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A geometrically polar granular rod confined in 2-D geometry, subjected to a sinusoidal vertical
oscillation, undergoes noisy self-propulsion in a direction determined by its polarity. When sur-
rounded by a medium of crystalline spherical beads, it displays substantial negative fluctuations in
its velocity. We find that the large deviation function (LDF) for the normalized velocity is strongly
non-Gaussian with a kink at zero velocity, and that the antisymmetric part of the LDF is linear,
resembling the fluctuation relation known for entropy production, even when the velocity distribu-
tion is clearly non-Gaussian. We extract an analogue of the phase space contraction rate and find
that it compares well with an independent estimate based on the persistence of forward and reverse
velocities.

PACS numbers: 05.40.-a, 05.70.Ln, 45.70.Vn

When a particle moves under the influence of a driv-
ing force through a noisy medium, it occasionally moves
in the direction opposite to the force. The probability
of such entropy consumption, relative to production, has
been shown to obey the well-known fluctuation relations
[1], which are a symmetry property of the large-deviation
function (LDF) [2] of the entropy production rate. Ex-
periments on a surprising range of nonequilibrium sys-
tems find behaviour consistent with the FR [3–15], in-
cluding athermal systems [15] where the noise is a con-
sequence of the driving..

In this paper, we study the velocity statistics of a ge-
ometrically polar particle in a dense monolayer of beads
on a vertically agitated horizontal surface. The contin-
uous input of energy through mechanical vibration is
balanced by dissipation into the macroscopic number of
internal degrees of freedom of each particle. Agitation
feeds energy into the tilting vertical motion of the po-
lar particle, which transduces it, via frictional contact
with the base, into horizontal movement in a direction
determined by its orientation in the plane [16–20]. The
particle thus behaves like a noisy self-propelled object,
with a statistically significant tendency to move in the
“reverse” direction, i.e., opposite to its mean direction
of spontaneous motion. We are interested in large de-
viations of the velocity. Accordingly, let P (Wτ ) be the

probability density of Wτ (t) = (1/τ)
∫

t+τ

t
[V (t′)/ 〈V 〉] dt′

where V (t) ≡ v(t) · n̂(t) with v(t) and n̂(t) are the par-
ticle velocity and orientation vector in the plane, and
〈〉 denotes an average over the time t. The LDF is
then F (Wτ ) ≡ limτ→∞(−1/τ) lnP (Wτ ). If Wτ were
the entropy-production rate the FR would read F (Wτ )−
F (−Wτ ) ∝ Wτ .

Our experimental results are as follows: (i) The parti-
cle velocity statistics satisfy a large-deviation principle.
We are able to extract the LDF, F (Wτ ), and find that
the corresponding probability is strongly non-Gaussian,
with a kink at zero [21]. (ii) The antisymmetric part
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FIG. 1: (a) Geometry of the polar particle: the fat arrow
indicates the mean direction of “self-propelled” motion. (b)
A typical experimental screen-shot showing the particle find-
ing its way through a crystalline medium of 0.8 mm alu-
minium beads. (c) Comparison of normalized velocity distri-
butions of polar particle without (gray bars) and with (black
bars) medium. (d) Mean-square displacement (MSD) with
and without medium particles. Short-time exponent (with
medium) and long-time exponents (for both cases) displayed.

F (Wτ ) − F (−Wτ ) ∝ Wτ , i.e., the velocity obeys the
analogue of a fluctuation relation. (iii) From the veloc-
ity statistics, we calculate an analogue of phase-space
contraction rate and show that it correlates very well
with an independent estimate based on the difference in
the persistence rates of negative and positive velocities.
The need of such an independent estimate for contraction
rates, in a fluctuation-relation context, has been empha-
sized recently [22].
Two clarifications are essential here: (a) In principle,

we are not measuring the LDF for the entropy produc-
tion rate, as the distributions of power and velocity are
distinct for general time-dependent driving; indeed, we
have no access to the time-series of the propulsive force.
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We know of no earlier reports of symmetry relations anal-
ogous to the FRs for large deviations of the velocity [23].
(b) Such a relation would hold trivially if the velocity
statistics happened to be Gaussian. We will see that the
velocity statistics of our particle is far from Gaussian.

