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We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show
that it is prone to several instabilities through the interplay of activity, polarity and the existence of a
free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings
[Phys Fluids 13 (2001) 1160] on thin-film nematics. Based on our estimates the instabilities should be
seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology
of biofilms. We suggest several experimental tests of our theory.

Active hydrodynamics, the collective behaviour of self-
driven, orientable particles in a fluid medium, is a topic
of intense current research [1, 2, 3, 4, 5, 6, 7, 8]. In this
Letter we study the dynamics of a film of fluid, thin in
the z direction and spread on a solid surface in the xy
plane which is also the easy plane for the orientational
order parameter p of the polar active particles suspended
in the fluid. For an active system, this polarity implies
a current v0cp with respect to the fluid, where v0 is a
characteristic drift velocity and c the concentration of
active particles. While our formulation is general, we
study mainly the properties of perturbations about an
ordered, uniform reference state 〈p〉 = x̂.

HIGH LOW

HIGHLOW

FIG. 1: Top view of film with contractile polar filaments
(solid arrows) with a preference for pointing downhill. Active
stresses cause fluid flow (dashed arrows) towards the open
end of a splay perturbation, leading to gradients in the height
of the fluid film. Modes propagating forward experience a
height gradient that further torques (dash-dotted arrow) the
filaments in the direction in which they were already per-
turbed.

Our main results are as follows: (i) Active, ordered
thin films, although dominated by viscosity, not inertia,
show a wavelike response to external disturbances, as a
result of the coupled dynamics of free-surface undula-
tions the active stress field, and the concentration. (ii)
In large regimes of parameter space this coupling pro-
duces a novel instability whose growth rate, to leading
order in small wavevector k = (kx, ky), varies as kyk

1/2
x

for kx � ξk2
y and as k2

y for kx � ξk2
y. The crossover

length ξ = Γ|Cσ0|h2
0/v

2
0µ depends on the drift velocity
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v0 of the active particles, the mean film thickness h0,
the viscosity µ, an orientation mobility Γ, the coupling
C, present in equilibrium systems as well, of particle ori-
entation to free-surface tilt, and the typical active con-
tractile or tensile stress σ0 ≡ Wc0. W is the strength
of the force-dipole associated with each active particle,
and c0 the mean concentration of active particles. (iii)
Low motility, i.e., small v0, promotes the instability and
high motility suppresses it, a point we will return to at
the end of this paper. The instability manifests itself in
moving (convective) and static (absolute) form. We also
offer a simple physical picture (Fig. 1) of the mechanism
underlying this unique instability. (iv) We find several
other possible modes of free-surface instability, which we
discuss towards the end of the paper.

Before presenting our model in detail, a few words are
in order about the systems to which it might apply. Bac-
terial colonies on a surface frequently take the form of
organised, rigid biofilms [9], e.g., those of Pseudomonas
aeruginosa [10]. An understanding of the formation of
these structures should begin with the thin-film hydro-
dynamics of active fluids. The lamellipodium of crawling
cells is propelled by the ATP-driven force of a continu-
ally polymerizing and depolymerizing, contractile actin
network just below the cell membrane [11] and is thus a
moving, thin, active fluid film.

We therefore consider a fluid film containing active
particles with concentration field c, and orientation de-
scribed by a vector field p = (p⊥, pz). Since we are
interested here in perturbations about a macroscopically
ordered state, we set |p| = 1. We construct equations of
motion for c(r⊥, t), p(r⊥, t), and the height field h(r⊥, t),
i.e., the film thickness, as functions of in-plane position
r⊥ and time t. Our treatment generalizes [12] to the case
of active systems.

The kinematic boundary condition [13] ḣ = uz − u⊥ ·
∇⊥h connects h to the hydrodynamic velocity field u =
(u⊥, uz) evaluated at the free surface. Incompressibility
∇ · u = 0 leads to the simplification

∂th+∇⊥ ·
∫ h

0

u⊥dz = 0. (1)

We eliminate u⊥ in favour of p, c and h through the
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Stokes equation in the lubrication approximation [13]
uz = 0, |∇⊥u| � |∂zu|:

µ∂2
zu⊥ −∇⊥P − ẑ∂zP −∇ · σa = 0 (2)

where µ and P are the viscosity and pressure field of the
fluid, and σa(r) = Wc(r)p(r)p(r) is the intrinsic stress
field [3, 14] of the active particles. We discuss the role of
gravity later in the paper. W < 0 and W > 0 correspond
respectively to contractile and tensile activity.

