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ABSTRACT

Tlhe influence of light or darkness on stomatal opening In epidermal
strips of Commecia b was evaluated In the presence or absence
of 0, and/or metabolic itors. Opening was restricted in nitrogen and
was promoted byNADH and acids ofthe tricarboxylic acid cycle (succinate
and a-ketoglutarate) in COfr*ee air in ght as weli as in darkness. Tne
enhancement by light of stomatal opening was prevalent under nitrogen or
in the presence of the respiratory Inhibitors (sodim azide and olgomycin).
Respiratory inibitors decreased the opening In lght or darness under
COrfree air but exhibited no effect under nitrogen, whereas phosphory-
ladtn uncouplers were inhibitory in light or darkness under both COrfree
air and nitrgen. The reuts suggest that oxidative popoylation is a
basic source of energy for stomatal opening, although photopbosphoryla-
don could be an energy source.

In spite of considerable effort in studying the physiology of
stomata, the mechanism of stomatal opening and closing is not
understood clearly (1, 7, 11, 12, 18). It is established that stomatal
opening involves an increase in the turgor of guard cells which
requires energy (11, 13, 18), but information on the source of
energy is rather limited.
The acceleration of stomatal opening by light is a common

observation and several investigators proposed that light might
supply energy for the opening process, probably through cyclic
electron flow (5, 8, 9, 16, 20). But stomata can open to a remarkable
extent even in dark and it has therefore been claimed that light
does not supply energy to the stomatal mechanism (18). There is
morphological evidence that the energy required for stomatal
opening could come from oxidative phosphorylation (6, 12, 14,
18), mainly because of the occurrence of numerous mitochondria
in guard cells. ADP or ATP has been found to enhance stomatal
opening in isolated epidermal strips (4, 6, 16, 17, 19). The experi-
ments reported herein were directed toward delineating more
clearly the possible role of oxidative phosphorylation.

MATERIALS AND METHODS

Plant Material. Commelina benghalensis L. plants were grown
in seed pans outdoors on soil supplemented with manure (soil-
farmyard manure, 3:1). The average temperature was 30 C during
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day and 20 C night with about a 12-h photoperiod. The plants
were watered daily.

Preparation of Epidermal Strips. Second to fourth fully ex-
panded leaves from 6- to 8-week-old plants were picked in the
morning (usually between 9:00 and 10:00 AM) and used within 15
min. The lower epidermis was peeled off carefully. The adhering
mesophyll cells were removed by rubbing the underside of the
strip with a zero-size painting brush. The epidermal strips then
were cut into pieces of approximately 5 x 10 mm and were left in
distilled H20 for 2 h in dark at room temperature (28-30 C).

Incubation. The strips were transferred to 2- x 15-cm side-arm
test tubes containing 10 ml 25 mm Mes buffer (pH 6.0), 100 mM
KCL 100 pm CaSO4, 10 mM ADP (unless otherwise specified), and
the test chemicals at the given final concentrations. The tubes for
similar gaseous treatment were interconnected and the gas (air,
C02-free air, or N2) was bubbled at a rate of 300 to 400 ml minm'.
The tubes were placed in a water bath maintained at 30 C and
were either kept in darkness or illuminated at an irradiance of 100
w m-2 with a bank of incandescent bulbs.

Measurement. The content of each tube was emptied quickly at
given times into a Petri dish. Stomatal apertures were measured
with a precalibrated ocular micrometer. Five strips were used for
each treatment and 10 stomata, chosen at random, were measured
in each strip. The experiments were repeated three times.

Status of Epidermal Strips. The guard cells were living during
and after the 5-h experimental period as checked by the uptake of
neutral red and protoplasmic streaming.

RESULTS AND DISCUSSION
ADP is included in the incubation medium of these studies

presented here because it is one of the substrates for phosphory-
lation and has amplified the stomatal responses to the gaseous
phase in light or darkness. Figure 1 presents the responses of
stomata to 02 and CO2 in the presence or absence of ADP. With
illumination, stomatal opening was maximum in C0rfree air and
minimal under N2 (Fig. IA). Stomata did not open in darkness
under N2 (Fig. iB). In presence of ADP, illumination enhanced
stomatal opening in air, C0rfree air, N2 (Fig. IC) compared to
that in darkness (Fig. ID). However, the enhancement by light of
opening was maximum in N2. The stomatal opening was signifi-
cant even in darkness in presence of ADP under air or C02-free
air (Fig. ID).