Our experimental cell is a shallow circular geometry, of
diameter D = 13 cm, made of hardened aluminium alloy.
To confine the particles to two dimensions, a glass lid is
fixed on the external perimeter of the circle at a height
of 1.2 mm above the base. We ensured that base and lid
were uniformly flat to within 10 µm accuracy. This ge-
ometry is mounted on a permanent magnet shaker (LDS
406/8) and is shaken at a fixed frequency f = 200Hz and
amplitude a0 between 0.019 mm and 0.047 mm. The re-
sulting accelerations Γ ≡ a0(2πf)

2/g, measured by an ac-
celerometer (PCB Piezotronics 352B02) and nondimen-
sionalized by gravity g, lie between 3.0 and 7.5. We en-
sured that our apparatus was level to the accuracy of a
spirit-level; our results are insensitive to small deviations
in levelling. The dynamics of the particles is recorded
by a high-speed digital camera (Redlake MotionPro X3)
mounted vertically above the plate, with a maximum res-
olution of 1024×1280. The frame rate used was 50 fps for
all the results presented. The resolution of the resulting
image was 0.1 mm which corresponds to a pixel length.
The images were analyzed using ImageJ [24].

Our “self-propelled” polar particle is a brass rod, 4.5
mm long and 1.1 mm in diameter at its thick end as
shown in Fig. 1(a). On a bare surface the dynamics
is as follows: When confined between horizontal plates
and shaken at Γ > 4.5 it moves on average with nar-
row end forward along the arrow in Fig. 1(a), which we
term the positive velocity direction. We determined the
position and, thanks to the shape asymmetry of the par-
ticle, the orientation of the particle in each frame [25],
and extracted the instantaneous particle velocity along
its axis. Gray bars show a typical distribution of nor-
malized velocity (V/〈V 〉) of this particle at Γ=7.5 in Fig.
1(c), clearly showing the tendency towards systematic
directed motion with exceedingly rare backsteps. Below
Γ=4.5 the same particle gradually starts showing a sub-
stantial number of negative velocity events whose signif-
icance we will discuss later.

We then studied the motion of the polar particle when
the experimental plate is filled with a close-packed mono-
layer of aluminium beads of diameter d = 0.8 mm. Note
that the 1.2 mm gap thickness between base and lid leaves
a clearance of 0.4 mm above the beads, and 0.1 mm above
the thick end of the polar rod, allowing the play that
keeps the system “alive”. We study the velocity statis-
tics of the polar particle as it pushes its way through a
medium at area fraction Φ ≡ N(d/D)2 ≥ 0.8 where N
is the total number of beads. At these concentrations
the beads form a triangular lattice (Fig. 1(b)). Black
bars in Fig. 1(c) show the normalized velocity distribu-
tion of the polar particle at Γ = 7.5, Φ=0.83. Note the
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FIG. 2: (a) Typical velocity fluctuations of polar particle in
bead medium, with dashed line indicating mean velocity. All
data except in (d) is for Γ = 7.5, Φ = 0.83. (b) Probability
distribution of Wτ for various τ . Note exponential negative
tail and flat peaks. (c) The collapsed large-deviation func-
tion. Inset shows kurtosis (K) and skewness (S) plotted as a
function of τ clearly indicating the strongly non-Gaussian na-
ture of the distributions. (d) Large-deviation function shown
for Γ = 6.5 and Φ = 0.83 and corresponding kurtosis (K) and
skewness (S). (e) Linear dependence of lnP (+Wτ)/P (−Wτ )
on Wτ ; τ=0.04 s, 0.10 s and 0.30 s and (f) Data collapse
of (1/τ ) lnP (+Wτ)P (−Wτ ) vs Wτ onto a single line for all
τ ≥ 0.04s for Γ = 7.5 and Φ = 0.83.

significant weight at negative velocities. Fig. 1(d) shows
the mean square displacement (MSD) plot of the polar
particle with and without the medium. We see that the
particle which moved ballistically at all time scales in the
absence of a medium shows, when surrounded by beads,
a sub-ballistic short-time motion (MSD ∼ t1.6) which we
attribute to short-time negative-velocity events.

