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Resonance energy transfer from a fluorescent dye to a metal nanoparticle
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A quantum mechanical theory of the rate of excitation energy transfer from a fluorescent dye
molecule to the surface plasmonic modes of a spherical metal nanoparticle is presented. The theory
predicts the distance dependence of the transfer rate to vary as 1/d”, with 0=3-4 at intermediate
distances, in partial agreement with the recent experimental results. Forster’s 1/d°® dependence is
recovered at large separations. The predicted rate exhibits nontrivial nanoparticle size dependence,

ultimately going over to an asymptotic, a°

size dependence. Unlike in conventional fluorescence

resonance energy transfer, the orientational factor is found to vary between 1 and 4. © 2006
American Institute of Physics. [DOI: 10.1063/1.2400037]

The distance dependence of the rate of resonance energy
transfer (RET) from a dye to a metallic (gold, silver) nano-
particle is currently a subject of great interest because of its
potential use in many material science and biomedical
applications.1 Fluorescence resonance energy transfer
(FRET) is often designated as a “spectroscopic ruler”” be-
cause the strong distance dependence of the energy transfer
rate provides us with a microscopic scale to measure separa-
tions in vivo. Naturally, FRET has played a key role in un-
derstanding the conformational dynamics of single (bio)mol-
ecules in microscopic detail.>” In conventional FRET both
the donor and the acceptor are dye molecules suitably placed
along the biopolymer. The rate of FRET in such systems,
separated by a distance d, is usually analyzed in terms of the
following expression,

kForster = krad(RF/d)U’ ( 1 )

where o=6 gives the usual Forster expression, kg is the
radiative rate of the donor dye molecule in the absence of the
acceptor molecule and Ry is Forster radius expressed in
terms of an overlap integral between the emission spectrum
of the donor and the absorption spectrum of the acceptor.s’9
At large separation between donor and acceptor, Forster ex-
pression has been found to be fairly reliable.'® At short sepa-
ration, however, Forster expression has been known to over-
estimate the rate of energy transfer,' primarily due to the
inadequacy of the point dipole approximation. Thus, if the
separation between D-A system is smaller than the size of the
either donor or acceptor, one should expect a deviation from
1/d° distance dependence of the rate. The value of the expo-
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nent o in Eq. (1) thus becomes a subject of considerable
interest and importance.

However, this conventional FRET technique employing
only dye molecules as donor and acceptor suffers from sev-
eral limitations, prominent among them is the restriction on
the upper limit of separation of only 80 A. Beyond this dis-
tance, the energy transfer becomes too weak to be useful."
This limitation has motivated a novel use of metallic nano-
particles having prominent absorption spectrum in the visible
region as either the acceptor, or more recently, as both donor
and acceptor in the FRET." The absorption of light by metal
nanoparticles is mainly dominated by surface plasmon (SP)
resonance.””' In such RET systems, separations up to
700 A can be monitored, which is about 10 times larger than
the Forster distances, Ry. This unique feature makes a metal
nanoparticle potentially an extremely useful marker in many
applications.

A large number of theoretical and experimental studies
exist on the rate of radiative and nonradiative energy transfer
from a dye to a metal surface.'” %! Most of these studies start
from a dielectric function of the metal and are essentially
based on Mie’s well-known theory of surface plasmons.
Nevertheless, the distance dependence of RET in such sys-
tems remains unsettled. Several theoretical studies have con-
sidered transfer of energy from an excited dipole to a metal
surface and have predicted the separation to have a 4~ (that
is, non-Forster) dependence. A recent experimental study22
of energy transfer from a fluorescent dye to a gold nanopar-
ticle of size 1.4 nm has also observed d* dependence. The
experimental results were interpreted in terms of the existing
surface excitation transfer (SET) mechanism, appealing to
earlier theoretical work cited above.'”'®

In this Communication, we adopt a different approach.
We present a quantum mechanical formalism to calculate the

© 2006 American Institute of Physics
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FIG. 1. A schematic illustration of the geometric arrangement of the spheri-
cal nanoparticle and the dye molecule in two different orientations, parallel
and perpendicular, with respect to the distance vector R. d is the distance
measured from the surface of the nanoparticle. The figure also shows the
coordinate system employed in our calculations.

nonradiative decay rate of a dye molecule in presence of a
metallic nanoparticle. The absorption spectra of metal nano-
particles over a wide range of size is dominated by surface
plasmon resonance. Therefore, the formalism invokes the
transfer of excitation energy to the surface plasmon modes of
the nanoparticle. As already mentioned, most of the previous
studies on nonradiative energy transfer use Mie’s theory23
which involve macroscopic frequency dependent material di-
electric constant of the bulk metal. In this regard, the present
treatment of energy transfer is more microscopic and appeals
directly to the collective electronic excitations of the nano-
particle, treated quantum mechanically.