The active-particle current is along p, and the particles
cannot leave the film. Thus pz(z = 0) = 0, and p · N̂ = 0
at z = h, where N̂ = (−∇⊥h, 1)/

√
1 + (∇⊥h)2 is the

outward normal to the free surface. So pz ' p⊥ · ∇⊥h
at the free surface, interpolating linearly, through di-
rector elasticity [15], to pz = 0 at the substrate, i.e.,
pz = (z/h)p⊥ · ∇⊥h. Therefore in a z-averaged de-
scription pz = (1/2)∂xh and ∂zpz ' h−1∂xh. Con-
sider small deviations [16] about a state aligned along
x̂: p⊥ = x̂ + θŷ, θ � 1. From the foregoing discus-
sion, the active force density has components ∇iσ

a
ix =

σ0(∂yθ + ∂xc/c0 + h−1∂xh), ∇iσ
a
iy = σ0∂xθ and ∇iσ

a
iz =

σ0∂
2
xh/2 to linear order. We now eliminate the pressure

P in favour of h, p and c, through the z-component of
(2) and stress continuity at the free surface z = h, lead-
ing to P (x, y, z, t) = P0−γ∇2

⊥h+σ0(h− z)∂2
xh/2, where

P0 is a reference pressure and γ the surface tension of
the fluid [13]. Since we are interested in the dynamics at
large scales in the xy plane, we treat the active stresses
in a z−averaged approximation, allowing us to borrow
the methods of [13] for spreading under gravity, whose
force density is z−independent.

Using this in (2) and integrating twice over z with
∂zu⊥(h) = 0 and u⊥(0) = 0 we get

u⊥(z) =
hz − z2/2

µ

(
γ∇⊥∇2

⊥h−
1
2
σ0h∂

2
x∇⊥h− f⊥

)
,

(3)
to linear order in perturbations of h, where f⊥ =
σ0[(∂yθ + ∂xc/c0 + h−1∂xh)x̂ + ∂xθŷ]. Using (3) in (1),
linearizing h = h0 + δh, c = c0 + δc, the in-plane fourier-
components δhk(t), δck(t), θk(t) obey

∂tδhk = −σ0h
2
0

3µ
[2h0kxkyθk + h0k

2
x

δck
c0

+ (1− 1
2
h2

0k
2)k2

xδhk]− γh3
0

3µ
k4δhk. (4)

The four effects of activity on the right-hand side of
(4) are, from left to right within the square bracket,
(i) curvature-induced flow; (ii) anisotropic osmotic flow;
and, in parentheses, (iii) splay-induced flow from tilting
the free surface and (iv) an active anisotropic contribu-
tion to the effective tension. The final term on the right
of (4) is ordinary surface tension. For contractile (σ0 < 0)
stresses, term (iii) destabilises, and the active tension in
(iv) stabilises, the surface; for tensile (σ0 > 0) stresses the

opposite happens. The behaviour of the active tension
term is consistent with the idea that contractile stresses
pull in along the long axis of the particles, giving addi-
tional elastic resistance to stretching along that axis.

The dynamics of the polar orientation field p dif-
fers from that of the conventional nematic director.
First, symmetry cannot rule out a coupling of the form
−C

∫
d2xp⊥ · ∇⊥h which couples p⊥ to tilts of the free

surface [17]. For C > 0 a tilt of the free surface tries to
make p⊥ point uphill.

We can think of two possible microscopic origins for
such a term. Consider an imposed thickness variation
tilt ∇⊥h of the free surface. One end of each polar par-
ticle is in general expected to be fatter than the other,
and the particles will be best accommodated with the
fat end oriented towards the direction of increasing h. In
addition, the spatial variation in the separation between
the free surface and the fixed substrate should give rise
to an electric field in the plane. Polar particles in general
have an electric dipole moment, and will thus be oriented
by this field. Secondly, consider the spontaneous-splay
term [18] Hsp ≡ −

∫
d3xC̃∇ · p in the effective Hamil-

tonian for p, where C̃ is a phenomenological parameter
which can depend on the local concentration, say C̃ =
C̃(c0)+ C̃ ′(c0)δc+ . . . ≡ C+C ′δc. Through the “equilib-
rium” part of the dynamics of our system, the C and C ′

terms will contribute −ΓδH/δp = ΓCδ(z)∇⊥h−ΓC ′∇δc
to the equation of motion for p, Γ being a kinetic coeffi-
cient. On dimensional and symmetry grounds we expect

R

ll’

l

FIG. 2: An object with head and tail of sizes ` and `′ re-
spectively, and length `, produces a spontaneous curvature
1/R ' (`− `′)/`2.