Typical fluctuations in the velocity of the particle are
shown in the time-series in Fig. 2(a), which has an auto-
correlation time < 0.02 s. Approximately 50,000 frames
were captured and the velocity obtained from every pair
of successive frames. Negative events are clearly visi-
ble. After evaluating Wτ and corresponding probabil-
ity P (Wτ ), our aim is to obtain an LDF F (Wτ ). To
this end we construct the time series of Wτ , dividing the
V (t)/ 〈V (t)〉 series into different bins of length τ and av-
eraging over overlapping bins where the centre of each
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FIG. 3: (a) Typical velocity time series of polar particle with-

out bead medium, at Γ = 3.0; dashed line again indicates
mean velocity. (b) Probability distribution of Wτ for τ =
0.06s, 0.22s and 0.70 s. (c) kurtosis (K) and skewness (S) as
a function of τ indicating tendency to become more Gaussian
at higher τ . (d) (1/τ ) lnP (+Wτ )/P (−Wτ ) vs. Wτ , shows a
collapse only for τ ≥ 0.20s.

bin is shifted from the previous one by a time difference
0.02 s to improve statistics. The results presented here
are not sensitive to the value of the time-difference used
in the analysis. Fig. 2(b) shows the probability distribu-
tion for Wτ for τ = 0.04 s and 0.16 s. The distributions
are highly non-Gaussian with exponential tails on the
negative side.
To bring out the non-Gaussian nature, we calculate the

skewness S =
〈

δW 3
τ

〉

/σ3 and kurtosis K =
〈

δW 4
τ

〉

/σ4−
3, where δWτ = Wτ − 〈Wτ 〉 and σ2 = 〈δW 2

τ
〉. Note

that S = 0 = K for a Gaussian distribution. It is clear
from the inset to Fig. 2(c) that the distributions of Wτ

are highly skewed towards positive values at low τ , and
become flatter around the mean at large τ .
In order to extract the LDF from our data, we be-

gin by writing P (Wτ ) = Aτ exp [−τF (Wτ )], allowing
for a prefactor Aτ independent of Wτ and varying more
slowly than exp(−τ). As F is expected [2] to vanish
at the most probable or typical value of Wτ , we esti-
mate Aτ by the maximum value of P (Wτ ). We evaluate
(−1/τ) ln [P (Wτ )/Aτ ], find data collapse for τ > 0.12s,
and obtain the LDF. Fig. 2(c) shows F (Wτ ) for τ =
0.20s, 0.30 s & 0.40 s covering almost the entire range
of Wτ . F (Wτ ) shows a sharp kink at zero, remaining
almost flat between 0 and 1. Fig. 2(d) shows the LDF
obtained for yet another case, Γ = 6.5 at Φ = 0.83. The
distribution is again non-Gaussian though K and S are
low (see inset in Fig. 2(d)), and a kink at zero can be
seen. We have no explanation for the difference in the
behaviours of K in Figs. 2 (c) and (d).
A comparison is in order to the theoretically predicted

LDF of the entropy production rate for a colloidal par-
ticle driven by a constant force through a periodic po-
tential [26]. The resemblance of our LDF (Fig. 2(c)) to
their Fig. 1, bottom row, centre panel, is striking. Note
however that we are measuring the LDF for the velocity,
not the entropy production as in [26]. If the motion of
our polar particle can be approximated as propelled by a
constant force, then our results can be viewed as a confir-
mation of the predictions of [26], albeit in a slightly more
complicated medium. If it turns out that the propulsive
force in our case has significant time-dependence, our re-
sults are all the more intriguing. At present however we
have no independent way of obtaining a time-series for
the force on the particle.