The theory makes several interesting predictions. First,
we find that Coulombic energy transfer to the surface plas-
monic modes indeed has the Forster d~° distance dependence
at large separation between the dye and the nanoparticle.
However, at distances comparable to (and also for somewhat
larger than) the size of the nanoparticle, the distance depen-
dence of the rate is found to vary as d"“, with o between 3
and 4. We also find that the rate of energy transfer depends
critically on the size of the nanoparticle and the orientation
of the dye molecule with respect to the separation vector R
(see Fig. 1). We believe this is the first detailed report of
intermediate distance physics, orientation and size depen-
dence of RET for a dye-nanoparticle system.

THEORETICAL FORMULATION

The initial, donor state of the system |De;Ag) consists of
an excited dye molecule (|D¢)) and a nanoparticle in its
ground state (|Ag )), which refers to the plasmon vacuum. The
nonradiative energy transfer from the dye to nanoparticle
involve simultaneous de-excitation of molecule and collec-
tive excitation (plasmon) of compressible electron gas in the
nanoparticle. The final acceptor state of the system is, there-
fore, represented by |D¢;A¢). The rate of excitation energy
transfer depends on the strength of Coulombic interactions
and the spectral overlap between the emission and the ab-
sorption spectra of the dye and the nanoparticle, respectively.
Within the first order time-dependent perturbation theory, the
rate of energy transfer is given by Fermi golden rule. The
interaction matrix elements can be separated into nuclear fac-
tors and the electronic coupling matrix elements (Vp,) using
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the Franck-Condon principle. The rate of energy transfer
within these approximations is given by

2
kDA=77T|VDA|2 2 2 f(Eva)f(EzgwA)

Mp.Np M4Ny
IO I X PSS - By + By~ By
(2)

where
Voa = iy, -ty [Hi Uiy, - 0 )- (3)

H, is the interaction Hamiltonian and (}*; x| x**; x*) ma-
trix elements are the nuclear overlap factors, and s are the
electronic wave functions. The delta function satisfies the
condition of energy conservation. The sum is over all the
possible vibrational states of donor molecule and the various
other degrees of freedom of the nanoparticle (like the inter-
action with phonons, electron-hole pair interactions which
broadens the absorption spectrum of the nanoparticle)
weighed by their initial thermal distribution, f(E;D) and
f(E%A), respectively. We assume the Franck-Condon factors
to be of the order of unity. The delta function in Eq. (2) can
be written as

SE, ~EYy +Ej ~Ef)

= f dES(Ey ~EYy ~E)8(Ey, ~Ey +E).  (4)

—0

In Forster’s theory, the first term is eventually transformed
into the donor emission spectrum while the second term gets
reduced to the absorption spectrum of the nanoparticle. In
the theoretical implementation of the scheme, the sharp reso-
nance lines are replaced with Lorentzians in order to account
for the broadening caused by various degrees of freedom. In
this work, we take the broadening to be of width 0.025 eV
uniformly.

MODELS FOR DYE AND NANOPARTICLE

We model the dye using a “particle in a box” Hamil-
tonian [expressed in terms of creation (c,:) and annihilation
(c,) operators] given by

HD = 2 EHC;:C,I, (5)

where E, are the one particle energy levels. The charge den-
sity operator of the dye system is given by

) . R
p(p) == X U (ol (rp)cheyt T S chns (6)

where s are the electronic wave functions which depend on
Irp, the position vector of a point in the dye measured from
its center, e is the magnitude of electron charge and 2L is the
length of the 1D box. The second term accounts for the uni-
formly distributed positive charge background and ensures
the overall charge neutrality of the dye molecule.

