent
of dynamic softening reduces, which eventually increases
the flow stress.

4. Conclusions

Application of neural network based modeling in alloy
design and thermomechanical processing of austenitic
stainless steels were discussed. The following are the
conclusions:

1) The database obtained from the tensile testing of the
laboratory heats was employed to develop a Gaussian
process model to correlate alloy composition with tensile
properties of alloy D9 at room temperature and at 923K.
The model is particularly useful while designing new
alloys with specified tensile properties.

2) An ANNmodel was developed to predict the constitutive
flow behavior of austenitic stainless steels during
hot deformation. The input parameters were alloy
composition and process variables whereas flow stress
is the output. The model can be used as a guideline to
develop new alloys with specific flow properties.

3) An ANN model was developed to evaluate and predict
the deformation behavior under warm and hot torsion of
AISI type 304L stainless steel as a function of process
variables. The model provides very useful information
to choose desired thermomechanical processing domain
of this material.
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