Apparently ADP can enter guard cells as exhibited by the
responses to ADP in the present observations (Fig. 1) as well as
by earlier workers (4, 6, 16, 17, 19). Studies with isolated leaf cells
also indicate that externally supplied nucleotides and sugar phos-
phates can modify their metabolism (3, 10).

Succinate and a-ketoglutarate (intermediates of the tricarbox-
ylic acid cycle) and NADH promoted stomatal opening in light
and darkness, but only under C02-free air (Table I). They had no
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FIG. 1. The effect of gaseous phase on stomatal opening in epidermal
strips of C. benghalensis either in light or darkness in the presence or
absence of 10 mm ADP. The values are means of three experiments and
the vertical bars represent the sE.

Table I. Influence ofNADH, A TP, Organic Acids, and Metabolic
Inhibitors on Stomatal Opening in Epidermal Strips of C. benghalensis
The values represent the stomatal aperture after a 5-h incubation period.

The data are averages of three experiments ± SE.
Stomatal Aperture

Addition Light Darkness

CO2-free N2 C02-free N2
air air

Experiment I
Control (3.8)a 14.2 ± 1.2 10.4 ± 0.9 12.8 ± 1.5 3.6 ± 0.5
+ I mM NADH 16.5 ± 2.4 10.2 ± 1.2 15.3 ± 1.2 3.6 ± 0.4
+ 10 mM ATP 16.9 ± 2.0 12.6 ± 1.0 15.5 ± 2.2 6.2 ± 0.9
+ 10 mM Succi- 17.0 ± 1.3 10.4 ± 1.4 16.1 ± 2.8 3.8 ± 0.4

nate
+ 10 mm a-Keto- 18.3 ± 3.1 9.8 ± 1.9 15.6 ± 1.2 3.8 ± 0.2

glutarate
Experiment 2

Control (6.0)a 18.9 ± 2.5 11.8± 1.6 15.5 ± 1.8 6.2 ± 0.8
+ 10 !LM Antimy- 8.3 ± 1.3 7.8 ± 0.7 7.8 ± 0.9 6.0 ± 0.8

cin A
+ 1IMCCCP 6.9±0.5 7.2±0.9 7.4 ±0.5 64±0.6
+ 0.1 mM sodium 13.5± 1.8 10.9± 1.5 8.6±0.6 5.8 ± 1.0

azide
+ 0.1 jg/ml oli- 14.6 ± 1.8 11.2± 2.0 8.2 ± 1.1 6.0± 0.9
gomycin

a Opening at the start of the incubation.

effect on stomatal opening in N2. ATP, however, enhanced open-
ing in N2 as well as in C02-free air both in light and darkness.
Antimycin A, which is an inhibitor of photosynthetic (cyclic) and
respiratory electron flow, and CCCP,3 which is an uncoupler of

oxidative and photophosphorylation, suppressed stomatal opening
under all conditions. Oligomycin and sodium azide, which are
inhibitors of respiration, reduced significantly the opening in light
or darkness under C02-free air.

Three points become evident from the experiments on stomatal
opening in various gas phases (Fig. 1): (a) illumination is not
necessary to drive stomatal movement since opening was observed
even in darkness; (b) the involvement of oxidative metabolism is
indicated by the restriction of opening in the absence of 02; and
(c) light can play a role as suggested by the enhancement of
opening in air or N2 upon illumination.
The restriction of stomatal opening by uncouplers of phos-

phorylation (Table I) indicates that the process of opening is the
result of active ion transport, presumably potassium (1, 7, 18). The
extensive work of Pallaghy and Fischer (13) already has provided
evidence that the uptake of both 42K and 35C1 requires energy and
is sensitive to metabolic inhibitors. At least part of the energy for
stomatal opening can come from oxidative phosphorylation as
supported by three observations in Table I: (a) the ability of
externally added ATP to increase slightly the opening under N2;
(b) the enhancement of opening by NADH and organic acids of
the tricarboxylic acid cycle only in C02-free air, and (c) the
suppression of opening by inhibitors of respiratory electron trans-
port chain and oxidative phosphorylation.

illumination nearly doubled stomatal aperture in air or C02-
free air (Fig. 1); the enhancement was prominent in N2 or in the
presence ofrespiratory inhibitors, like sodium azide or oligomycin.
This indicates that photophosphorylation was an energy source.

The data indicate that stomatal opening is driven by a common

pool of ATP contributed from oxidative phosphorylation and
photophosphorylation. Guard cells are characterized by the pres-

ence of numerous mitochondria as well as chloroplasts (2, 14, 15)
and possess the enzymes of the tricarboxylic acid cycle (18).
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