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Abstract. We study the statistical properties and dynamics of flexible fluid membranes containing
active transmembrane proteins and find that such active membranes can be either stable or unstable
to small disturbances, depending on the signs of certain crucial parameters characterising the
protein-membrane interaction. A major finding is that the shape-fluctuation spectrum in the stable
case for a zero-tension active membrane has the same form over a large range of length scales as at
equilibrium, but with a nonequilibrium “‘noise temperature” determined by the activity.
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1. Introduction and results

1.1 Motivation

The living cell [1,2] is a system far from equilibrium, maintained as such by a variety
of active energy-dissipating processes. These often involve the directed transport of
substances across the cell wall or through internal boundaries, facilitated by specific
proteins confined to the membrane that constitutes these boundaries. When such a protein
is held in its active state (say by an imposed electrochemical gradient, as in ion channels,
or the uptake of ATP or light energy, as in molecular pumps), it transfers ions and solvent
across membrane in a specified direction. In doing so it exerts a force F,, ~ T /w along the
local normal to the membrane, where 7 and w are respectively the temperature and a
molecular length. The force always acts towards a specific end of a given protein molecule,
which we shall call its head (and the other end its fail). Figure 1 shows schematically a
membrane containing a collection of such proteins. The filled (empty) circles have their
heads (tails) up.

Despite the ubiquity of such active, nonequilibrium processes in biological membranes,
the attention of physicists has largely been restricted to the statistical mechanics of
membranes at thermal equilibrium [3,4]. Although such an approach has been very
succesful in describing the shapes of vesicles and their statistics, there is growing
evidence that there is more [5, 6] to the flicker of red blood cells than is contained in the
equilibrium analysis of [7]. The first theoretical studies of “active membranes”, i.e.,
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Figure 1. A membrane with pumps. Black circles: heads up; white circles: heads
down.

membranes containing energised active proteins, predict striking nonequilibrium enhance-
ments of fluctuations [8] and remarkable, fluctuation-induced long-range interactions [9].
Perhaps most dramatic are recent micropipette experiments on membranes laden with the
photoactive proton pump bacteriorhodopsin (BR). When the BR is activated, the fluctua-
tions have a form superficially identical to that at equilibrium, but with a magnitude much
larger than can be accounted for by the thermodynamic temperature of the system [10].

1.2 Summary of model and results

In this paper, we consider the statistical mechanics and dynamics of a fluid membrane
containing a distribution of identical, active proteins (hereafter often called “pumps””) free
to move in the plane of the membrane (see figure 1). We shall call a protein a “+ pump”’
(““— pump”) if the vector from its tail to its head points parallel to (antiparallel to) a fixed
outward normal of the membrane. We forbid flips from + to —, which are prohibitively
slow in any real system. We shall call a membrane “‘balanced” or “unbalanced” according
to whether the numbers of + and — pumps are equal or unequal. It is crucial to note that
the functional asymmetry of the protein (unidirectional pumping) implies a structural
asymmetry as well [11]: the “head” will in general be larger or smaller than the “tail”,
and the protein will therefore favour one sign of the membrane mean-curvature over the
other (see figure 2). Gradients of the local mean curvature will thus give rise to motions of
the pumps in the plane of the membrane.

Our main results, obtained largely within a linearised description of the membrane
dynamics, are as follows: (i) The flat, homogeneous state of an active membrane can be
either linearly stable or linearly unstable [12], depending on the signs of certain parameters
arising only in the active state, and related to the structural and functional asymmetry of
the protein. (ii) In the linearly stable case, an active membrane is in a nonequilibrium
steady state with statistical properties which can mimic those of a membrane at thermal
equilibrium. Specifically, for a ““balanced” active membrane with zero tension, we show
that the height variance over a wide range of wavenumbers ¢ is ~ 1/¢*, but with a
coefficient independent of the bending rigidity, inversely proportional to the transverse
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Figure 2. Side view of a membrane with active proteins. The asymmetric shape of
the pumps means the pump can distinguish positive and negative mean curvature. This
causes a pump to prefer regions in which the curvature is adapted to its shape, as seen
in the picture. In addition (S Ramaswamy, J Toner, and J Prost, unpublished), it allows
the pump activity to depend on the local mean curvature.

