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Universal power law in the orientational relaxation in thermotropic liquid crystals

Dwaipayan Chakrabarti, Prasanth P. Jose, Suman Chakrabarty, and Biman Bagchi∗

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

(Dated: February 2, 2008)

We observe a surprisingly general power law decay at short to intermediate times in orientational
relaxation in a variety of model systems (both calamitic and discotic, and also discrete) for ther-
motropic liquid crystals. As all these systems transit across the isotropic-nematic phase boundary,
two power law relaxation regimes, separated by a plateau, emerge giving rise to a step-like feature
(well-known in glassy liquids) in the single-particle second-rank orientational time correlation func-
tion. In contrast to its probable dynamical origin in supercooled liquids, we show that the power
law here can originate from the thermodynamic fluctuations of the orientational order parameter,
driven by the rapid growth in the second-rank orientational correlation length.

PACS numbers: 61.20.Lc,64.70.Md,64.70.Pf

Thermotropic liquid crystals are known to exhibit
interesting, often exotic, dynamical properties which
are subjects of great fundamental and practical inter-
ests [1, 2]. For calamitic liquid crystals that com-
prise rod-like molecules, the approach to increasingly or-
dered mesophases on lowering temperature involves an
isotropic to nematic (I-N) transition and then a nematic
to smectic-A (N-A) transition that are both believed to
be only weakly first order with considerable characteris-
tics of continuous transitions [1, 2, 3, 4, 5, 6]. On the
other hand, discotic liquid crystals that consist of disc-
like molecules exhibit a transition from an isotropic to a
nematic-discotic phase, and onward to a columnar phase
rather than a smectic phase [1, 2].

Surprisingly, dynamics across the I-N phase transition
appears to have been investigated mostly at low fre-
quencies or long times (milliseconds to nanoseconds) [1].
However, optical Kerr effect (OKE) measurements [7] by
Fayer et al. have recently revealed a power law relaxation
near the I-N phase boundary as well as in the nematic
phase of rod-like molecules having aspect ratios in be-
tween 3 and 4 [8, 9]. While the power law decay appears
at short (a few picoseconds) to intermediate (a few hun-
dred nanoseconds) times in the isotropic phase near the
I-N transition [8], multiple power laws persist even at
long times in the nematic phase [9]. Although a few the-
oretical analyses exist in the literature [8, 10], the origin
and the scope of this dominant power law relaxation are
poorly understood at present.

In order to understand this power law decay, we have
carried out a long and extensive molecular dynamics
(MD) simulation study of orientational relaxation in a
variety of model systems for thermotropic liquid crystals,
both continuous and discrete. The continuous systems in
our study consist of ellipsoids of revolution. We have used
the Gay-Berne pair potential [11], which is an elegant
generalization of the extensively used isotropic Lennard-
Jones potential to explicitly incorporate anisotropy in
both the attractive and the repulsive parts of the inter-
action with a single-site representation for each ellipsoid

of revolution [12]. For a representative calamitic system,
we have considered a system of 576 prolate ellipsoids of
revolution with an aspect ratio of 3 that is comparable
to those of the rod-like molecules recently studied exper-
imentally by Fayer and coworkers. We have investigated
the system along an isotherm at several densities.

In the quest of a universal power law behavior, if at all
there is any, we have in addition undertaken simulations
of 500 oblate ellipsoids of revolution with an aspect ratio
of 0.345. We have used in this case a Gay-Berne pair po-
tential that has been modified for disc-like molecules by
Bates and Luckhurst [13]. The discotic system has been
studied here along an isobar at several temperatures.

