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Summary

 

In this review we concentrate on guard cell metabolism and CO

 

2

 

 sensing. Although
a matter of some controversy, it is generally accepted that the Calvin cycle plays a
minor role in stomatal movements. Recent data emphasise the importance of guard
cell starch degradation and of carbon import from the guard cell apoplast in promoting
and maintaining stomatal opening. Chloroplast maltose and glucose transporters
appear to be crucial to the export of carbon from both guard and mesophyll cells.
The way guard cells sense CO

 

2

 

 remains an unresolved question. However, a better
understanding of the cellular events downstream from CO

 

2

 

 sensing is emerging. We
now recognise that there are common as well as unique steps in abscisic acid (ABA) and
CO

 

2

 

 signalling pathways. For example, while ABA and CO

 

2

 

 both trigger increases
in cytoplasmic free calcium, unlike ABA, CO

 

2

 

 does not promote a cytoplasmic pH
change. Future advances in this area are likely to result from the increased use of
techniques and resources, such as, reverse genetics, novel mutants, confocal imaging,
and microarray analyses of the guard cell transcriptome.
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I. Introduction

 

In higher plants, water loss and CO

 

2

 

 uptake are tightly regulated
by stomata on the leaf epidermis. Rapid osmolyte accumulation
(or loss) and consequent increase (or decrease) in the turgor of
guard cells determine the extent of stomatal aperture. Under
continuously changing environmental conditions stomata
optimise gas exchange between the interior of the plant and the
atmosphere. Guard cells possess complex signal transduction
networks and modified metabolic pathways. These features
allow rapid modulations in guard cell turgor and stomatal
conductance, in response to internal and environmental signals
(light intensity and quality, humidity, carbon dioxide partial
pressure, water availability, hydric and developmental state).
A general description of the basic features of stomatal function
and regulation can be found in Willmer & Fricker (1996).

In this review, we will first focus on guard cell metabolism.
Guard cells are highly specialised for solute accumulation and
are well equipped to generate the energy required for the uptake
of ions (K

 

+

 

, Cl

 

–

 

), synthesis of anions (particularly malate

 

2–

 

) and
accumulation of osmotically active sugars (mainly sucrose).
It would appear that guard cell metabolism is modified to
meet these needs rather than accomplishing the typical tasks
of photosynthetic carbon fixation. The relative contribution of
the three processes: photosynthetic carbon reduction pathway
(PCRP), the PEPC pathway and carbohydrate import, in guard
cell osmo-regulation is still a matter of debate. Guard cell meta-
bolism is highly plastic and is dependent on the energetic state
of guard cells and environmental parameters (Outlaw, 2003).

The physiological role of stomata is to prevent water loss and
to facilitate CO

 

2

 

 diffusion to mesophyll cells. Much progress
has been made in our understanding of the guard cell response
to stimuli such as light and water stress (Assmann, 1993, 1999;
MacRobbie, 1998; Blatt, 2000; Assmann & Wang, 2001;
Hetherington, 2001; Schroeder 

 

et al

 

., 2001; Hetherington &
Woodward, 2003). But very few studies have discussed the
way guard cells sense CO

 

2

 

. One possible reason for this is
the technical difficulty of regulating and recording the CO

 

2

 

partial pressure during an experiment. Despite these limitations,
significant progress has been made in the understanding of the
guard cell CO

 

2

 

 signalling pathway, since the last reviews in
this area (Mansfield 

 

et al

 

., 1990; Assmann, 1999).
After presenting an overview of guard cell metabolism and

CO

 

2

 

 sensing, this review focuses on short-term responses to
CO

 

2

 

 of guard cells. The long-term effects of CO

 

2

 

 on stomatal
development have been recently reviewed elsewhere (Hether-
ington & Woodward 2003).

 

II. Guard Cell Metabolism

 

In early studies of guard cell function, the importance of starch–
sugar interconversion in regulating stomatal aperture received
considerable attention. Later, the discovery of the large changes
in guard cell potassium content during stomatal opening shifted

the attention to the mechanisms underlying monovalent cation
influx (Willmer & Fricker, 1996). During the last decade, new
evidence has again pointed to the significance of carbohydrates,
in addition to potassium and anions, during the build-up of
the guard cell turgor. Thus, dual processes, involving synthesis
and influx of osmotica, coexist in guard cell turgor modulation;
however, at present, their respective contributions to the overall
control of stomatal turgor is still a matter of debate.

 

1. Guard cell bioenergetics

 

In the green tissues of plants, chloroplasts and mitochondria
are the two potential sources of energy, providing ATP and
reducing power. Aspects of guard cell bioenergetice have been
reviewed previously (Assmann & Zeiger, 1987; Raghavendra
& Vani, 1989; Assmann 1993; Parvathi & Raghavendra,
1997; Willmer & Fricker, 1996). The prevailing view is that
guard cells possess a high respiratory rate together with limited
photosynthetic capability.

 

1.1. Respiration and photosynthesis

 

As expected for cells
having a high metabolic activity, guard cells contain numerous
mitochondria (Willmer & Fricker, 1996). The abundance of
mitochondria, along with high respiration rates, suggests
that oxidative phosphorylation is an important source of ATP
to fuel the guard cell machinery (Raghavendra & Vani, 1989;
Parvathi & Raghavendra, 1997). The literature suggests
that the guard cell mitochondria utilise both cytochrome and
alternative pathways of oxidative electron transport (Mawson,
1993; Vani & Raghavendra, 1994).

By contrast to mitochondria, guard cells contain few chloro-
plasts (Willmer & Fricker, 1996), about one-third of the number
present in mesophyll cells (Allaway & Setterfield, 1972). Further,
the guard cell chloroplasts are smaller than those found in
mesophyll cells (Fig. 1a,b) with limited thylakoid structures
and a few granal stacks (Sack, 1987). Their chlorophyll content
represents a small fraction of that in mesophyll cell chloroplasts
(1–4% on a cellular basis, Zemel & Gepstein, 1985, Shimazaki

 

et al

 

., 1983, Reckmann 

 

et al

 

., 1990, Gautier 

 

et al

 

., 1991,
Birkenhead & Willmer, 1986). On a chlorophyll basis, guard
cell cyclic and noncyclic photophosphorylations were estimated
to be about 80% of those found in mesophyll cells (Shimazaki
& Zeiger, 1985). In the light, the reducing power produced
by electron transport in chloroplasts can feed the Calvin cycle
(Schwartz & Zeiger, 1984; Shimazaki & Zeiger, 1985). Bioche-
mical studies have detected the main Calvin cycle enzymes
(Shimazaki & Zeiger, 1985; Zemel & Gepstein, 1985; Shimazaki

 

et al

 

., 1989; Willmer & Fricker, 1996), but highlighted the
very low level of Rubisco present in guard cells (Outlaw 

 

et al

 

.,
1979; Vaughn, 1987; Reckman 

 

et al

 

., 1990; Gautier 

 

et al

 

.,
1991; Kopka 

 

et al

 

., 1997).
High-resolution chlorophyll 

 

a

 

 fluorescence imaging suggests
that the PCRP is active, albeit at low levels in guard cells (Lawson

 

et al

 

., 2003). Even using the highest values of Rubisco reported
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(Shimazaki & Zeiger, 1987; Shimazaki, 1989) and taking into
account the low chlorophyll content in guard cell chloro-
plasts, CO