mobility of the protein and proportional to the protein activity. These features testify to the
truly nonequilibrium origins of the fluctuations, which arise from variations in the local
normal force caused by the Brownian motion of the pumps. The effect, in remarkable
agreement with the observations of [10], is independent of the concentration of pumps. (iii)
More detailed results on the statistical and dynamical properties of active membranes will
appear elsewhere [14]. These include: (a) the occurrence of propagative modes with a
speed independent of the membrane elasticity; (b) the ultimate fate of the linear instabilities
(ordered patterns, coarsening, or spatiotemporal chaos) [15, 16]; and (c) nontrivial scaling
exponents when nonlinearities are taken into account in the stable noise-driven case.

2. The model

2.1 Simplified dynamical model for a balanced membrane

The model within which these results were derived is a natural extension of the classic
models of the dynamics of membranes at equilibrium [7]. To avoid complications
associated with the hydrodynamic interaction, we shall assume in this paper that the
membrane motion is damped locally by a frictional force proportional to its velocity. Our
major results will largely be unchanged if this “Rouse”-like description (by analogy with
polymer dynamics [17]) is replaced by a more realistic damping arising from coupling to
a hydrodynamic velocity field as in [7]. The Rouse description is in any case appropriate
for a membrane near a wall [9], on length scales large enough for permeation to be
important but small enough that wandering-induced collisions with the wall can be
neglected. We shall consider a membrane in which all pumps are continuously active
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when supplied with energy; allowing the pumps to switch on and off at random modifies
our results in a manner irrelevant at small wavenumbers [14].

Let the membrane conformation with respect to a two-dimensional reference coordinate
x at time ¢ be described within the Monge gauge by a height function A(x,7), and let
ni(x,1) and n_(x,t) be the local concentrations of + and — pumps respectively. Define
the protein density (irrespective of whether they are + or —)

n(x,t) = ny (x,1) +n_(x,1) (1)
and the pump density (the relative number density of 4+ and — pumps)
m(x,t) = ny(X,1) — n_(x,1) (2)

with time-averages ny and my respectively. Since n plays an unimportant role in what
follows, we shall ignore its dynamics hereafter, setting its value to a constant ny. Let us
first consider the case of a membrane at equilibrium, where the proteins are present but
not activated. As remarked in § 1, the proteins will in general have an asymmetric shape,
so that + and — proteins will favour opposite signs of the local mean curvature (see
figure 2).

The effective Hamiltonian describing the equilibrium statistical mechanics of the
membrane with such asymmetric but inactive proteins, to bilinear order in the variables
involved, is thus

Him, ] = é / @ [K(V2R)2 + x ' (m — mo)* + TimV2h), 3)

a form studied in [13] in connection with phase separation in membranes. The energy
density in (3) has three terms. The first is the usual mean-curvature energy [3], with rigidity
k. The second is the compression energy for the signed protein number density, with
osmotic modulus x~'. For convenience, we have separated out a factor of the temperature
T in the third term, which couples the signed pump density to the local mean curvature.
With this convention, the coefficient £ in (3) has dimensions of a length. Its magnitude may
be interpreted tentatively as the head-tail size difference of a protein, but its sign has a
siginficance for the dynamics in the active state, as we shall see below. The equations of
motion for the membrane at equilibrium, which we do not list separately here, follow from
the simple “Rouse” assumption, in which the normal velocity of the membrane is
proportional to the total normal force H /6h(x, t) on the membrane, and Fick’s law, i.e. the
current of m is proportional to the chemical potential gradient VOH /ém(x, t).

