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the Process Parameters of A-TIG Welding to Achieve Target Bead

Geometry in Type 304 L(N) and 316 L(N) Stainless Steels
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The weld-bead geometry in 304LN and 316LN stainless steels produced by A-TIG welding plays an important role in determining the mechanical
properties of the weld and its quality. Its shape parameters such as bead width, depth of penetration, and reinforcement height are decided according
to the A-TIG welding process parameters such as current, voltage, torch speed, and arc gap. Identification of a suitable combination of A-TIG
process parameters to produce the desired weld-bead geometry required many experiments, and the experimental optimization of the A-TIG process
was indeed time consuming and costly. Therefore it becomes necessary to develop a methodology for optimizing the A-TIG process parameters to
achieve the target weld-bead geometry. In the present work, genetic algorithm (GA)-based computational models have been developed to determine
the optimum/near optimum process parameters to achieve the target weld-bead geometry in 304LN and 316LN stainless steel welds produced by
A-TIG welding.

Keywords A-TIG welding; Austenitic stainless steels; Genetic algorithm; Weld bead geometry.

1. Introduction

TIG welding is extensively used in the fabrication of the
structural components of Fast Breeder Reactors. Tungsten
inert gas (TIG) welding is generally used to produce single
pass full penetration welds and root pass of multi-pass
welds. The principal disadvantages of TIG welding lie in the
limited thickness of material which can be welded in a single
pass, poor tolerance to some material composition (cast-
to-cast variations), and low productivity. Weld penetration
achievable in single pass TIG welding of stainless steel is
limited to 3mm when using argon as shielding gas. This can
be improved to 4–5mm by using helium as shielding gas
which, because of its higher ionization potential, produces
a higher temperature arc. In addition, austenitic stainless
steel exhibits variable weld joint penetration during TIG
welding due to small differences in chemical composition
between heats of material [1, 2]. Variable weld penetration
has been observed when welding austenitic stainless steels
especially in autogenous TIG welds or the root pass of
multiple pass TIG welds. Poor productivity in TIG welding
results from a combination of low welding speeds and
in thicker material the high number of passes required
to fill the joint. Over the years, several strategies have
been adopted to improve penetration depth or productivity
of the TIG process. Very high currents can be used in
automated TIG processes to increase penetration, but defects
may form, and the process becomes unstable above 500 A.
The keyhole mode Gas Tungsten Arc Welding (GTAW)
process which was developed a few years ago, seems to be
suitable for thickness in the range 3–12mm for both ferrous

Received July 21, 2006; Accepted November 15, 2006
Address correspondence to Baldev Raj, Indira Gandhi Centre for

Atomic Research, Kalpakkam 603 102, India; E-mail: dev@igcar.gov.in

and nonferrous materials [3]. However, this technique is
sensitive to arc voltage and loss of material may occur
through the keyhole vent.
A novel variant of the TIG welding process called the

A-TIG is reported to enhance the penetration capability of
TIG welding for joining thickness of 10–12mm by single
pass welding. In this process, the penetration capability
of the arc in TIG welding can be significantly increased
by applying flux coating containing certain inorganic
compounds on the joint surface prior to welding [4–10].
There is interest in developing this process for various
alloys. Figure 1 shows a visible constriction of the arc in A-
TIG welding compared with the more diffuse conventional
TIG arc at the same current level. The schematic sketch
of the typical weld-bead profiles obtained in conventional
TIG and A-TIG welding are compared in Fig. 2. The use
of flux is supposed to reduce the susceptibility to changes
in penetration caused by cast-to-cast variability in material
composition and produce consistent penetration regardless
of heat-to-heat variations in base metal compositions
[8, 11]. In particular, research has focused on the A-TIG
welding process developed by the E. O. Paton Electric
Welding Institute (PWI) [5]. Limited published information
regarding the use and composition of the flux attracted
attention in the 1990s, including the researchers at the
Edison Welding Institute (EWI) and The Welding Institute
(TWI), U.K. In this process, the A-TIG flux in the form
of paste (flux dissolved in acetone) is applied on the joint
prior to welding by using a brush. The acetone is evaporated
leaving flux on the surface, and autogenous TIG welding
is carried out. It has been claimed that the A-TIG process
can achieve, in a single pass, a full penetration weld in
steels and stainless steels up to 12mm thickness without
using a bevel preparation or filler wire [11]. Furthermore the
weldment mechanical properties and soundness are claimed
to be unaffected.
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642 M. VASUDEVAN ET AL.