 

2

 

 fixation via the Calvin cycle should be limited
to only 2%–4% of that found in mesophyll cells (Outlaw &
De Vlieghere-He, 2001). Gautier 

 

et al

 

. (1991) used mass spec-
trometry to compare the unidirectional fluxes of O

 

2

 

 and CO

 

2

 

during a dark/light transition in GCPs and MCPs. In accord-
ance with other studies, they found that GCPs display a high
respiration rate (Fig. 2a,b). The major differences between
the two cell types were found at the level of CO

 

2

 

 fluxes
(Fig. 2c,d). CO

 

2

 

 exchanges from MCPs appear typical of C

 

3

 

plants. By contrast, in guard cells CO

 

2

 

 fixation displays a long

induction period and stays significantly lower than O

 

2

 

 evolution.
Such kinetics are consistent with a major participation of the
PEPC pathway in guard cell CO

 

2

 

 fixation, with a time-lag due
to the transfer of energy between different cellular compart-
ments. Although the importance of guard cell photosynthesis
to stomatal movements is still not totally resolved, the most
recent data obtained from transgenic anti-Rubisco tobacco
plants (von Caemmerer 

 

et al

 

., 2004) argue for a minor role.
These authors show that even a large decrease in the quantum
yield of PSII in guard cells does not affect the rate of stomatal
opening, steady-state stomatal conductance, or the response
of stomatal conductance to ambient CO

 

2

 

 concentration.

Fig. 1 Starch content in guard cell 
chloroplasts of Commelina communis. 
(a, b) At the end of the night starch is 
abundant in guard cell chloroplasts (a) while 
it is absent in mesophyll cell chloroplasts (b). 
(c–e) Changes in starch content in 
chloroplasts from C. communis guard cell 
protoplasts according to the light treatment. 
Protoplasts were kept in darkness for 12 h 
(c), then illuminated with red light (30 min, 
475 µmol m−2 s−1) (d); a blue light pulse 
(1 min, 70 µmol m−2 s−1) was applied upon 
the red light background and the protoplasts 
were fixed 7 min later (e). Note the strong 
decrease in starch content resulting from the 
blue light pulse. Bars: (a, b) 500 nm; 
(c–e) 1 µm.
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1.2. Starch storage and mobilisation

 

In the light, mesophyll
chloroplasts accumulate starch and lose it in the dark. By
contrast, starch is present in darkness in almost all guard cell
chloroplasts (Lloyd, 1908; Robinson & Preiss, 1985, fig. 2a).
Despite Stadler 

 

et al

 

. (2003) recent report of starch accumula-
tion under light in Arabidopsis guard cells, which contrasts
with the results of another study (Lascève 

 

et al

 

., 1997), starch
content is generally inversely correlated to the degree of
stomatal aperture (Outlaw & Manchester, 1979). Starch-to-
sugar conversion was proposed as an osmotic motor to drive
changes in guard cell turgor in the early 20th century (Lloyd,
1908; Scarth, 1927). This hypothesis was widely accepted by
most physiologists until the 1960s. Later, the essential role of
K

 

+

 

 accumulation in the build up of the osmotic potential
driving stomatal movements was revealed (Immamura, 1943;
Yamashita, 1952; Fujino, 1967; Fischer, 1968). However,
even if potassium is now currently recognised as the major
osmoticum, organic anions such as malate

 

2–

 

 are likely candidates
to balance the positive charges due to K

 

+

 

 accumulation while
starch degradation could provide the carbon precursors needed
for malate synthesis in the cytosol. Two main pathways allow
carbon exchanges between mesophyll cell chloroplasts and
the cytosol. Under light, the triose-phosphate/phosphate trans-
locator of the inner envelope membrane of chloroplasts represents
the major interface for the distribution of photoassimilates
between the chloroplast and the cytosol. At night, maltose
and, to a lesser extent, glucose are the major forms of carbon
exported from mesophyll cell chloroplasts (Weise 

 

et al

 

., 2004)
and a maltose transporter, MEX1, located at the chloroplast
membrane, has been recently identified (Niittylä 

 

et al

 

., 2004).
The phosphate translocator from guard cell chloroplasts of

 

Pisum sativum

 

 has been characterised (Overlach 

 

et al

 

., 1993).

Interestingly, the guard-cell phosphate translocator differs
from the mesophyll cell one in that it possesses a high affinity
for Glc-6-P (as high as that determined for pea-root
amyloplasts (Borchert 

 

et al

 

., 1989)). This ability to exchange
Glc-6-P provides a way to import reduced carbon that could
be temporarily stored as starch in the guard cell chloroplast.
By contrast with mesophyll cell chloroplasts, recent bioch-
emical analysis of carbon export from illuminated guard cell
chloroplasts by Ritte & Raschke (2003) indicated that starch
breakdown results in substantial glucose and maltose export
besides triose phosphates. This observation points to a specific
adaptation/regulation of the guard cell chloroplast to allow
starch breakdown under light and the release of precursors
of malate and sucrose to the cytoplasm to sustain stomatal
opening (Fig. 3). Interestingly, this last study reports that
most of the carbon exported by guard cell chloroplasts
originated predominantly from starch breakdown, reinforcing
the general consensus of a low PCRP in guard cells.

Lascève 

 

et al

 

. (1997) took advantage of an 

 

Arabidopsis

 

 mutant
devoid of starch, a phosphoglucomutase mutant (

 

pgm

 

, Caspar

 

et al

 

., 1985), to test the importance of starch in stomatal move-
ments. Microscopic observations confirmed that the guard cell
chloroplasts from the 

 

pgm

 

 mutant plants were starch depleted,
while starch was observed at dusk in wild-type plants. In whole
plant experiments, such an absence of starch in guard cells in

 

pgm

 

 plants did not affect stomatal behaviour under white
light and slightly reduced stomatal response to red light. By
contrast, stomatal opening under blue light was severely impaired.
Interestingly, a wild-type stomatal response to blue light was
restored in epidermal strips of 

 

pgm

 

 plants at high chloride
concentration. These data strongly argue that malate synthesis
accompanying K

 

+

 

-uptake under blue light is supported by

Fig. 2 Mass spectrometric determination of 
unidirectional fluxes of O2 and CO2 from 
Commelina communis guard cell protoplasts 
(GCPs, solid line) or mesophyll cell 
protoplasts (MCPs, dashed line). After 5 min 
in darkness, the protoplasts were illuminated 
for 15 min (800 µmol m−2 s−1). While GCPs 
and MCPs exhibit a similar pattern of O2 
evolution under light (c), major differences 
can be observed in O2 uptake (a), CO2 
evolution (b) and CO2 uptake (d). Data 
redrawn from Gautier et al. (1991).
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starch breakdown. They also demonstrate the flexibility of
guard cells about the nature of the osmoticum accumulated in
response to a specific stimulus.