The well-known Lebwohl-Lasher (LL) model is a pro-
totype of lattice models [14], where the particles are as-
sumed to have uniaxial symmetry and represented by
three-dimensional spins, located at the sites of a simple
cubic lattice, interacting through pair potential of the
form Uij = −ǫijP2(cosθij). Here ǫij is a positive con-
stant ǫ for nearest neighbor spins i and j and zero other-
wise, P2 is the second rank Legendre polynomial and θij

is the angle between the spins i and j. In this work, we
have also considered a 1000-particle LL lattice system to
study pure orientational dynamics across the I-N tran-
sition. The simplicity of the model allows us to study
a larger system size. In our MD simulations, the sys-
tem undergoes a transition from the isotropic to nematic
phase at the temperature T ≃ 0.14.

In Figs. 1(a), 1(b), and 1(c), we show in log-log
plots the time evolution of the single-particle, second
rank orientational time correlation function (OTCF) ob-
served for the calamitic, discotic and lattice systems, re-
spectively, across the I-N phase transition [15]. The I-
N transition is marked by a jump in the orientational
order parameter S, defined for an N-particle system as
the largest eigenvalue of the ordering matrix Q: Qαβ =
1
N

∑N
i=1

1
2 (3eiαeiβ − δαβ), where eiα is the α-component

of the unit orientation vector êi along the principal sym-
metry axis of the i-th ellipsoid of revolution in the space
fixed frame [16]. Thy single-particle second rank OTCF

http://arXiv.org/abs/cond-mat/0508187v1
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FIG. 1: Time evolution of the single-particle second rank
OTCF in log-log plots for the (a) calamitic system, (b) dis-
cotic system, and (c) lattice system. The black lines are
simulation data corresponding to increasing order parame-
ter from bottom to top. The blue solid lines show the fits
to the data over the time regimes where the decay follows a
power law. (a) Along an isotherm at T = 1.0 at several den-
sities: ρ = 0.285, 0.295, 0.3, 0.305, 0.31, 0.315, 0.32, and 0.33.
The I-N transition density is brackted by ρ = 0.305 and
ρ = 0.315 with ρ = 0.31 falling on the transition region.
(b) Along an isobar at P = 25.0 at several temperatures:
T = 2.991, 2.693, 2.646, and 2.594. The I-N transition tem-
perature is bracketed by T = 2.693 and T = 2.646. (c) At
several temperatures: T = 1.213, 1.176, 1.160, 1.149, 1.134.

Cs
2(t) is defined by

Cs
2(t) =

〈
∑

i

P2(êi(0) · êi(t))〉

〈
∑

i

P2(êi(0) · êi(0))〉
, (1)

where the angular brackets stand for statistical averag-
ing.Note in these figures the emergence of the power law

decay at short to intermediate times near the I-N phase
boundary. Figures 1(a), 1(b), and 1(c) further show that
as the systems transit across the I-N phase boundary, two
power law relaxation regimes, separated by a plateau, ap-
pear giving rise to a step-like feature. The intriguing fea-

ture is the universality in qualitative behavior given that

widely different model systems are under consideration.

Although the values of the power law exponents vary
considerably from one system to another, certain trends
are apparent. The power law exponent values decrease
monotonically for all the systems on approaching the I-
N phase boundary from the isotropic side and undergo
a rather sharp drop to a value below 0.45 on crossing
the boundary. The only exception to this is the early
power law exponent for the LL lattice system where the
two power law relaxation regimes are evident even in the
isotropic phase with a rather weak temperature sensi-
tivity for the early power law exponent. In this case, a
hump appears in the plateau region on approaching the
I-N phase boundary. This can be attributed to the in-
ertial effects because of low damping of the orientational
motion. Near the I-N phase boundary where the contin-
uous systems show a single power law relaxation regime,
the exponent has a value above (1.582) or below (0.848)
unity depending upon whether system is calamitic or dis-
cotic. The values of the exponents in these systems seem
to rule out grouping them together in a common uni-
versality class. The weakly first order nature of the I-N
transition also precludes the existence of such strict uni-
versality. Note that the overall relaxation behavior looks
surprisingly similar to the decay of self-intermediate scat-
tering function in supercooled liquids where such power
laws are well-known [17].