Figure 1.—Characteristic appearance of the TIG arc in argon shielding gas in (a) conventional TIG (b) A-TIG welding.

Activated flux for single pass TIG welding of 304 LN
and 316 LN stainless steels up to 10–12mm in thickness
has been developed in our laboratory. In this process, to
produce the desired depth of penetration or bead geometry,
it is very important to select the right combination of process
parameters. However this requires many experiments, and
the experimental optimization of this process is very costly
and time consuming. Therefore it becomes necessary to
develop a convenient tool for optimizing the process
parameters to achieve the target geometry in 304 LN and
316 LN stainless steels produced by A-TIG welding.
Genetic algorithms (GAs) are search algorithms based

on the mechanics of natural selection and genetics. These
methods are based on Darwin’s theory of survival of the
fittest and belong to the GA of stochastic search methods.
A good introduction to GA can be found in Deb [12]. In
GA, the initial population is the possible solution to the
optimization problem and each possible solution is called
an individual. Each individual is represented as a binary
string consisting of combinations of randomly generated
0s and 1s [13]. Coding the parameter in a binary string
is primarily used in order to have a pseudochromosomal
representation of a solution [12]. They are very effective in
exchanging information between each individual, and need
to be changed into real numbers for evaluating the fitness.
The fitness evaluation is a procedure necessary to decide the
survival of each individual, with the individual with large
fitness value representing better solutions. The next step is
to use each individual’s fitness and the genetic operators
(reproduction, crossover, and mutation) to produce the
next generation of population. Reproduction is the process
in which each individual is duplicated according to its
fitness, and the individual with higher fitness produces
more offspring in the next generation than that with lower

Figure 2.—Schematic sketch of penetration in (a) conventional TIG and
(b) A-TIG welding.

fitness. This explains Darwin’s survival-of-the-fittest theory.
Crossover is the process by which the strings are able to
mix and match their attributes through random process.
Crossover proceeds in the following three steps:

(1) Random selection of two parent strings from the mating
pool;

(2) Random selection of an arbitrary location in both
strings;

(3) Exchange of the portions of the strings following the
crossover site between two parent strings to form two
offspring strings.

This crossover does not occur with all strings, but is
limited by the crossover rate. For example, if the crossover
rate is 0.9, then crossover occurs in 90% of the pairs,
whereas the remaining 10% are added to the next generation
without crossover. After crossover, mutation is performed
by occasionally altering the value of a string position. Each
bit value in every string is a candidate for mutation and its
selection is determined by the mutation rate. The mutation
rate is usually set to a low value to avoid losing good strings.
In GA, the population size, crossover rate, and mutation rate
are important factors in the performance of the algorithm
and have to be optimized.
GA modeling has been adapted for large number of

applications in material processing ranging from iron and
steel production [14, 15], continuous casting process [16],
conventional casting process [17], metal forming process
[18], and powder metallurgy process [19]. Recently, GA
is increasingly being used for determining the optimum
welding process variables to achieve the desired weld
attributes. GA modeling has been used for determining the
optimal/near-optimal settings of the Gas Metal Arc (GMA)
welding process parameters to achieve the target geometry
[20]. The output variables were the bead height and the depth
of penetration of the weld bead. These output variables were
determined according to the input variables which are the
root opening, wire feed rate, welding voltage, and welding
speed. The study demonstrated how to obtain near-optimal
welding conditions over a wide search space, conducting
a relatively small number of experiments. Using GA and
response surface methodology, modeling and optimization
of the GMA welding process has been studied in detail [21,
22]. In this study the dual response approach is adopted to
determine the welding process parameters which produce the
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GENETIC-ALGORITHM-BASED COMPUTATIONAL MODELS 643