1.3. Guard cell PEPC pathway Most investigations conclude
that Cl– influx during stomatal opening cannot compensate
for the positive charge resulting from K+ accumulation
(Willmer & Fricker, 1996). Thus, it has been proposed that
other(s) counterion(s) such as organic anions, and mainly
malate2– are involved. Indeed, a good correlation has been
observed between stomatal opening and accumulation of
malate in guard cells (Allaway, 1973; Pearson, 1973). Malate
synthesis is highly dependent on phosphoenolpyruvate
carboxylase (PEPC) activity. As the C4 enzyme, the guard cell
PEPC is regulated by cytoplasmic pH, Glucose-6P (Glc-6P)
and triose-6P (activators) and -malate (feed-back inhibitor)
(Tarczynski & Outlaw, 1990, 1993). However, a high sensitivity
of guard cell PEPC to malate would be in contradiction
with the large increase in malate content observed during
stomatal opening. Indeed, in CAM, C4 and some C3 plants,
PEPC is strongly regulated through phosphorylation (Nimmo
et al., 1995; Chollet et al., 1996). The phosphorylated enzyme
has an increased activity and is considerably less sensitive to

retroinhibition by malate ( Jiao & Chollet, 1990, 1991).
Phosphorylation of the guard cell enzyme results in a 50%
increase in the Vmax and in a large reduction in -malate
retroinhibition (Cotelle et al., 1999).

Guard cell PEPC from open stomata was found to be less
sensitive to -malate than the enzyme from closed stomata
(Zhang et al., 1994) and later studies demonstrated that the
phosphorylation state of the guard cell PEPC correlates with
stomatal aperture. Stomatal opening triggered by fusicoccin
promotes phosphorylation of the guard cell PEPC while
abscisic acid (ABA) results in dephosphorylation (Du et al.,
1997). Meinhard & Schnabl (2001) observed that PEPC
phosphorylation under light is up-regulated by K+ and sup-
pressed by inhibitors of the proton pump. In a recent work,
Outlaw et al. (2002) showed that phosphorylation of the
guard cell enzyme after fusicoccin treatment is much lower in
the presence of chloride. Thus, guard cell PEPC activation
through phosphorylation would not be a primary process but
a response to cation influx in the cytosol. By contrast with the
C4 enzyme, cytoplasmic alkalinization does not cause PEPC
phosphorylation (Outlaw et al., 2002). Conversely, cytoplasmic
acidification leads to guard cell PEPC activation, suggesting
that cytosolic pH acts as a signal in guard cell PEPC regulation

Fig. 3 Schematic representation of guard cell metabolism during (a) light-induced stomatal opening or (b) stomatal closure; adapted with minor 
modifications from the model proposed by WH Outlaw (2003). Activated transporters are circled in white. Inactivated transporters are circled 
in black. Dashed lines represent multistep processes. (a) During opening starch degradation provides carbon skeletons for malate synthesis. In 
parallel, recent studies underline the importance of carbon import from the apoplast through sugar transporters and of maltose and glucose 
delivery from the chloroplasts to the cytoplasm during starch degradation. Carbohydrates and organic anions can be stored in the vacuole to 
increase guard cell turgor or be consumed by the TCA cycle in mitochondria to sustain the activity of the proton pump. (b) During stomatal 
closure malate is delivered from the vacuole to the cytoplasm and then to the guard cell apoplast through anion channels (R/S). Some malate 
can be consumed in mitochondria by the TCA cycle. An open question is the fate of the sucrose accumulated in the guard cell vacuole. Evidence 
is against neoglugenesis in guard cell (Outlaw, 2003) but part of the sucrose could be converted back to starch.
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(Meinhard et al., 2001). All these results point to a specific
regulation of the guard cell PEPC resulting in malate synthesis
during stomatal opening.

In guard cells, the Calvin cycle and β-carboxylation path-
ways play complementary and redundant roles as shown by
inhibitor studies. Stomatal opening is restricted in the
presence of 3,3-dichloro-dihydroxyphosphinoyl-methyl-
2-propenoate (DCDP), an inhibitor of PEPC. However,
ribulose-5-phosphate or 3-PGA could relieve significantly the
inhibition of stomatal opening by DCDP, indicating that the
Calvin cycle may become significant when PEPC is restricted
(Parvathi & Raghavendra, 1997). Such results were confirmed
in a recent study by Asai et al. (2000). Thus both Calvin cycle
and β-carboxylation pathways are beneficial for stomatal
opening, particularly when either of these pathways are
restricted.

1.4. Carbohydrate transporters By contrast with the limited
guard cell PCRP, recent observations in planta point to a
significant participation of sucrose in guard cell turgor under
light (Talbott & Zeiger, 1996, 1998). Alternatively, carbohyd-
rates could be imported from the guard cell apoplast as suggested
by earlier studies. Epidermal strip experiments have suggested
that the guard cell is able to import 14C-glucose and 14C-sucrose
(Dittrich & Raschke, 1977; Reddy & Das, 1986). Recently,
two distinct sugar import processes have been described in
guard cells from Pisum sativum (Ritte et al., 1999). The first
was characterised as a saturable hexose proton symporter, the
activity of which depends on the membrane potential. The
second has the characteristics of a sucrose transporter that
could contribute to sucrose import at high apoplastic sucrose
contents (> 4 m). Interestingly, the measurement of sucrose
content in the guard cell apoplast in Vicia faba plants gives
evidence for just such high concentrations (Lu et al., 1995, 1997;
Outlaw & De Vlieghere-He, 2001; Outlaw, 2003). Under
high photosynthesis and transpiration, the sucrose content
in the guard cell apoplast increased 7-fold, reaching values
up to 100 m. This sucrose accumulation in the apoplast is
paralleled by an elevation of sucrose in the guard cell symplast.
These results support the observations from Zeiger’s lab
that in planta a two-phase mechanism contributes to guard
cell swelling during the day (Talbott & Zeiger, 1996). In the
morning phase, opening is mostly correlated with K+ uptake
in guard cells, while during the afternoon phase K+ content
declines and sucrose becomes the dominant osmoticum. In
such a scheme, sugar transport between the guard cell apoplast
and symplast should play a crucial role (Fig. 3).

Work is still in progress concerning the characterisation of
guard cell carbohydrate transporters. In Arabidopsis, AtSTP1
has been identified as a monosaccharide-H+ symporter by
functional analyses in yeast (Sauer et al., 1990). Its substrate
specificity is close to the hexose proton symporter observed in
guard cells of Pisum sativum (Ritte et al. (1999). Recent work
from Stadler et al. (2003) demonstrates that AtSTP1 gene

expression is guard cell specific and displays a strong nycthem-
eral regulation. AtSTP1 expression is reduced during the
light period and quickly up-regulated at the onset of dusk. The
authors suggest that AtSTP1 could participate in guard cell
import of apoplastic glucose delivered by starch breakdown in
mesophyll cells at night. Additionally, it could also participate
to some extent in carbohydrate import during the day. An
Atstp1 T-DNA null-mutant was analysed but did not present
any obvious guard cell phenotype (Stadler et al., 2003). Taking
account of the multiplicity of sugar transporters in plants,
other carbohydrate carriers supporting redundant or com-
plementary functions with AtSTP1 could account for this
absence of phenotype. RT-PCR performed on guard cell
RNA preparations (Stadler et al., 2003), and studies of
promoter-dependent GFP fluorescence (Meyer et al., 2004)
revealed the expression of AtSUC2 and AtSUC3 in guard cells,
guard cell specific expression of AtSUC3 being limited to very
young leaves. Further analyses of carbohydrate carriers using
reverse genetics should bring more information on the role of
these transporters in guard cell osmoregulation.