In experiments, one can probe orientational relaxation
through the decay of the OKE signal, which is given by
the negative of the time derivative of the collective second
rank OTCF Cc

2(t) [7, 8, 9]. The latter, which is defined
by

Cc
2(t) =

〈
∑

i

∑
j

P2(êi(0) · êj(t))〉

〈
∑

i

∑
j

P2(êi(0) · êj(0))〉
, (2)

is computationally demanding, particularly at long
times.In order to set a direct link with experimental re-
sults, we show the temporal behavior of the OKE signal
in the log-log plots in the respective systems across the
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FIG. 2: Time evolution of the collective second rank OTCF
at short to intermediate times in log-log plots for the (a)
calamitic system, (b) discotic system, and (c) lattice system.
The black lines are simulation data corresponding to increas-
ing order parameter from bottom to top. For all the three
cases, the blue solid lines show the fits to the data over the
time regimes, if any, where the decay follows a power law:
t−α. The values of the power law exponent αare given below
in the parenthesis. (a) Along an isotherm at T = 1.0 at several
densities: ρ = 0.285, ρ = 0.3, ρ = 0.305 (α = 0.26), ρ = 0.31
(α = 0.18), ρ = 0.315 (α = 0.16), ρ = 0.32 (α = 0.13), and
ρ = 0.33 (α = 0.12). (b) Along an isobar at P = 25.0 at
several temperatures: T = 2.991, T = 2.693 (α = 0.208),
T = 2.646 (α = 0.194), and T = 2.594 (α = 0.178). (c) At
two temperatures: T = 1.176 (α = 0.374) and T = 1.149
(α = 0.33).

I-N phase transition in Figs. 2(a), 2(b), and 2(c). The

short-to-intermediate-time power law regime is evident in
the OKE signal for all the three systems. While a power
law decay of the OKE signal has been recently observed
experimentally in calamitic systems near the I-N phase
boundary and in the nematic phase (8-9,18), our predic-
tion for the discotic systems could be tested in experi-
ments.

We now address the origin of this general power law re-
laxation with two plausible explanations. The first origi-
nates from the observation that such power laws are well-
known in supercooled liquids where an elegant expression
is provided by the mode coupling theory (MCT) [19, 20].
In the MCT description [18], a non-linear dependence of
the memory function (the longitudinal viscosity) on the
density-density time correlation function and the feed-
back between the viscosity and the dynamic structure
factor lead to the power law relaxation, which is, there-
fore, purely dynamical in origin. Since the memory func-
tion involved here pertains to orientational motion, as a
first approximation, we may replace it by the rotational
friction, which can be obtained from the evaluation of the
torque-torque time correlation function (TCF) by using
the time dependent density functional theory. In this ap-
proach, the Ylm-th component of the wavenumber (k) and
orientation dependent fluctuating density of the mesogen
is the natural slow-variable. The following expression for
the singular part of the memory function can then be
obtained for axially symmetric mesogens:

ΓSing(z) =
3kBTρ

8π3I

∫
∞

0

dkk2
∑
l,m

c2
l,l,m(k)Sl,m(k, z), (3)