As noted above, the most important degrees of freedom
of the nanoparticle involved in the energy transfer with the
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dye are collective surface modes, namely surface plasmons.
Our treatment therefore will consider only the collective ex-
citations of the electron fluid in the nanoparticle. Adapting
from earlier work,24_26 where the motion of the electron den-
sity in the nanoparticle is described within an electrohydro-
dynamic approximation, the Hamiltonian

2
m.3 )
7
zeznop (7)

1 m 1

Hy= f d3rA{EezneO(j)2 + §P¢+
describes the quantum dynamics of the plasmonic excita-
tions, where n, and m, denote the mean electron number
density of the nanoparticle and electron mass, respectively.
Also, j is the current operator, and p is the charge density
operator, ¢ is the electrostatic potential (generated by the
charge density fluctuation; hence it is dependent on p via the
Coulomb kernel) all of which depend on the position vector
r, that describes points in the nanoparticle measured from a
reference point (centre, in the case of a spherical nanopar-
ticle). Specializing to a spherical nanoparticle of radius a, the
Hamiltonian is diagonalized in the “plasmon basis” and be-
comes

HA = E h wl,maZmal,m’ (8)

I,m

where the Bosonic operators azm(a,,m) create(destroy) plas-
mon modes with quantum numbers (I,m) with frequencies
;- The plasmon frequencies of the nanoparticle are deter-
mined by obtaining the eigenvalues of the Helmholtz equa-
tion

VZpl,m(rA) + azpl,m(rA) =0, (9)
where
2 2
- (Jt)!z
az = wl’mﬁz 5 (10)

and wi:ezno/ m,€, is the plasma frequency of the bulk ma-
terial (€ is the permittivity of free space). The quantity B is
related to the Fermi velocity (vy) of the electrons by 32
=3v%/ 5=(3h%/ Smg)(?m'zno)m. Note that the eigenfunctions
P satisfy the boundary condition equivalent to the vanish-
ing of the current perpendicular to the surface of the nano-
particle. This condition allows the frequencies wy,, to be cal-
culated via

2

L+ 1jmlaa) @) (11)
I ji(aa) W

which are independent of the quantum number m (j;s are
the spherical Bessel functions). We note that modes with
w;,,<w, correspond to surface modes, while those with
w;,,> w, are bulk modes; our interest at present is restricted
to the former. Further, in our simple model w,,, depend only
on two parameters, namely the electron density n, and the
radius a of the nanoparticle. It will be shown later that the
particle radius has a strong influence on the frequencies of
small nanoparticles (i.e., the plasmon frequencies depend on
the radius of the particle and the electron density), while for
larger particles the frequencies are fractions of the bulk
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plasma frequency, essentially independent of the radius. The
charge density operator p(r,) is written as

p(ry) =2 pralary) = 2 A ilar) Y, (6,4),  (12)
I,m lLm

where Y, ,, represent the spherical harmonics and A, is the
“amplitude operator” given in terms of the plasmon Bosonic
operators as

Pt w,, )"
Al,m = 3
2a

-1/2

2
W, (20+1) . .
X[ﬁ( 2 )JZZH(CW)—]1_1(aa)]l+l(aa)

X (@] + ) (13)

CALCULATION OF THE TRANSFER RATE

To study the energy transfer between the dye and the
nanoparticle, we study

1
H,=—ferJd3rAM, (14)
47T€0 |R—rA+I'D

which represents the Coulombic interaction between the two
charge densities. We have studied the energy transfer in two
different ways. First, the full Coulombic interaction Eq. (14)
between D and A is used in the Fermi golden rule [Eq. (2)] to
calculate the rate of energy transfer. Second, we study the
interaction within the dipole approximation, where the Cou-
lombic interaction is approximated by the dipole interactions
among the charge distributions of the dye and the nanopar-
ticle. The dipolar interaction Hamiltonian is given by

U | e s =3(pp - d)(py - d)
& ’

H{" = (15)

41e
where u,=[d’r,r p(r,y) and pp=[drprpp(rp) are the di-
pole operators of the nanoparticle and the dye, respectively, d
is the distance between the dye and the nanoparticle surface

and d is the corresponding unit vector (see Fig. 1).
Standard calculation based on the dipole-dipole interac-
tion Hamiltonian then immediately leads to Forster expres-
sion [Eq. (1)], where the Forster radius (Rj) is given by
“do

9¢* K?