The contribution by K+ or sucrose to guard cell osmoticum
depends not only on the time of the day but also on the external
stimuli (described in the following section). Thus, it is now
necessary to characterise in detail the features of carbohydrate
influx/efflux and the distribution between the apoplast and
symplast of guard cells. While the import of glucose/sucrose
into the guard cells during stomatal opening is well demon-
strated, what happens to these carbohydrates during stomatal
closure is not clear. Sucrose or glucose can either be exported
from or metabolised in the guard cells. Further experiments
are needed to examine the fate of glucose/sucrose during
stomatal closure.

2. Responses to external stimuli

Guard cell carbon metabolism exhibits specific responses to
different stimuli. For example, blue light triggers starch
mobilisation, malate synthesis, activates the plasma membrane
proton pump and K+ accumulation. Whereas, in red light, it
is carbohydrate import and to a limited extent sugars, synthesised
by the limited PCRP, which support guard cell turgor. How-
ever, under CO2 free-air, the response to red light becomes
close to the one observed under blue light (K+ uptake, malate
synthesis), highlighting the flexibility of the osmoticum
accumulated according to the stimulus.

2.1. Blue/red light Stomatal responses to light are strictly
wavelength dependent with blue light more efficient (2–20
fold, Willmer & Fricker, 1996) than red light in most species.
These observations suggest that there must be at least two
photoreceptors. As the red light response was found to be
DCMU sensitive, it was inferred that it depends on chlorophyll
and electron transport in guard cell chloroplasts (Tominaga
et al., 2001). By contrast, the blue-light response was found to
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be DCMU stimulated and rotenone sensitive, suggesting
an essential role for oxidative phosphorylation (Agbariah &
Roth-Bejerano, 1990) in this pathway. Excitation of the blue
light photoreceptor triggers an activation of the electrogenic
proton pump at the plasma membrane of guard cells (Assmann
et al., 1985). Recently the blue light receptor was determined
(Kinoshita et al., 2001). In Arabidopsis PHOT1 and PHOT2
(phototropins) are blue light receptors exhibiting serine/
threonine kinases activity (Huala et al., 1997). PHOT1 and
PHOT2, which are apparently functionally redundant, mediate
blue light response in guard cells. These photoreceptors undergo
autophosphorylation under blue light irradiation leading to
proton pump phosphorylation and interaction with 14-3-3
protein(s) (Kinoshita & Shimazaki, 2002, 2003; Kinoshita &
Shimazaki, 2002) which stabilise and activate the proton
pump (Maudoux et al., 2000; Emi et al., 2001). It would be
interesting to know whether 14-3-3 proteins control other
guard cell signalling pathways since 14-3-3 proteins regulate
multiple metabolic key enzymes (Cotelle et al., 2000). However,
very recent data suggest that there may be a second blue-light
signalling pathway that is independent of PHOT1 and
PHOT2 (Talbott et al., 2003a).

Histochemical and biochemical analyses in epidermal peels
of Vicia faba showed that red light-dependent stomatal open-
ing at ambient CO2 concentrations was largely independent
of starch breakdown and K+ uptake (Tallman & Zeiger, 1988;
Talbott & Zeiger, 1993; Olsen et al., 2002). This would sug-
gest that opening under red light depends on sucrose synthesis
and/or import (Poffenroth et al., 1992; Talbott & Zeiger,
1993). When epidermal peels were submitted to red light
illumination under low CO2 conditions, stomatal opening was
accompanied by a net increase in K+ content in guard cell and
by starch breakdown (Olsen et al., 2002). These features, starch
breakdown, malate synthesis and K+ uptake are reminiscent of
the type of osmoticum accumulated during stomatal opening
under blue light (Hsiao et al., 1973; Ogawa et al., 1978;
Talbott & Zeiger, 1993). Blue light-induced starch degradation
can be observed in GCPs (Fig. 1c–e. H. Gautier & A. Vavasseur,
unpublished data). As discussed above, blue light activates the
proton pump, hyperpolarizing the membrane potential, which
drives K+ uptake through inward K+ channels. Additionally,
the apoplastic acidification resulting from the proton pump
activation could power sugar carriers (mainly sugar/H+

symporters) at the plasma membrane.
Interestingly, Talbott & Zeiger (1996) observed a change in

the nature of the guard cell osmoticum along the course of the
day. During the ‘morning’ phase, stomatal opening correlates
with K+ accumulation, while in the ‘afternoon phase’ K+ con-
tent declines and sucrose becomes the dominant osmoticum.
Such a shift in the nature of the osmoticum is suggestive of a
transition from blue light associated osmoticum (K+) during
the morning phase to a red light one (sucrose) in the afternoon.
Such a change in the osmoticum may explain some discrep-
ancies between observations of stomatal behaviour in planta

and in epidermal strips as exemplified in the case of the gork-
1 mutant. GORK is an outward rectifying K+ channel from
the Shaker family expressed in guard cells (Ache et al., 2000).
It locates to the plasma membrane and its activation through
membrane depolarisation is proposed to allow K+ efflux from
the guard cell cytoplasm during stomatal closure. Since K+ is
a major osmoticum, GORK disruption was predicted to
greatly affect the ability of stomata to close. Recently, the
stomatal phenotype of the gork-1 knockout mutant has been
characterised (Hosy et al., 2003). It displays a higher transpi-
ration rate and a lower rate of stomatal closure than the wild-
type plant, in accordance with a defect in K+ efflux. However,
the gork-1 phenotype is much more pronounced in epidermal
strips experiments than in whole plant experiments. The
observation that in photosynthesising plants, guard cell K+ is
with time replaced by sucrose delivered by mesophyll cells
could explain such a discrepancy. Osmoregulation in epider-
mal peels is likely to be essentially based on K+ exchange with
the bathing medium, which in the majority of experiments
only contains KCl, explaining the strong phenotype of the
mutant in these conditions. By contrast, in whole plant exper-
iments, the accumulation of sucrose in guard cells would lead
to a less pronounced phenotype. Indeed, in gork-1 plants, K+

efflux during stomatal closure would not be the main limiting
factor. This again raises the question of the fate of sucrose
during stomatal closure. It could be consumed at the mitochon-
drial level, reconverted to starch albeit at a low rate (Outlaw,
2003) or exported to the apoplast (Figs 3b and 5b). It is clear
that much information is needed before a clear picture of the
role of sucrose can emerge.

2.2. Water stress Under water stress, guard cells display a
short-term response based on osmoregulation and a long-term
response involving modification of major metabolic enzymes
due to alterations in guard cell gene expression. The short-
term response is primarily controlled by ABA, which reduces
ion uptake and promotes ion efflux. This involves changes in
cytoplasmic Ca2+ and pH (Assmann & Shimazaki, 1999;
Hetherington, 2001; Schroeder et al., 2001). Only a few
studies have investigated the long-term effects of drought
stress or ABA on guard cell metabolism. Early studies, using
epidermal strips, did not find any metabolic regulation in
guard cells under drought stress (Grantz & Schwartz, 1988).
However, subsequent studies revealed dramatic changes in
guard cell expression profile of key metabolic enzymes during
a short drought stress. In Solanum tuberosum, Kopka et al.
(1997) observed an up-regulation of the mRNA levels of
sucrose synthase and sucrose-phosphate synthase. By contrast,
the expressions of KST1 (guard cell inward K+ channel), and of
PHA2 (plasma membrane H ± ATPase) were reduced together
with vacuolar invertase, UDP-glucose pyrophosphorylase,
ADP-glucose pyrophosphorylase (large subunit), cytosolic
glyceraldehyde-3-phosphate dehydrogenase, a sucrose/H+

cotransporter and an isoform of PEPC. Interestingly, PEPC,
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vacuolar invertase, and cytosolic glyceraldehyde-3-phosphate
dehydrogenase were regulated specifically in guard cells.
These changes in transcript levels were complete before any
observation of a decrease in leaf water potential, which suggests
the involvement of ABA (Gowing et al., 1993).