C ∼ F/R, where F is a typical force scale and R, the ra-
dius of curvature associated with the particle shape (see
Fig. 2)., is the particle thickness divided by the fractional
length difference between the two edges of the particle.

Combining the above with the results of [3], the dy-
namics of the the angle field θ becomes

∂tθ = −a1v0∂xθ−ζ∂yδc+δ(z)ΓC∂yh+(λAyx−Ωyx)+D∇2θ.
(5)

The first term on the right-hand side of (5) is advec-
tion of θ with a speed proportional to v0 [19]. The rest,
from left to right, are coupling to concentration gradi-
ents, with ζ = ΓC ′, coupling to the free surface through
the coefficient C, flow-orientation coupling as in nemat-
ics [15], and gradient elasticity of p. The first three
terms are polar, and the first is a consequence of activity.
Aij = 1

2 (∇iuj +∇jui) and Ωij = 1
2 (∇iuj −∇jui). For

stable flow-alignment [15] |λ| > 1.
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Eliminating u in favour of θ and h through (3), and
averaging over z, (5) becomes, to leading orders in k and
linear order in the fields,

∂tθ = +
iΓC
h0

kyδhk −
(
D+k

2
x +D−k

2
y + ia1v0kx

)
θ

− (iζky − Φkxky)δc, (6)

where D± = D − (λ ± 1)h2
0σ0/4µ, and Φ = (λ −

1)h2
0σ0/4c0µ.

The active contribution to particle currents with re-
spect to the fluid is v0cp where v0 is a drift velocity.
Thus in the lab frame of reference the continuity equa-
tion for the concentration, apart from diffusion, is simply
∂tδc = −∇· [(u+v0p)c]. Linearizing around c0 and using
(5) and overall incompressibility,

∂tδc = −ic0v0kyθ − iv0kxδc+O(k2
xδck, k

2
xδhk). (7)

The O(k2) terms in (7) come from including fluctuations
in px as well by explicitly including diffusion of particles.

The instability we are chiefly concerned with here, aris-
ing from the combination of activity and the tilt coupling
C, is best seen in the extreme case of immotile but active
polar particles, i.e. v0 = 0 but σ0 6= 0. To leading order
in k the concentration plays no role, and the dynamics is
determined by (4) and (5), yielding an unstable mode in
the system which grows at a rate k1/2

x ky. In detail, for
time-dependence exp(−iωt), to leading order in k, the
mode frequency

ω = ±1 + i sgn(kxCσ0)√
2

(
Γh2

0

3µ
)1/2|Cσ0kx|1/2|ky| (8)

has a real and an imaginary part; the mode displaying
an instability travels in the +x direction (−x direction)
if σ0C > 0 (σ0C < 0).

This instability can be understood from a simple phys-
ical picture, involving the interplay of active stresses σ0

and spontaneous splay C. To fix ideas, consider as in Fig.
1 a long-wavelength splay perturbation on a set of con-
tractile filaments σ0 < 0 aligned with polarisation along
+x̂, with a preference for pointing downhill (C < 0), in
an initially flat film. The active stresses then generate
a flow in the film that increases the height of the free
surface ahead of the outward-splayed filaments, and de-
creases the height ahead of the inward-splayed filaments.
The mode propagating along +x̂ will then cause the fila-
ments to sample a height gradient that tilts the filaments
in the centre of the field further to the right. The same
argument, mutatis mutandis, goes through for the tensile
and/or C > 0 cases.

For motile particles, v0 6= 0, let us for the moment
continue to ignore the concentration field. In the limit
ΓC/v0 � 1, (4) and (5) then yield mode frequencies

ω1 = −iΓC
v0

2σ0h
2
0

3µa1
[k2

y +O(
v0
ΓC

)k2
x] (9)

ω2 = a1v0kx + i
ΓC
v0

2σ0h
2
0

3µa1
[k2

y −O(
v0
ΓC

)D±k2] (10)

We now include the concentration via (7), but continue
in the simplifying limit ΓC/v0 � 1. One mode retains
the purely relaxational form (9), with coefficient modified
at O(ζ). The propagating mode in (10) becomes a pair
with speeds of order v0 ± O(ζ), with relaxation rates ∼
±(h2

0σ0CΓ/µv0)[1+O(ζ)]k2. The results from (8) to this
point establish the main claims at the start of this paper.
In particular, it is readily seen that (9), (10) crossover to
(8) for kx � ξk2

y with ξ = Γ|Cσ0|h2
0/v

2
0µ.