6

=—| —I , 16
P swdk ), o p(w)ay(w) (16)

where a,(w) is the absorption cross-section of the nanopar-
ticle, I(w) is the emission spectrum of the donor molecule
and c is the speed of light, « is the orientation factor.

The rate of energy transfer is calculated for a donor dye
molecule emitting at 520 nm. Specifically, we consider a
transition from the first excited level (n=2) to the ground
state (n=1), and this corresponds to E,—FE;=2.39 eV. The
acceptor is a nanoparticle with plasma frequency w,=5.7
X 1013 57! (after Ref. 27; this fixes the value of the electron
density ng). The plasmon frequencies for the pertinent sur-
face modes depend on the size a of the nanoparticle and are
plotted in Fig. 2. The size dependence is strong for particles
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FIG. 2. Dependence of the frequencies of the surface plasmon mode (SM)
and the bulk plasmon mode (BM) on the radius (a) of the nanoparticle
characterized by plasma frequency w,=5.7X 108 57!, The frequencies of
the bulk modes with /=1,2 are larger than those for /=0 and hence not
shown.

with ¢ =7 nm, and asymptotically reaches a plateau value
(independent of the size of nanoparticle) for larger particles

l
w,:wp\/21+1. (17)

Thus the model used in this work reduces to Mie’s theory
that uses a bulk dielectric function of the form PR(e(w))
=1-(w?/ wf,), when the particle size is large compare to
nam. However, we note again that in small nanoparticles
which are of current experimental interest, the particle size
dependence of the plasmon frequencies is important. Again,
the frequencies of the surface modes are lower than w,; for a
nanoparticle of radius ~10 nm, the /=1 surface plasmon has
an absorption spectrum centered around 590 nm, while the
[=2 mode is centered around 450 nm. Both of these shift to
smaller wavelengths with reduction in the size of the nano-
particle. These considerations show that for a nanoparticle in
the range of 5—30 nm radius, the /=1 (“dipolar” mode) is the
predominant accepting mode for energy transfer with a dye
emitting in the visible range from 500—600 nm (absorption
spectrum of gold nanoparticles lie in this range). Therefore,
the summation over different /, m modes in Eq. (12) is re-
duced to summation over different values of m for [=1
mode. Since the emission spectra of the dye and the absorp-
tion spectra of the nanoparticle has negligible overlap for
/=2 mode, the rate of energy transfer to this mode can be
ignored. However, we shall study the distance dependence of
energy transfer to the /=2 “quadrupolar” surface mode to
further contrast it from the /=1 dipolar mode.

DISTANCE DEPENDENCE OF ENERGY TRANSFER
RATE

The rate of energy transfer is calculated for both: the full
Coulombic interaction and the dipole approximation ap-
proach using Eq. (2) where H,; are given by Egs. (14) and
(15), respectively. Note that in the parallel orientation (when
the dye is taken along the z axis, see Fig. 1) the contribution
to rate is from /=1, m=0 mode, while for the perpendicular
orientation (when dye is taken along the x- or y-axis, see Fig.
1), contribution comes from a linear combination of /=1,
m==x1 modes. Figure 3 illustrates that the rate of energy
transfer (kp,) is Forster-type at large separations compared
to the radius of the nanoparticle. However, at small separa-
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FIG. 3. The distance (d) dependence of the rate of energy transfer (kp,)
calculated using full Coulomb interaction (solid line) and the dipole-dipole
approximation (Forster theory) (dashed line) for the parallel orientation for
nanoparticle of size (a) 3 nm.

tions (d<20a), it breaks down and at distances approxi-
mately d=a to d=4a, value of o lies between 3 and 4. Figure
4 explicitly shows the distance dependence of o for dipolar
(I=1, m=0) as well as quadrupolar (/=2, m=0) excitations.
Note that asymptotically o goes to 8 for quadrupolar surface
plasmon excitations, in contrast to 6 for the dipolar mode.