We now examine the relative probabilities of posi-
tive and negative coarse-grained normalized velocities
Wτ . We find that ln [P (+Wτ )/P (−Wτ )] is linear in
Wτ , as shown in Fig. 2(e) for τ=0.04s, 0.10 and 0.30s
(only three τ values shown for clarity). This linear-
ity persists to the highest τ values where the distribu-
tion is clearly non-Gaussian. Moreover, Fig. 2(f) shows
that (1/τ) ln [P (+Wτ )/P (−Wτ )] vs. Wτ collapses onto
a single straight line for all τ values; the slope α =
43.7±5.2 s−1. We find a similar result for other val-
ues of Γ and Φ. We conclude that the antisymmetric
part of the LDF is linear in Wτ ; i.e F (Wτ )− F (−Wτ ) ∝
Wτ . By analogy with the Gallavotti-Cohen SSFR [1]
for entropy flux, we are tempted to suggest a fluc-
tuation relation for the particle’s normalized velocity:
limτ→∞(1/τ) lnP (+Wτ )/P (−Wτ ) = αWτ . α may be re-
garded as similar to the phase space contraction rate in
the conventional SSFR [1]; we return to this point later.

For comparison we repeat our experiment without the
bead medium, working at a lower Γ=3.0 where the parti-
cle on a bare plate shows frequent negative velocity events
[27]. Fig. 3(a) shows the velocity time-series and Fig.
3(b) shows the distribution of Wτ for τ = 0.06s, 0.22s
and 0.70s. The trend seen here, contrary to that with
the bead medium, is of a non-Gaussian distribution at
lower τ = 0.06 s, becoming progressively more Gaussian
as we integrate the time-series for higher τ . It is clear
from Fig. 3(c) that both skewness and kurtosis decrease
with τ . The quantity (1/τWτ ) ln [Pτ (+W )/Pτ (−W )] ap-
proaches a τ -independent constant only for τ ≥ 0.20s
(see Fig. 3(d)) where both non-Gaussian parameters are
significantly low. This is unlike the case where the par-
ticle moves through the bead-bed, where this behavior
persisted even when the distribution was noticeably non-
Gaussian.

Returning to the case with a bead-bed, we repeated
the experiment for various combinations of Φ and Γ. We
found that in all cases the antisymmetric part of the LDF
for the velocity was linear, and obtained a range of α val-
ues. We now suggest that the α can be estimated inde-
pendently, without reference to the LDF, as follows: We
extract the probability P+(t) that a particle moving with
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FIG. 4: Analogue of phase-space contraction rate α vs. β
−
−

β+, the difference in persistence rates of negative and positive
velocities. Filled squares: Φ=0.83 (Γ = 7.5, 6.5, 5.5, 4.5);
filled circles: Φ=0.82 (Γ = 7.5, 5.5); filled triangles: Φ=0.81
(Γ = 7.5, 6.5, 5.5); filled diamonds: Φ=0.80 (Γ = 7.5, 6.5,
5.5). The values for the case of a bare substrate at Γ = 3.0
(open star) and the circular 1d channel at Γ = 7.5 (open circle)
are also shown. The solid line depicts α = (β

−
− β+). Inset:

log-linear plot of P+(t) and P
−
(t) vs. time t, with slopes β+

and β
−

respectively.

positive velocity at time 0 continues to do so upto time t,
and similarly P−(t) for negative velocity. Each is found
to decay exponentially, with rates β+ and β− respectively
as shown in Fig. 4 inset. Since β− and β+ respectively
measure the mean rates of escape from regions of neg-
ative (atypical) and positive (typical) velocity, it seems
plausible that the overall relaxation rate of the system
should be the difference of the two, i.e. α = β− − β+.
Indeed, Fig. 4 shows a convincing correlation between α
and β−−β+ for a range of Φ and Γ. The data for a parti-
cle moving at Γ = 3.0 on a bare plate, as well as that for
motion at Γ = 7.5 in the one-dimensional circular track
mentioned above, were also analyzed in the same man-
ner (Fig. 4) and confirm the correlation between α and
β− − β+.
In conclusion, we have shown that a geometrically po-

lar particle, when energized by vertical vibration and im-
mersed in an array of spherical beads, displays frequent
steps in the sense opposite to its mean direction of spon-
taneous motion. The resulting velocity distribution is
highly non-Gaussian, and the large deviation function
(LDF) shows a kink at zero velocity, as in [26]. Most
intriguingly, the antisymmetric part of the LDF is linear,
i.e., the velocity fluctuations obey a symmetry relation
analogous to those known [1] for the entropy produc-
tion rate. We provide an independent estimate of the
analogue of a phase-space contraction rate, in terms of
persistence rates of positive and negative velocities.
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