target value with minimal variance. First regression models
are generated. Subsequently, a GA based on the regression
models and constraints is applied to determine the welding
process parameters that generate the desired penetration with
minimum variance. For optimizing the process parameters
duringwelding of brass plates, CemalMeran [23] has applied
GA-based modes for estimating the current and velocity in
order to minimize the evaporation of brass material. Good
quality weld beads could be obtained by employing GA-
based models.
Correia et al. [24] have also applied GA to decide the

near-optimal settings of a GMA welding process. In their
study, the search for near-optimal was carried out step by
step with the GA predicting the next experiment based on
the previous and without the knowledge of the modeling
equations between the inputs and outputs of the GMA
welding process. By using GA it was possible to locate
near-optimum conditions with relatively few experiments.
The bi-directional capability of the heat transfer and fluid-
flow models is attained by coupling the heat-transfer and
fluid-flow calculations with a GA [25, 26]. In addition, the
capability to determine alternate paths to achieve a target
geometry is demonstrated by estimating the various sets of
current, voltage, welding speed, and wire feed rate that can
all produce target weld geometry. Kumar and Debroy [26]
demonstrated that the coupling of numerical heat and fluid-
flow model with a GA to arrive at the optimum process
parameters in order to achieve the target geometry in Gas
Tungsten Arc (GTA) welding of low-alloy steel fillet welds.
The study provided hope that weld attributes can be tailored
reliably through multiple routes based on heat-transfer and
fluid-flow calculations and evolutionary algorithms.
Therefore, GA modeling has been demonstrated to be

an efficient method for nonlinear optimization of welding
process parameters for various welding processes. The
present work aims at developing GA-based computational
models to determine the optimal/near-optimal A-TIG
process parameters for achieving the target weld-bead
geometry in 304 LN and 316 LN stainless steel welds
produced by A-TIG welding.

2. Experimental

Bead-on-plate welds using a multicomponent flux were
made on 304LN and 316LN stainless steel plates of 10mm
and 12mm thickness, respectively, under varying process
conditions. Table 1 gives the various process conditions
used for making the bead-on-plate welds. Typical bead-
on-plate A-TIG welds on 304LN and 316LN stainless

Table 1.—Process parameters for making bead-on-plate welds on 304LN
and 316LN stainless steel using A-TIG process.

Welding parameter Selection

Current 80, 100, 120, 140, 160, 180, 200, 220, 240, 280 A
Torch speed 1, 1.33, 1.67, 2, 2.67 and 3.33mm/sec
Arc gap 0.75 and 1.5mm
Shielding gas Argon; flow rate =10 l/min
Electrode Thoriated Tungsten, 3mm dia.
Electrode tip angle 45�
Flux type Multicomponent

Figure 3.—Bead-on-plate A-TIG welds on 10 mm thick 304LN stainless
steel plate.

Figure 4.—Bead-on-plate A-TIG welds on 12 mm thick 316LN stainless
steel plate.

steel plates are shown in Figs. 3 and 4, respectively.
Samples cut from the welds were polished and etched
to see the macrostructure. Measurements on weld-bead
shape parameters such as depth of penetration, weld-
bead width, and reinforcement height were carried out
using a microscope. The data generated based on these
experiments were used to generate regression models
correlating the weld-bead shape parameters with welding
process parameters using multiple regression.

3. Results and discussion

The development of methodology for optimizing A-TIG
welding process parameters using a GA was done in two
steps. First, regression models were developed correlating
the A-TIG welding process parameters with the three weld-
bead shape parameters, viz. bead width (BW), depth of
penetration (DOP), and reinforcement height (RH) using
the generated data. Then a GA code was developed using
MATLAB version 6.1 in which the objective function was
evaluated using the regression models.