ORIENTATION DEPENDENCE OF ENERGY
TRANSFER RATE

Because of the spherical symmetry of the nanoparticle,
the orientation dependence is markedly different from that in
two-dye systems. In the latter case, depending on angle 6

(defined as the angle between R and dye molecule, both
being in the same plane), the normalized rate [kpa/kpa(max)]
varies from 0 to 1."° If the dyes are oriented perpendicular to

each other with the dipole of one of them oriented along R
(this corresponds to #=0° for one dye and 6=90° for the
other), then there is no energy transfer. On the other hand,
when the dyes are parallel to each other, kps/kpa(max) 18
either 1 (both 6=0°) or 0.25 (both 6=90°).

The scenario is different in nanoparticle-dye system due
to the “isotropic nature” of the /=1 dipole operator. This is
seen by noting that Y, o(6, )~ =, ¥y .1(0, ) ~ (xxiy)/\2r.
We can use the “p-orbital” obtained by orthogonal linear
combinations of Y, s, i.e., p,(6, ¢)~cos 6, p,~sin 6 cos ¢,
py~~sin fsin ¢ to describe the charge density operator of
this mode

0.0

-2.0F

801

log,(dla)

FIG. 4. The distance dependence of the rate exponent o [see Eq. (1)] for the
parallel orientation for /=1 (dipolar) and /=2 (quadrupolar) mode. Note that
at large distances o approach 6 and 8 for /=1 and /=2 mode, respectively.
At smaller distances, Forster assumption of purely dipolar interaction is not
valid and as a consequence the value of o for /=1 mode deviates from 6.
The exponent o is obtained from the calculated rate kj, [using the full
Coulomb interaction Hamiltonian Eq. (14)] via o=d(log kp,4)/d(log d).
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FIG. 5. Dependence of the rate of energy transfer on the orientation of the
dye dipole moment g, with respect to d [unit vector corresponding to d (see

Fig. 1)], i.e., cos 0:;20-&. The result shown is for a gold nanoparticle of
radius 1 nm, calculated using the full Coulombic interaction Eq. (14).

pioi(ry) ~ jilary) (p(6,d)(al +a,) + p,(6, p)(a} + ay)
+p(6.4)(al +a)), (18)

where ai, etc. replace the a'l"m operators. The corresponding
dipole operator therefore reduces to

ma=ppleal+a) +eal+a)+elal+a)),  (19)
where e;s (i=x,y,z) are the basis vectors, and

_ (277360a'2 h (O] )1/2
MaA = 348

30"% 2 . . e 3.
X > sJa(aa) = jolaa)jr(aa) fdrArAjl(arA)
Wp
(20)

is the “quantum unit of dipole moment” of the nanoparticle
corresponding to the /=1 surface plasmon excitation with
frequency w; (note the #!). Clearly, under the influence of
the Coulombic interaction from the dipole of the dye, the
matrix element of pp- py will reduce to upuy since pp is an
“isotropic” operator. This result may also be seen physically
by noting that the “p-orbital” like dipolar surface plasmon
that is excited will have its axis in the same direction as the
dipole moment of the donor dye, this renders the matrix el-
ement of up-m, direction independent. Therefore, at large d
(d>a), where the dipolar interaction Eq. (15) is accurate,
the orientation dependence of the transfer is governed solely

by the second term (MD-&)(uA-&). Since, the matrix element
of u, is parallel to that of up, it follows that this orientation
dependence of the rate is determined solely by the angle

between the donor dipole mp and the vector d. Further, it
follows that, in contrast to the conventional FRET, there is
no orientation that forbids energy transfer, and at large sepa-
ration the ratio of the largest rate of transfer to the smallest
rate of transfer approaches 4. Interestingly, the orientation
dependence becomes weaker at smaller distances (see
Fig. 5).

DEPENDENCE OF THE ENERGY TRANSFER RATE
ON THE SIZE OF THE NANOPARTICLE

As is evident from the above discussion, the energy
transfer rate from a nanoparticle to a given dye is governed
by three factors. First is the Coulombic overlap integral

J. Chem. Phys. 125, 181102 (2006)

10g,,[Koal

FIG. 6. Energy transfer rate as a function of the radius (a) of the nanopar-
ticle and the distance (d) between the nanoparticle and the dye.