Using microarrays covering one-third of the Arabidopsis
genome, Leonhardt et al. (2004) compared guard cell expression
profiles with those of mesophyll cells. They observed an ABA-
modulation of many known guard cell ABA signalling
components at the transcript level. Apart from modulating
the expression of signalling elements, key enzymes involved
in guard cell carbon metabolism were also ABA-repressed.
The expression level of RBCs was severely repressed by ABA
in guard cells and, to a lesser extent, in mesophyll cells. Four
isoforms of PEPC are encoded within the Arabidopsis genome
(AtPPC1-4, Sánchez & Cejudo, 2003). Data from microar-
rays indicate that at least two isoforms of PEPC are expressed
in guard cells and mesophyll cells of Arabidopsis, AtPPC2 and
AtPPC3. AtPPC2 is the most expressed in both cell types but
its level of expression is far more elevated in guard cells. When
plants were sprayed with ABA (Leonhardt et al., 2004), a
strong decrease in AtPPC2 expression level was observed in
both cell types after 4 h of treatment. These observations of a
down-regulation of PEPC transcripts by ABA are in good
agreement with those of Kopka et al. (1997), with the excep-
tion that in S. tuberosum the strong inhibition of PEPC
expression under drought stress was guard cell specific. These
data highlight the fact that more research is needed into the
contribution that metabolic regulation makes to adaptation
to reduced water availability stress.

III. Guard Cell CO2 Sensing

In this review, only the short-term effects of CO2 on stomatal
behaviour will be considered. Long-term responses to elevated
carbon dioxide have been reviewed elsewhere (Woodward,
1987; Morison, 1998; Assmann, 1999; Gray et al., 2000;
Woodward et al., 2001; Hetherington & Woodward, 2003).
To optimise the water use efficiency, guard cells must monitor
the plant water status and the carbon dioxide demand from
the mesophyll. To perform such regulation, CO2 sensing in
guard cells is required. Freudenberger (1940) and Heath (1948)
were the first to describe the stomatal response to elevated CO2
(reduction in aperture), which was then found to be ubiquitous
in higher plants (Morison, 1985; Mansfield et al., 1990).

1. Location of CO2 sensing

Studies conducted with epidermal strips or GCPs revealed that
CO2 sensing is an intrinsic property of guard cells (Fitzsimons
& Weyers, 1986). Later, Mott (1988) observed that in planta
guard cells respond to the intercellular CO2 concentration (Ci),
which is determined by atmospheric CO2 (Ca) and by the
mesophyll assimilation rate. Such sensitivity to Ci allows a tight

coupling between stomatal conductance and photosynthesis.
In well-watered plants, the stomatal response to CO2 is generally
limited, a doubling of Ca (350–700 ppm) resulting in reductions
of approximately 40% of stomatal conductance (Morison, 1987).

The response to CO2 is generally curvilinear and more
important below 300 ppm than at higher CO2 concentrations
(Morison, 1987). In some studies maximal stomatal opening
was higher at 100 ppm than in CO2-free air, suggesting that
a low CO2 concentration may have a positive effect on stomatal
opening (Raschke, 1976; Dubbe et al., 1978). However, whether
CO2 may have a positive effect on stomatal opening remains
an open question. Moreover, the amplitude of the stomatal
response to changes in CO2 partial pressure is tightly dependent
on many parameters such as lighting conditions and the water
status of the plant.

2. CO2 sensing and ABA

Is there an interaction between CO2 and ABA?. Some of
the early studies indicated independence (Mansfield, 1976;
Mansfield & Wilson, 1981; Wilson, 1981), whereas others
point to a strong interaction. Raschke (1975) was the first to
report such strong interaction; working with Xanthium
strumarium plants he observed that stomata did not close in
response to elevated, CO2 concentrations unless the leaves had
been treated with ABA. Some studies suggested that auxin
could be involved in such interaction (Davies & Mansfield,
1987). Raschke (1975) also observed that stomatal responses
to ABA were weak in CO2-free air (Raschke, 1975) and
similar results have also more recently been reported in
Arabidopsis (Leymarie et al., 1998a). As illustrated in Fig. 4,

Fig. 4 Responsiveness of Arabidopsis shoot conductance to light and 
CO2-free air in control conditions (blue line) or after a 24 h treatment 
with 10 µM ABA in the nutrient solution (green line). Note that in the 
absence of CO2 the effect of ABA is strongly reduced. Redrawn from 
Leymarie et al. (1998a).
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CO2 removal is able to fully abolish the inhibition of
transpiration induced by 10 µ ABA in the nutrient solution.
Additionally, stomatal sensitivity to CO2 was enhanced when
an osmotic stress was applied to the roots (Leymarie et al., 1999).
These observations point to a very strong interaction between
ABA and CO2 signalling pathways. To test this relationship
further, studies were performed using ABA insensitive
Arabidopsis mutants (Koornneef et al., 1984). Two Arabidopsis
mutants, abi1–1 and abi2–1 exhibit a wilty phenotype (Leung
et al., 1994, 1997) indicating a loss of ABA control of the
transpiration rate resulting from ABA-insensitive guard cells
(Roelfsema & Prins, 1995). These ABA-insensitive mutants
provide a good model to test the interactions between ABA
and CO2 signalling. Webb & Hetherington (1997) observed
that abi1–1 and abi2–1 mutants fail to respond to CO2 and
extracellular calcium. From these results they inferred that the
signal transduction pathways for ABA, CO2 and Ca2+ converge
on, or close to, the ABI1 and ABI2 gene products. Another study
using epidermal bioassays by Leymarie et al. (1998b) showed
that, in the abi1–1 and abi2–1 contexts, a partial stomatal
response to CO2 was observed when the K+ concentration in
the bathing medium was decreased. These authors proposed
that, according to the osmoticum, ABA and CO2 do not share
the same signalling pathways but interact in a synergistic manner
and that the ABI1 and ABI2 gene products are involved in this
interaction. However, the results of these studies must be
treated with caution since the abi1–1 and abi2–1 mutations
are dominant. Further characterisation of recessive alleles and
molecular studies have shown that ABI1 and ABI2 genes
encode two protein phosphatases 2C sharing redundant
functions and acting in a negative feedback regulatory loop of
the abscisic acid signalling pathway (Gosti et al., 1999; Merlot
et al., 2001). Accordingly, double abi1-abi2 mutant plants are
ABA hypersensitive at the level of stomatal response to ABA
(Merlot et al., 2001). A detailed study of CO2 sensing in these
mutants is still awaited before a definitive conclusion can be
drawn about the role of these redundant PP2C in integrating
ABA and CO2 signalling.