3.1. Development of Regression Models for 304LN
Stainless Steel Welds Produced by A-TIG Welding
Regression models were developed using the data (120

nos) generated using a multiple regression method. The
relationship between the three weld-bead shape parameters
and the welding process variables obtained from the
regression models, the corresponding regression coefficients
and the standard errors of estimates are as follows. (Other
terms such as V ∗ S, V ∗ G, S ∗ G, and G ∗ G are not
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644 M. VASUDEVAN ET AL.

included in the regression equation as the coefficient values
were found to be very insignificant):

DOP = 0�27946+ 0�04961 ∗ I + 0�11002 ∗ V
− 0�21162 ∗ S − 0�53303 ∗G
− 0�00141 ∗ I ∗ V
− 0�0014 ∗ I ∗ S + 0�00316 ∗ I ∗G
+ 0�0000437177 ∗ I 2 + 0�01065 ∗ S2 (1)

Regression coefficient = 0�97�

Standard deviation = 0�32

RH = −0�30796+ 0�0004187 ∗ I + 0�10023 ∗ V
− 0�01046 ∗ S − 0�28719 ∗G
−0�0007915 ∗ I ∗ V

+ 0�00001245 ∗ I ∗ S + 0�00202 ∗ I ∗G
+ 0�00003797 ∗ I 2 + 0�00004965 ∗ S2 (2)

Regression coefficient = 0�75�

Standard deviation = 0�10

BW = 0�38168+ 0�0854 ∗ I + 0�28924 ∗ V
− 0�1794 ∗ S
+ 0�2496 ∗G− 0�0002042 ∗ I ∗ V
− 0�0005326 ∗ I ∗ S + 0�0009386 ∗ I ∗G
+ 0�00003310 ∗ I 2 + 0�00664 ∗ S2 (3)

Regression coefficient = 0�96�

Standard deviation = 0�42

Close agreement was obtained between the calculated and
measured values of the three weld-bead shape parameters as
shown in Figs. 5(a)–(c). Thus, all three regression models
given in Eqs. (1)–(3) exhibit good correlation between
the welding process variables and the weld-bead shape
parameters.

3.2. Development of Regression Models for 316LN
Stainless Steel Welds Produced by A-TIG Welding
Regression models were developed using the data

(120 nos) generated using the multiple regression method.
The relationship between the three weld-bead shape
parameters and the welding process variables obtained
from the regression models, the corresponding regression
coefficients, and the standard errors of estimates are as
follows. (Other terms such as V ∗ S, V ∗ G, S ∗ G, and
G ∗ G are not included in the regression equation as the
coefficient values were found to be very insignificant.):

DOP = 3�01558+ 0�0379 ∗ I − 0�25428 ∗ V
− 0�1739 ∗ S − 0�62295 ∗G+ 0�00149 ∗ I ∗ V
− 0�00165 ∗ I ∗ S + 0�00421 ∗ I ∗G

Figure 5.—Comparison between the measured and calculated weld-bead
shape parameters (a) depth of penetration (b) reinforcement height (c) weld-
bead width for 304LN stainless steel welds produced by A-TIG welding.

− 0�00005315 ∗ I 2 + 0�01092 ∗ S2 (4)

Regression coefficient = 0�98�

Standard deviation = 0�30

RH = 0�45532+ 0�00208 ∗ I − 0�0482 ∗ V
− 0�02179 ∗ S + 0�09639 ∗G
+ 0�00021488 ∗ I ∗ V
− 0�00010541 ∗ I ∗ S − 0�00074437 ∗ I ∗G
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GENETIC-ALGORITHM-BASED COMPUTATIONAL MODELS 645

+ 0�00000099065 ∗ I 2 + 0�00107 ∗ S2 (5)