where cl,l,m(k) is the (l,l,m) component of the spheri-
cal harmonic expansion of the two particle direct cor-
relation function, Sl,m(k, z) is the same for the (l,m)
component of the orientational dynamic structure fac-
tor, and z is the Laplace frequency [21, 22]. Near the
I-N transition dynamic structure factor S20(k, z) slows
down dramatically due to the rapid and diverging growth
of S20(k) in the long wavelength limit [23]. It can
be shown that this leads to a power law behavior of
the memory function: ΓSing(z) = A′z−1/2, A′ being a
constant, at short to intermediate times. Use of this
memory function in the Mori-Zwanzig continued frac-
tion representation of the dynamic structure factor gives
S20(t) = exp(a2t)erfc(at1/2), where a is a constant. This
has the required power law behavior. Thus, here the
power law arises due to diverging correlation length un-
like in supercooled liquids where no such divergence of
correlation length is involved. Near the I-N phase bound-
ary, on the other hand, the free energy surface can play
a direct role in the short time power law. Near the I-N
transition, an equation of motion for the fluctuating ori-
entational order parameter (δS), a non-conserved vari-
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FIG. 3: The distribution P (S) of the orientational order pa-
rameter S for a 256-particle calamitic system at four state
points across the I-N transition along an isochor at the den-
sity ρ = 0.32: (i) T = 1.495 (< S >= 0.176), (ii) T = 1.390
(< S >= 0.280), (iii) T = 1.324 (< S >= 0.435), and (iv)
T = 1.191 (< S >= 0.547). The blue solid lines are fits to the
histograms (red solid lines) with a Gaussian function for (i)
and (iv) and with a linear combination of two Gaussian func-
tions for (ii) and (iii). The black dashed line is the scaled free
energy F , where β = 1/(kBT ), obtained from the fit function
P (S) through βF (S) = −ln(P (S)).

able [24], can be written as follows:

dδS

dt
= −

∫
dtΓ(t − t′)

δF

δ(δS)
(t′) + R(t), (4)

where Γ is a damping coefficient, F (δS) is the Landau-
de Gennes free energy as a function of the orientational
order parameter and R(t) is a random velocity term re-
lated to Γ by the fluctuation-dissipation theorem. As the
temperature approaches the critical temperature Tc, the
free energy surface becomes soft. If one uses the Landau
free energy expansion δF = A(T )(δS)2 + B(T )(δS)3 +
C(T )(δS)4, then it can be shown that Eq. (4) can also

give rise to a power law decay of <∆S(0)>
<∆S(t)> at short to in-

termediate times, without the necessity of invoking power
law behavior of the memory function. Note that both
explanations involve diverging second-rank orientational
correlation length ξ2(T ), which is in turn attributed to
the softening of the coefficient A(T ) in the Landau-de
Gennes theory because A(T ) ∝ ξ2(T )−2. However, in
Eq. (4) higher order terms in the free energy expansion
are important at short to intermediate times.

In order to quantitatively understand the role of order
parameter fluctuations, we have computed the distribu-
tion of the fluctuating orientational order parameter S.
In Fig. 3, we show this distribution at four tempera-
tures across the I-N phase boundary along an isochor.
For the finite size effect, the average orientational or-
der parameter has nonzero finite value (of the order of

N−1/2) even in the isotropic phase. While the distribu-
tion of S is unimodal in both the isotropic and nematic
phases, it becomes bimodal near the I-N phase boundary
with two peaks at Si and Sn (Si < Sn) corresponding to
an isotropic-like and a nematic-like configuration, respec-
tively. The dominant peak shifts from Si to Sn and then
the distribution becomes unimodal as the system settles
into the nematic phase. In the same figure, we have also
shown the order parameter dependence of the free en-
ergy obtained from the distribution. Such a bimodal dis-
tribution could be observed only because of the weakly
first order nature of the I-N transition (that is, the re-
quirement of nucleation is not stringent). Note that the

free energy barrier between isotropic and nematic phases

is only of the order of 0.01kBT per particle. Resulting
large fluctuations in S can give rise to power law decay

of <∆S(0)>
<∆S(t)> as discussed above.

If the power law decay is driven by the growth of the
orientational correlation length, then its duration is ex-
pected to increase with the aspect ratio of the mesogens.
We have, therefore, carried out a study of rod-like meso-
gens with aspect ratio 3.8 and confirmed this expectation.

The emergence of the power law relaxation in the all
three systems under consideration here near the I-N tran-
sition is due to the rapid growth of the orientational cor-
relation length, which is also responsible for the universal
features. Unlike in glassy systems, the power law decay
may reflect large thermodynamic fluctuations of the or-
der parameters, as shown in Fig. 3. Finally, our predic-
tion of power law decay for discotic liquid crystals could
be tested in experiments.
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