The conditions under which a plant was grown have a
major effect on the extent of the stomatal response to CO2.
Recently, Frechilla et al. (2002) observed that stomata of
growth chamber-grown Vicia faba leaves have an enhanced
CO2 response compared with stomata of glasshouse-grown
leaves. Complementary studies on the parameters driving this
response led Talbott et al. (2003b) to propose air relative
humidity as a key factor in modulating stomatal sensitivity
to CO2 with elevation of relative humidity resulting in an
enhanced CO2 response. The authors also suggested that
humidity could function as a signal for leaves inside dense
foliage canopies that promotes stomatal opening under low
light and low CO2 conditions. Detailed studies of stomatal
responses to air relative humidity have resulted in the conclu-
sion that guard cells do not directly sense RH but instead
respond to transpiration rate (Mott & Parkhurst, 1991).

Accumulation of sucrose in the guard cell apoplast under high
transpiration level has been suggested to mediate stomatal
response to RH (Outlaw & De Vlieghere-He, 2001). In any
case, an up-regulation of guard cell CO2 sensing by RH is
difficult to reconcile with the synergistic effect of ABA and
CO2 in promoting stomatal closure (Raschke, 1975; Leymarie
et al., 1998a,b). Indeed, water stress and associated ABA
synthesis are more likely to occur at low RH. However, a stomatal
response to humidity is still observed in ABA-deficient and
ABA-insensitive Arabidopsis mutants, which would suggest
that ABA is not the prime mediator of the guard cell response
to RH (Assmann et al., 2000). It is clear that more research is
needed to clarify the relationship between CO2 sensing and
plant water status.

3. CO2 sensing and light

In epidermal peels and in planta, stomatal response to
CO2-free air is generally reduced under darkness and greatly
enhanced in the presence of low blue light or strong red light
illumination (Assmann, 1988; Vavasseur et al., 1990a, 1990b;
Willmer & Fricker, 1996). Accordingly, the increase in stomatal
opening triggered by light under CO2-free air is accompanied
by a large increase in K+ and Cl– accumulation in guard cells
(Lascève et al., 1987).

Recent studies have shown that cytosolic ATP is essential
for maintaining the activity of K+-uptake channels in guard
cells (Goh et al., 1999, 2002). ATP depletion results in an
inhibition of inward K+ currents and photosynthetic electron
transport, while addition of ADP together with orthophos-
phate prevents the inhibitory effect of these treatment. These
results suggest that cytoplasmic ATP provides a coupling
mechanism between guard cell chloroplasts, mitochondria,
and ion transport. As discussed above, low blue light illumi-
nation promotes a rapid decrease in starch content (Fig. 1c–e),
which could supply carbon skeletons for malate−2 synthesis
(Ogawa et al., 1978) providing negative charges to balance the
K+ influx and additional substrates for oxidative phosphoryla-
tion (Agbariah & Roth-Bejerano, 1990).

Under red light illumination, a significant part of the ATP
produced by photophosphorylation is used for H+ pumping
(Tominaga et al., 2001). This is consistent with the observation
that red light triggers an electrogenic current sensitive to
DCMU in GCPs (Serrano et al., 1988). In the absence of
CO2, the ATP sink represented by the Calvin cycle should be
limited, which should allow an increased transfer of ATP to
the cytosol for proton pumping. However, subsequent studies
did not confirm the activation of the proton pump under
red light (Taylor & Assmann, 2001; Roelfsema et al., 2002).
Recent in planta studies combining voltage-clamp and
recording of CO2 partial pressure in substomatal cavity led
to similar results (Goh et al., 2001, 2002). These authors failed
to observe any hyperpolarization of the plasma membrane upon
red light illumination when the light beam was limited to the
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guard cell area. Conversely, when the red light beam was
extended to mesophyll cells, a lowering of substomatal CO2
partial pressure was observed accompanied by an hyperpolari-
zation of the guard cell plasma membrane. From these data it
can be concluded that the guard cell response is not primarily
linked to red light illumination, but more likely to a CO2 lowering
driven by photosynthesis in neighbouring mesophyll cells.

4. Second messengers in CO2 signalling pathway

The involvement of calcium ions in ABA signalling has recently
been comprehensively reviewed (Assmann & Shimazaki,
1999; Hetherington, 2001; and Schroeder et al., 2001). ABA
binding to still unidentified receptors activates a transfer of
Ca2+ from the guard cell apoplast and the vacuole to the
cytosol. The increased Ca2+ in the cytosol ([Ca2+]cyt) inhibits
the H+ pump depolarising the membrane, activates outward
anion channels in the plasma membrane and blocks K+ uptake
through inward K+ channels. Depolarisation and cytoplasmic
alkalinization activate outward K+ channels. These events
conduct the loss of solutes and stomatal closure. By contrast,
much less is known about the intracellular second messengers
involved in stomatal response to CO2.

4.1. Cytoplasmic free calcium By contrast to the situation
with ABA, there have been relatively few investigations of the
role of Ca2+ in guard cell CO2 signalling. Schwartz et al. (1988)
demonstrated that, in epidermal strips, external application
of calcium chelator (EGTA) results in diminished stomatal
response to CO2. Later, Webb et al. (1996) used fluorescence
ratio-photometry to measure [Ca2+]cyt in response to changes
in CO2. Elevated CO2 (700 ppm) induced increases in guard
cell [Ca2+]cyt which were similar to those observed in response
to ABA (McAinsh et al., 1990, 1992). These increases in [Ca2+]cyt
were reversible upon removal of CO2 and repeated application
of CO2 resulted in an additional increase in [Ca2+]cyt. Import-
antly, removal of extracellular calcium both prevented the
CO2-induced increase in [Ca2+]cyt and inhibited the associated
reduction in stomatal aperture (Webb et al., 1996). The results
of a pharmacological study by Cousson (2000) indicates that
the CO2 signal is transduced through depolarisation-mediated
activation of plasma membrane voltage-gated -type Ca2+

channels, which would activate slow anion channels (Schroeder
et al., 2001). However, until now -type Ca2+ channels have not
been identified in plants. In any case, the bulk of results under-
lines the potential importance of [Ca2+]cyt in CO2 signalling,
as is the case for most of the effectors of stomatal responses. The
transgenic lines expressing the calcium indicator yellow cameleon
2.1 (Allen et al., 1999), developed to monitor Ca2+ signalling
in plant cell represent a promising approach for further studies.
Despite recent debate (Köhler et al., 2003), work from the
Schroeder lab suggests convincingly that generating ABA-evoked
[Ca2+]cyt increases involves a reactive oxygen species regulated,
voltage-dependent inward Ca2+ channels at the plasma

membrane (Kwak et al., 2003). Whether such mechanism
also participates in CO2 signalling remains to be determined.

4.2. Apoplastic and cytoplasmic pH Cytoplasmic and apoplastic
pH are important factors, which impact on the regulation of
key guard cell enzymes, for example PEPC (Cotelle et al., 1999),
and ionic channels at the plasma membrane (Schroeder
et al., 2001). It is now well recognised that alkalinization of
guard cell cytoplasmic pH is an integral component of ABA
signalling, with one of the major effects being to activate
Ca2+-insensitive pH-dependent outward K+ channels (Schroeder
et al., 2001). As CO2 will form carbonic acid in water it might
be predicted that CO2 would induce acidification. However,
recent studies fail to support this suggestion. Felle & Hanstein
(2002) tracked the apoplastic pH of the substomatal cavity
using pH sensitive microelectrodes. They found that application
of fusicoccin, which activates the proton pump led, as expected,
to a strong acidification (0.5 pH unit). An 800–0 ppm CO2
transition or illumination both resulted in an acidification of
the apoplastic pH by 0.2–0.3 unit. This pH change was fully
reversible when the initial conditions were restored. Brearley
et al. (1997) used BCECF and ratio fluorescence microphoto-
metry to measure cytoplasmic pH and did not record any
significant pH change during a transition from 0 to 1000 ppm
CO2. These observations suggest that, unlike ABA signalling,
cytosolic pH changes are not an essential component in CO2
signalling. and highlight the involvement of different down-
stream elements in both signalling pathways.