Some general features are worth noting: (a) Regardless
of the sign of σ0C, there is always an instability; (b) in-
creasing v0 weakens the instability, presumably because a
collection of filaments drifting along x samples alternat-
ing height gradients along y whose effect cancels; (c) for
σ0C > 0 the instability moves with a speed ∼ v0±O(ζ),
combining the effects of the drift speed v0 and the “pres-
sure” due to ζ, while for σ0C < 0 there is an instabil-
ity in mode ω1, predominantly the height field h, that
grows without travelling, the remnant of the instability
discussed for v0 = 0.

It is crucial to note here that activity and polarity con-
spire to produce the instability, at leading order in gradi-
ents, even at zero motility. Motility, also a consequence
of active polarity, is encoded in the active stress only at
next-to-leading order [14]. The stabilising effect of in-
creasing v0 at constant σ0 is thus not paradoxical.

For ΓC/v0 � 1 all instabilities involving the interplay
of activity with the spontaneous-splay coupling C disap-
pear. The remaining instabilities involve neither polarity
nor a drift velocity. The most interesting of these, men-
tioned briefly below (4), arises as follows: Consider a
flat free surface with contractile filaments aligned along
x̂, and impose a small tilt δh ∝ x. The filaments at
the free surface are then tilted relative to those at the
substrate. The resulting splay in the xz plane implies
that active stresses will pump fluid towards the open end
of this splayed configuration, thus increasing the tilt. In
addition, the instabilities of a bulk active ordered suspen-
sion as originally discussed in [3, 5] can arise, modified
here by confinement to a thin film, and the anisotropic
active tension [mentioned after (4)], if large enough, will
destabilize tensile active films at order k4.

We now compare the relaxation rates in (8) with the
stabilizing contributions ρgh3

0k
2/µ due to gravity, ρ being

the mass-density of the film and g the acceleration due to
gravity, γh3

0k
4/µ due to surface tension, and Kk2/µ due

to orientational relaxation, where K is a Frank constant.
On dimensional grounds and from standard liquid-crystal
physics [15] we take Γ ≈ 1/µ, where µ ≈ 10−3 Pa s is the
viscosity of the medium. With this estimate we find the
instability survives these stabilizing agencies provided
kh0 < min[Cσ0/ρ

2g2h3
0, (Cσ0h0/γ

2)1/5, Cσ0h
3
0/K

2]. For
γ and ρ we use values for water. σ0 should be of order
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fac0 = φf/a2 where f is the force exerted by the active
particle on the fluid, a the particle size, and we take the
particle volume fraction φ = c0a

3 of order unity since
we want an ordered phase. For a bacterium of size a ∼
a few µm moving at several µm/s through water f ∼ 1
pN. We argued that C ∼ F/R where F is a force scale
and R the spontaneous curvature associated with a po-
lar object. For thermal hard-rod systems F ∼ kBT/`
where ` is a rod length. For µm-sized objects this would
give C ∼ 10−6 dyn/cm. For a self-propelled object, it is
possibly more reasonable to use the force-dipole strength
W = af as the natural energy scale, in which case F ∼ f .
For an object of radius 2 µm moving through water at
20 µm/s this gives F in the range of a piconewton and
thus C ∼ 10−4 dyn/cm. For film thickness h0 ' 20 µm,
and C ∼ 10−6 dyn/cm, the instability should be seen
if kh0

<∼ 10−3 . However, this is a pessimistic estimate:
First, activity rather than thermal energy is quite likely
responsible for C. Secondly, the tension γ for biofilms is
that between the film and the ambient aqueous medium
and therefore much smaller than the air-water value. We
expect therefore that the instability should be seen over
a much wider wavenumber range, possibly kh0

<∼ 1.

The experiment of choice to test our ideas would be
to compare the dynamics of two initially flat thin films
of uniform concentration, one with highly motile bacte-
ria, the other with a low-motility mutant, under condi-
tions of constant bacterial concentration. The mutant
population would correspond to a system with v0 small,
and should show our instabilities. The observations of
[10] on Pseudomonas aeruginosa are of interest in this
regard, but are complicated by the fact that the bacte-
ria are dividing. The relation of our mode structure to
the excitations seen in studies [8] of Myxococcus xanthus
and to the lamellipodium of crawling cells [11] remains
to be explored. A complete treatment must include actin
treadmilling, as well as the elasticity and anchoring of the
cell membrane. In all these examples, the dynamics of
the bulk fluid above the film must also be included. Since
inhomogeneities in orientation give rise to mass flux, the
instabilities will produce large concentration variations
which will be important especially when going beyond
the linearised treatment.
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