Regression coefficient = 0�88�

Standard deviation = 0�08

BW = 0�74911+ 0�01676 ∗ I + 0�27256 ∗ V
− 0�01758 ∗ S − 0�00438 ∗G+ 0�0011 ∗ I ∗ V
− 0�000357638 ∗ I ∗ S + 0�0006766 ∗ I ∗G
− 0�000052662 ∗ I 2 − 0�00029521 ∗ S2 (6)

Regression coefficient = 0�98�

Standard deviation = 0�29

Close agreement was obtained between the calculated and
measured values of all three weld-bead shape parameters as
shown in Figs. 6(a)–(c). Thus, all three regression models
given in Eqs. (4)–(6) exhibit good correlation between
the weld-bead shape parameters and the welding process
variables.

3.3. Development of Code for GA
The code for the genetic algorithm was developed in

MATLAB version 6.1 for optimizing the A-TIG process
parameters for obtaining the target bead geometry during
welding of 304LN and 316LN stainless steels. The flow
chart describing the various steps involved in the execution
of the GA is given in Fig. 7, in which the Search Space
defines the range of the input parameters, I� V � S, and
G (Table 1), within which the GA searches for optimal
solution.

3.4. Development of the Objective Function
To achieve the target values of the three weld-bead shape

parameters (DOP, BW, RH) in the weld-bead geometry,
there can be more than one set of process variables. Hence,
the objective function that is used should direct the solution
to convergence. Generally, least-square error minimization
is used as an objective function. In the present work, the
sum of the least-square errors for the three weld-bead shape
parameters was chosen as the objective function given
below:

obj V =
(
RHT− RH�i�

RHT

)2

+
(
BW− BW�i�

BW

)2

+
(
DOP− DOP�i�

DOP

)2

(7)

where, ObjV is the objective function, RHT, BWT, and
DOPT are the target RH, BW, and RH values, respectively,
and RH(i), BW(i), and DOP(i) are the RH, BW, and
DOP values, respectively, of the ith individual. Though the
objective function is minimized, the GA tries to maximize
the solution. Hence, a proper fitness index is assigned to
each solution such that the lower value of the objective
function corresponds to the higher fitness values for the
solution.

Figure 6.—Comparison between the measured and calculated weld-bead
shape parameters (a) depth of penetration, (b) reinforcement height, (c) weld-
bead width for 316LN stainless steel welds produced by A-TIG welding.

3.5. Selection of GA Parameters
As the algorithm’s speed of convergence depends on

the population size, number of generations, crossover type,
crossover rate, and mutation rate, a trial-and-error method
was used before arriving at the best combination of the
above-mentioned GA parameters. Variations in population
size of 50, 100, 200, and 500 in number of generations from
100 to 1000, in crossover rate between 0.55 and to 0.90,
and in mutation rate between 0.001 and 0.009 were carried
out before optimum values were found. Table 2 lists the GA
parameters that produced the best solution for the present
problem.
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646 M. VASUDEVAN ET AL.

Figure 7.—Various steps in genetic algorithm (GA) modeling.

Table 2.—Genetic algorithm (GA) parameters selected for optimising the
A-TIG welding process.

Genetic algorithm parameters Value

Population size 50
Number of generations 100
Crossover rate 0.65
Mutation rate 0.005
Type of crossover Single point

The maximum and minimum values (i.e., the range)
for each independent variable I , V , S, and G were also
specified. The initial population was selected for the first
iteration as specified in the coding, with each individual
representing one set of process variables. The members of
each individual were encoded in binary format for further
processing. The length of each chromosome was taken
as the sum of the lengths of each member (gene) of the
chromosome in binary format, with the length of 100
individuals being selected as the initial population.
For the present problem, the maximum value among

all independent variables was taken as 280 (i.e., the
maximum value for I), the length of each gene in the