4.3. Ionic channels and membrane potential ABA and CO2
signalling share many similarities in the way they alter the
membrane potential and the main conductances at the guard
cell plasma membrane. Both trigger membrane depolarisation,
an inhibition of inward K+-channels, and an activation of outward
anion and K+ currents (Brearley et al., 1997; Schroeder et al.,
2001). A subset of these responses could be attributed to
Ca2+-signalling. As described above, ABA and CO2 promote
cytoplasmic calcium increases (McAinsh et al., 1992; Webb
et al., 1996) that could drive inhibition of the proton pump
(Kinoshita et al., 1995), deactivate inward K+ channels (Schroeder
& Hagiwara, 1989; Lemtiri-Chlieh & MacRobbie, 1994)
and activate anion channels (Schroeder & Hagiwara, 1989).
While ABA and methyl jasmonate (Suhita et al., 2004)
promote an alkalinization of the guard cell cytoplasm believed
to drive K+ efflux through outward-rectifying K+ channels
(Blatt, 1992), such alkalinization seems absent in CO2
signalling. How elevated CO2 results in a rapid increase in the
magnitude of current carried by outward-rectifying K+

channels (Brearley et al., 1997) is currently unresolved.
Anion channel activation plays a crucial role in driving

membrane potential towards K+ efflux. Hanstein & Felle
(2002) studied transients in apoplastic Cl– in intact leaves
during changes in substomatal CO2. They noticed that after
a fast rise in substomatal CO2 from 150 to 800 ppm, it took
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several minutes before they recorded a significant increase in
apoplastic Cl–. This delay is considerably longer than the one
reported by Brearley et al. (1997) on epidermal strips using a
higher CO2 partial pressure. Interestingly, the extent of CO2–
induced Cl– efflux was the same in darkness and under light.
By contrast, light-on, light-off transitions induced rapid vari-
ations in apoplastic Cl– when substomatal CO2 was clamped
(Hanstein & Felle, 2002). These observations point to specific
control of anion channels by light and CO2. Additionally,
exposure to CO2-free air induced a ‘desensitisation’ of CO2-
triggered Cl– efflux. These results strongly argue for an indi-
rect effect of CO2 in the regulation of anion channels that
mediate the Cl– efflux and suggest that an intermediate
effector has to accumulate in response to CO2 to induce the full
response. Malate has been proposed as such intermediary link
between CO2 and anion channel regulation (Hedrich &
Marten, 1993; Hedrich et al., 1994). Two anion conductances
coexist at the guard cell plasma membrane. Slow-activating
(S-type/SLAC) and fast-activating (R-type/QUACK) anion
channels have been distinguished. A major role has been
ascribed to S-type anion channels in ABA signalling on the
basis of anion channels blockers (Schwartz et al., 1995).
However, recent studies in intact plants do not exclude a part-
icipation of R-type anion channels in this response (Roelfsema
et al., 2004). In response to extracellular malate, R-type anion
channels display a shift in their activation potential to more
negative values (Hedrich & Marten, 1993), increasing their
opening probability in open guard cells. Such sensing of
apoplastic malate delivered by photosynthesising tissues would
provide guard cells with a feedback sensor of CO2 availability.
However, this hypothesis was challenged by further observa-
tions. First, the extent of Cl– efflux in relation with CO2 has
been found to be the same in darkness and under light
(Hanstein & Felle, 2002), which suggests that guard cell CO2
sensing is independent of photosynthesis. Second, studies by
Esser et al. (1997) and Cousson (2000) exclude CO2 sensing
as primarily resulting from feedback stimulation of anion
efflux via malate-sensitive anion channel since nonphysiol-
ogical concentrations of malate need to be applied to observe
an inhibition of stomatal opening. Additionally, work from
Hedrich et al. (2001), suggests that malate2– and CO2 could
act in concert as suggested by their additive effects in stomatal
closing. Raschke (2003) and Raschke et al. (2003) propose
that malate could participate in a conversion of R-type anion
currents into S-type. They observed that CO2 variations
between 0 and 700 ppm caused rapid and reversible increases
in the activity of S-type, while R-type anion currents
responded to CO2 in an unpredictable manner. CO2-sensitive
instantaneous background currents, likely driven by anion
channels (Pei et al., 1998), are also candidates in transducing
the CO2 signal (Roelfsema et al., 2002). While the molecular
identity of the main K+ conductances at the guard cell plasma
membrane had been identified for years, the nature of
proteins driving anions efflux and influx, is still unknown.

Progresses in this area would be a considerable aid in under-
standing the way ABA and CO2 drive anion exchanges at the
guard cell plasma membrane.

4.4. Redox regulation The presence of a redox system located
at the guard cell plasma membrane and regulating the activity
of the proton pump has been proposed based on the
observation that NAD(P)H was able to drive proton efflux
from guard cells (Vani & Raghavendra, 1989; Raghavendra,
1990; Gautier et al., 1992; Vavasseur et al., 1995). Such redox
regulation of the proton pump could link the membrane
potential to CO2 metabolism through a modulation of the
pool of reducing power. However, Taylor & Assmann (2001)
and Roelfsema et al. (2002) failed to confirm the presence of
such a redox system in their recent patch-clamp studies.

Zeiger and collaborators (Zeiger & Zhu, 1998; Zhu et al.,
1998) proposed that zeaxanthin formation in guard cell chlo-
roplasts could be a mediator of light–CO2 interactions. They
observed that stomatal aperture and zeaxanthin content in
guard cell chloroplasts were linearly related over a wide range
of Ca. That such a relation was absent in darkness pointed to a
relation that was light dependent. Dithiothreitol, an inhibitor
of zeaxanthin formation, inhibited the CO2 response in the
light but not in the dark. These observations have led the
authors to propose separate CO2-sensing mechanisms in
guard cells in darkness and under light. However, this inter-
esting proposal still needs to be confirmed. Dithiothreitol,
besides inhibiting zeaxanthin formation, has a wide range of
cellular effects. As already proposed by Assmann (1999), a
better understanding of the situation could be gained by char-
acterising stomatal CO2-sensing in the npq1 mutant (Niyogi
et al., 1998), which is affected in the xanthophyll cycle and
cannot de-epoxidise violaxanthin to zeaxanthin.