Eq. (3), the other two are the position (surface plasmon fre-
quency) and width (inverse surface plasmon lifetime) of the
absorption spectrum of the nanoparticle relative to those of
the dye. For a given dye, all three are, in general, functions
of the nanoparticle size. We discuss the size dependence at
large separation distances (d>>a). Further, the analysis is
simpler for large nanoparticles since their plasmon frequen-
cies (see Fig. 2) are, to a very good approximation, indepen-
dent of the size. Thus the size dependence of the energy
transfer rate at large distances for large nanoparticles is de-
termined entirely by the Coulombic overlap integral which is
in turn proportional to the quantum unit of dipole moment.
For a large nanoparticle we have [from an asymptotic analy-
sis of Eq. (20)]

4e h w, |2
:U’Az<9—0/§£> a’?. (1)
\’

It follows that for particles greater than ~7 nm, the
transfer rate at large distances depends on the volume of the
particle. For small nanoparticles both the plasmon frequency
and lifetime depend on the size of the particle, hence the
overlap of the absorption spectrum of the particle with the
emission spectrum of the dye also contributes to the size
dependence. We have not studied the plasmon lifetime (in-
verse width of the absorption spectrum) in this work. Ap-
proximating the width of absorption spectrum to be size in-
dependent (size dependence of the absorption spectrum has
been studied using a time dependent density functional
theory, for example, in Ref. 28), we have calculated the size
dependence of the transfer rate at various distances as a func-
tion of nanoparticle size (see Fig. 6). These results agree with
the asymptotics discussed above. Moreover, we find, inter-
estingly, that at small separation distances, the energy trans-
fer rate can even be nonmonotonic with respect to particle
size (for small particle sizes). Clearly, a more detailed study
including the size dependence of plasmon lifetimes is neces-
sary to uncover the complete picture.

In brief, the present work addresses the important issues
of distance and orientation dependence of the rate of excita-
tion energy transfer from a dye to a metal nanoparticle. The
results presented here show that for most applications of
FRET involving metal nanoparticle, the energy transfer shall
involve surface plasmons and the asymptotic distance
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dependence remains Forster-type, although 1/d° dependence
breaks down at separations =20a. The orientation factor var-
ies from 1 to 4 as the dye molecule is rotated along the
dye-nanoparticle axis from the perpendicular to the parallel
orientation. The formalism adapted uncovers the quantum
unit of dipole moment for nanoparticle plasmon excitations
and predicts an asymptotic a* size dependence of the rate of
energy transfer. The present formalism remains unchanged
when the nanoparticle is the donor and a fluorescent dye is
the acceptor. In addition, our formalism can be easily ex-
tended to address the problem of energy transfer between
two nanoparticles of different sizes or different metals.

In a recent experimental study, Strouse et al. found that
the rate of energy transfer from a dye, a FAM moiety, to a
Au-nanoparticle (diameter=1.4 nm) can be fitted to a 1/d*
distance dependence.22 These authors have suggested that
this result may be understood as energy transfer from the dye
to the surface modes of the nanoparticle: surface energy
transfer (SET).">!® we point out that these theoretical
studies'>"® are mainly for the interaction of a dye with a
large metallic surface: surface of a metallic “half-space”.
The d* dependence, in that context, arises from a large
(thermodynamic) degeneracy of surface plasmonic/particle-
hole excitations. Our work uncovers that energy transfer
from the dye to the surface plasmonic modes of a nanopar-
ticle do not have such large degeneracies giving rise to an
asymptotic Forster-type dependence. Moreover, at distances
comparable to or even somewhat larger (~ 4 times) than the
size of the nanoparticle, this dependence looks apparently as
d=3 to d™*. All these predictions can be experimentally tested.

The present work unambiguously shows that the transfer
to the surface plasmon modes of the nanoparticle can only
lead to an asymptotic d~® dependence. We note, however,
that one cannot really rule out the involvement of other ex-
citations (such as particle-hole excitations) in the nanopar-
ticle as the cause of the observed d~* distance dependence.
Indeed, it is reported that the nanoparticles with size <2 nm
cannot support the surface plasmons,29 as a result for such
small particles other energy transfer routes like particle-hole
excitations attain importance. We are currently exploring the
possibility of multiple particle-hole excitations in the nano-
particle giving rise to a 1/d* dependence.
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