chromosome was taken as 8 (28 = 256), the number of
variables as 4, and the total length of the chromosome
as 32 bits (4 × 8). An adequate number of generations of
100 was also specified. All the chromosomes were then
evaluated for their fitness using the objective function.
All 50 chromosomes were again encoded in binary format
(i.e., collection of 0s and 1s) for further reproduction. The
encoded chromosomes were ranked based on their value of
objective function such that the lower the objective function
value the higher the fitness index would be. For selection of
the best chromosome among the available 50, the Roulette
Wheel Selection (RWS) method was used. In this method,
parents are selected according to their fitness. The better
the chromosomes are, the more chances to be selected
they have. In this method, each individual is assigned a
region in a virtual roulette board proportional to its fitness.
An unbiased spinning of the roulette pointer is simulated
through a random number generator, and the individual
corresponding to the region where it points is picked up
for further processing often with an assigned probability
[13, 27]. Chromosomes with higher fitness will be selected
more often. The algorithm selects chromosomes in this
fashion until it has generated the entire population of the
next generation.
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Single Point Crossover (XSOP) was then carried out
on the selected chromosome by exchanging the parts on
selection position to produce offspring. Minimum error
in the predicted weld-bead profile was obtained with the
crossover rate of 0.65, implying that crossover was carried
out on only 65 percent of chromosomes among the 50
selected chromosomes, and the remaining chromosomes
were carried forward to the next operation without any
alteration. After crossover, mutation was carried out on the
offspring, with the mutation probability kept at a low value
of 0.005 to avoid any possible perturbation.
The offspring were then decoded to check their fitness

by substituting in the objective function equation, and the
offspring are again ranked based on their fitness index.
Selection of the next 50 chromosomes was then carried
out by mixing the chromosomes of both the parent and
offspring, and selecting the best 50 chromosomes based
on their fitness or ranking index. The newly selected 50
chromosomes were reinserted for the next iteration. Such
iterations were continued until there was no further change
in the value of the optimized variable or until the value
of the variable remained saturated over ten consecutive
iterations. MATLAB/GRAPHICS programming was used
to graphically represent the bead geometry to facilitate
comparison between the predicted and target weld-bead
geometry.

3.6. Validation of the GA-Based Computational Model
In the present work, to demonstrate the working of the

GA-based computational models, a few target weld-bead
geometries were randomly chosen from the experimentally
generated database, and the GA was used to optimize
the A-TIG process. Every time the GA code was run,
it produced different sets of process variables that can
all produce the same target weld-bead geometry. It
was found that target weld geometry was attainable via
multiple pathways involving various sets of welding process
variables. Therefore, the GA model can be utilized to
calculate multiple sets of welding process variables, i.e.,
various combinations of arc current, voltage, torch speed,
and arc gap, with each set capable of producing the same
target weld geometry. This is in agreement with the findings
of Mishra and Debroy [25] who have reported that the GA

Figure 8.—Graphical comparison between the desired and predicted weld-bead geometry using GA optimized process parameters for 304LN stainless steel weld
produced by A-TIG welding (a) Case I (b) Case II.

Table 3.—Comparison between actual and predicted A-TIG process variables
and weld-bead shape parameters for 304LN stainless steel welds.

Weld-bead shape parameters Case I Case II

and welding process variables Actual Predicted Actual Predicted

Bead width, BW (mm) 6.158 6.137 11.025 11.017
Reinforcement height, RH (mm) 0.326 0.260 0.610 0.620
Depth of penetration, DOP (mm) 3.833 3.872 8.158 8.092
Welding current, I (Amps) 140 136 280 280
Welding voltage, V (Volts) 13.6 15 19.4 20
Welding (torch travel) speed, S (mm/sec) 1.33 1.33 1.33 1.33
Arc gap, W (mm) 1.5 1 0.75 0.75