4.5. Protein (de)phosphorylation Regulation of proteins
through (de)phosphorylation plays a major role in plant
development and adaptation (Xiong et al., 2002; Luan,
2003). Pharmacological studies have shown the importance
of such regulation in stomatal movements (Cousson et al.,
1995; Cotelle et al., 1996; Esser et al., 1997; Suhita et al.,
2003). The potential involvement of ABI1 and ABI2, two
type 2C protein phosphatases, in integrating ABA and CO2
responses has been discussed above. Other essential protein
kinases and protein phosphatases have been recently
identified in the ABA signalling pathway leading to stomatal
closure. In Arabidopsis, OST1, a calcium-independent protein
kinase (Mustilli et al., 2002), which is an orthologue of
AAPK, the guard cell-specific ABA-activated serine-threonine
protein kinase in Vicia (Li & Assmann, 1996; Li et al., 2000),
is an essential element in guard cell ABA signalling but does
not participate in CO2 sensing (Mustilli et al., 2002). Again
in Arabidopsis, disruption of RCN1, encoding a protein
phosphatase 2A, results in guard cell ABA insensitivity (Kwak
et al., 2002). Very recently, a type 2C protein phosphatase
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(AtP2C-HA, Leonhardt et al., 2004) has been identified as
acting in an ABA regulatory feed-back loop. It is striking that
the type 2C protein phosphatases presently identified are all
involved in feedback regulatory loop(s) in the ABA response.
To the best of our knowledge, with the exception of OST1
(Mustilli et al., 2002), none of the mutants for these different
protein kinases and protein phosphatases have been used in
investigations of guard cell CO2 signalling.

IV. Prospects in Guard Cell Metabolism and CO2 
Sensing

Among the new information gained in recent years, the
potential role of of carbohydrates in maintaining guard cell
turgor during the course of the day is particularly exciting. It

could explain some discrepancies in the results according to
the level of investigation (whole plant, epidermal strips,
protoplasts), since guard cells in planta also depend on the
surrounding cells. However there are important questions
to address. First, is this process general? Until now it has just
been described in Vicia and needs to be validated in a number
of species. Second, what happens to sucrose and the other
carbohydrates accumulated during opening when stomata close?
A precise metabolic profile of the guard cell content during
the course of the day would help to understand the interplay
between organic and inorganic osmoticum involved in stomatal
regulation. Figure 5 proposes a schematic representation of
the interactions between guard cell metabolic pathways and
membrane transport during light-induced stomatal opening
or ABA- and CO2-induced stomatal closure.

Fig. 5 Schematic representation of the coupling between metabolic events and membrane transport during (a) light-induced stomatal opening 
or (b) stomatal closure induced by ABA or elevated CO2. Activated proteins and their effectors are circled in white. Inactivated proteins and 
their inhibitors are circled in black. Dashed lines represent multistep processes.
Panel (a): red light and blue light trigger different processes during stomatal opening. Blue light promotes rapid starch degradation and PEPC 
phosphorylation. This allows the synthesis of malate2– to counterbalance K+ transfer from the apoplast powered by the phosphorylation 
activated proton pump. Chloride is imported from the apoplast by unidentified transporters. Additionally, blue and red light allow ATP delivery 
to the cytoplasm through photophosphorylation and may in the long-term provide carbohydrates through limited PCRP. Carbohydrates 
synthesised in photosynthesising mesophyll cells are imported from the guard cell apoplast by sugar transporters. In time K+, malate2– and Cl– 
accumulated in the guard cell vacuole during the first phase would be replaced by sucrose during the course of the day.
Panel (b): ABA interacts with internal and/or external ABA receptors activating PLC and PLD and triggering cytoplasmic Ca2+ and pH rises. The 
rise in Ca2+ inhibits inward rectifying K+ channels and the proton pump, decreasing the driving force for K+ uptake. Calcium activates anion 
channels leading to Cl– and malate2– efflux and membrane depolarisation, which, together with cytoplasmic alkalisation, triggers the activation 
of outward rectifying K+ channels allowing K+ efflux. High CO2, through an undetermined signalling pathway, also results in a calcium rise but 
without pH change. Thus, most of the calcium dependent downstream elements of the response could be shared with ABA signalling. The main 
difference is that high CO2 does not modify the cytoplasmic pH but triggers the activation of outward rectifying K+ channels by an unknown 
mechanism. The question marks indicate a lack of knowledge and this is particularly evident concerning the fate of carbohydrates during 
stomatal closure. RL, red light; BL, blue light; As, anion sym(anti)porters; ATPase, proton pumps; Kin, inward rectifying K+ channels; Kout, 
outward rectifying K+ channels; Phot, phototropins; R/S, rapid and slow anion channels; ST, sugar transporters; PLC/PLD, phospholipases C/D.
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Besides the classical biochemical and fluorescence approaches
to study the role of the guard cell chloroplast other approaches
can now be used. The effects of a lack of guard cell chloro-
plasts have been addressed in Paphiopedilum species.
However, these orchids could have evolved compensatory
mechanisms as the result of a long evolution and might not
represent an actual ‘disruption’ of the chloroplastic pathway.
The role of the guard cell chloroplast could be addressed by
manipulating the number of chloroplasts using either phar-
macological tools (Izumi et al., 2003) or Arabidopsis mutants
affected in chloroplast division (Robertson et al., 1995; Larkin
et al., 1997). Modulation of the expression level of key guard
cell metabolic enzymes is another way to decipher the respective
roles of different metabolic pathways. This is illustrated by the
work of von Caemmerer et al. (2004) working with anti-
Rubisco plants and in Gehlen et al. (1996) who observed that
stomatal opening was delayed in PEPC antisense S. tuberosum
plants and accelerated in plants overexpressing PEPC from
Corynebacterium glutamicum. Such approaches can now
be undertaken specifically at the guard cell level aim to the
increasing knowledge about guard cell specific promoters
(Taylor et al., 1995; Plesch et al., 2000; Plesch et al., 2001).

Following the pioneering work of Leonhardt et al. (2004),
using genechips holding about one-third of the full Arabidopsis
genome, the recent availability of full genome microarrays
opens the way for exhaustive expression profiling in guard
cells. This powerful tool will help in understanding guard cell
global gene expression changes modulated by environmental
signals. Screening and characterisation of null mutants has
been and continues to be a powerful tool in the identification
of components involved in ABA signalling. Infrared thermog-
raphy (Merlot et al., 2002) is an ideal approach for the iden-
tification of mutants with altered stomatal response to CO2.

In the course of this review we underlined the strong inter-
action between ABA and CO2 sensing. It is striking that,
while a legion of messenger systems are now clearly identified
upstream of [Ca2+]cyt in ABA signalling, for example cyclic
ADP-ribose, inositol 1,4,5 triphosphate, active oxygen
species, nitric oxide, phospholipase C, phospholipase D (see
Schroeder et al., 2001; Garcia-Mata et al., 2003; Hunt et al.,
2003), their participation in CO2 sensing has not been inves-
tigated. The authors would like to stress that all the molecular
tools developed in the course of these studies are potentially
applicable to investigations of CO2. For example, few of the
numerous mutants affected in their stomatal response to
ABA have been studied at the level of their CO2 response. Such
studies could determine common and independent elements
in the respective signalling pathways. Additionally, they would
allow us to ask whether some components are specifically
involved in CO2-induced stomatal closure or CO2-inhibition
of stomatal opening as already demonstrated for ABA (Li
et al., 2000). The recent identification of the ost1 ABA-
insensitive mutant is of particular interest. While this mutant
is fully impaired in the guard cell ABA response it displays a

wild-type response to CO2. Thus, ost1 is an ideal tool to study
calcium signalling in relation with CO2 without side-effects
from ABA signalling. Comparison of [Ca2+]cyt transient trig-
gered by elevated CO2 in ost1 and wild type plants could
reveal key elements in the interaction between CO2 and ABA.
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