procedure can calculate multiple sets of welding variables,
each leading to the same weld geometry. This capability
makes the GA superior to regression models and artificial
neural networks which can provide only a single set of
process variables. Table 3 compares two such cases of target
weld-bead geometry with the predicted weld-bead geometry
for 304LN stainless steel and the corresponding welding
process variables. There was good agreement between the
two sets of values. Graphical comparison between the
predicted and target weld-bead geometry for case I and
case II as listed in Table 3 shown in Fig. 8 clearly proved
that predicted weld-bead geometry almost exactly matches
target weld-bead geometry. The weld-bead geometry has
been generated graphically here by drawing two half-
ellipses to get the bead shape. Actual weld cross-sections
for the above two cases are shown in Fig. 9. Table 4
compares two cases of target weld-bead geometry with the
predicted weld-bead geometry for 316LN stainless steel
and the corresponding process variables. There was good
agreement between the two sets of values. The graphical
comparison between the target and predicted weld-bead
geometry shown in Fig. 10 for case I and case II as listed in
Table 4 for 316LN stainless steel weld proved that predicted
weld-bead geometry almost exactly matches target weld-
bead geometry. Actual weld cross-sections of the above
two cases are shown in Fig. 11. The shapes of the actual
weld geometry do not conform to those of the predicted
bead geometry, mainly because regression analysis used in
the present model cannot describe the mechanisms taking
place in the weld pool which decide the actual shape of
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Figure 9.—Actual cross sections of the 304LN stainless steel weld produced by A-TIG welding (a) Case I (b) Case II.

Table 4.—Comparison between actual and predicted A-TIG process
variables and weld-bead shape parameters for 316LN stainless steel welds.

Weld-bead shape parameters Case I Case II

and welding process variables Actual Predicted Actual Predicted

Bead width, BW (mm) 9.939 9.946 8.828 8.834
Reinforcement height, RH (mm) 0.825 0.803 0.721 0.722
Depth of penetration, DOP (mm) 7.0 7.02 8.136 8.138
Welding current, I (Amps) 280 280 240 246
Welding voltage, V (Volts) 19.8 17 17.3 14
Welding (torch travel) speed, S (mm/sec) 2 1.83 1 1
Arc gap, W (mm) 1.5 1 1.5 0.75

the weld geometry. This is the limitation of the present
model. However, it is possible to predict the weld geometry
corresponding to actual weld cross-sections by developing
phenomenological heat and fluid flow models to calculate
the bead geometry [25].

Figure 10.—Graphical comparison between the desired and predicted weld-bead geometry using GA optimized process parameters for 316LN stainless steel
weld produced by A-TIG welding (a) Case I (b) Case II.

Figure 11.—Actual cross-sections of the 316LN stainless steel weld produced by A-TIG welding (a) Case I (b) Case II.

4. Conclusions

• GA-based computational models have been developed
to optimize the A-TIG process parameters to achieve
the target weld-bead geometry for welding 304LN
and 316LN stainless steels. In this methodology,
first regression models correlating weld-bead shape
parameters, viz. bead width, depth of penetration, and
reinforcement height, with A-TIG process parameters,
viz. current, voltage, welding speed, and arc gap, have
been developed independently for 304LN and 316LN
stainless steels. Good correlation was obtained between
the measured and calculated weld-bead shape parameters
using the regression models.

• A GA code was developed in which objective function
was evaluated using the regression models. The objective
function in GA was defined as the sum of least-square
error estimates of the weld-bead shape parameters, viz.
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depth of penetration, bead width, and reinforcement
height.

• To minimize the error in the predicted weld-bead
geometry, the GA parameters such as population size,
crossover rate, and mutation probability were optimized
by trial and error. Close agreement was achieved between
weld-bead geometry obtained using the GA optimized
process parameters and the target weld bead geometry.

• The present work has also shown that GA modeling
can determine the alternative paths to achieve the target
weld-bead geometry by estimating the various sets of
process variables that can all produce a target weld-bead
geometry.

• Thus, a GA has been developed for optimizing the A-TIG
process parameters to achieve target weld-bea d geometry
for 304LN and 316LN stainless steels.
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