The active state, in which the proteins are given a steady supply of energy, differs
qualitatively from the above equilibrium state. Several terms of nonequilibrium origin
enter the equations of motion, with a form constrained by the symmetry h — —h,
m — —m. To understand these systematically it is useful to distinguish, as we did in
section 1.1, the balanced (my = 0) and unbalanced (my # 0) cases. The balanced case is
the simplest, and is appropriate for experiments such as those of [10] on large membranes
in which there is little control on the orientation of the implanted proteins. This means in
particular that the mean normal drift speed of the membrane on macroscopic scales is
zero. Many of the nonequilibrium terms are nonlinear, involving products of m(x, t) with
itself or with derivatives of the height field. Many of our results, however, are obtained
within a strictly linearised description of fluctuations in the balanced case my = 0. Away
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from this simplifying but physically relevant limit, additional nonequilibrium terms arise
which we shall discuss in detail elsewhere [14].
In the linearised my = 0 limit, the membrane height field satisfies

h
% = A\, (—6H/6h + Fom) + fi
= N (=6V*h — TON?*m + Fom) + f, (4)
and the pump density obeys the conservation law

88—"; = AV26H /6m + V £,

= Ax"'V?m — AT¢V*h + V £, (5)

with H given by (3). Equation (4) says that the vertical speed of the membrane is given by
a mobility (),, the permeation kinetic coefficient) times the areal force density. The latter,
in parentheses on the first line of (4), has two pieces. The first is the elastic restoring force
of the membrane, and the second the force density arising from the protein activity. Each
active protein exerts a force F, normal to the membrane. A pump density m(x,?) thus
yields a force density F,m(x, t), neglecting for simplicity any dependence of the activity
of a given protein on the presence of other proteins. The head-tail asymmetry of a pump
allows its activity to depend on the local mean curvature, so that (4) should contain an
additional nonequilibrium term proportional to V?A. Such a term is unimportant to the
discussion below; its effects, in particular an instability if the term has a negative
coefficient, will be presented elsewhere [12].

Equation (5) at this level of description is precisely as it would be at equilibrium: the
pump density diffuses in response to chemical potential gradients, with a mobility A.
Equations (4) and (5) contain spatiotemporally white noise sources f;, and f,, respectively.
At thermal equilibrium, these have variance proportional to A, and A respectively. We
will retain this form in the active state as well, since the dissipative processes that gave
rise to it are still present; we ignore for now the possibility of additional sources of noise.

In (4) and (5), we take F, > 0 without loss of generality. All other parameters are
positive, except ¢, the phenomenological coupling between curvature and pump density.
For ¢ <0, the equations are linearly unstable at small wavenumber. We defer
consideration of this interesting possibility to a later publication [14], and assume
£ > 0 in the treatment below.

For ¢ > 0, (4) and (5) lead to a stable nonequilibrium steady state, with a height
variance ([h|*) ~ 1/k* for wavenumber k — 0, with a coefficient independent of . To
see this, Fourier-transform (4) and (5) in space and time, invert the resulting linear system
to yield the fourier-transformed fields Ay, and my,, for wavevector k and frequency w in
terms of the noise sources, and calculate (|,|?) and (Jm.,|*) using the statistical
properties of the noise. Then

dw
(el = [ 52 )
AP
Ax— 10kt
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The behaviour predicted by (6), namely, variance scaling as 1/k* and depending neither
on the bending modulus nor on the number density of active proteins, is precisely as seen
in experiments by Manneville et al [10]. The crossover to the equilibrium form 7'/kk* is
subtle and takes place after passage through an intermediate K~ regime (the analogue in
this “Rouse” model of the k=3 predicted in [8] in a treatment ignoring the curvature-
concentration coupling ¢ of (3)).

3. Conclusion

Working to strictly linear order in the dynamical fields, and assuming a linearly stable,
“balanced” membrane, we have arrived at the startling prediction that an active membrane
can display nonequilibrium height fluctuations whose wavenumber dependence can mimic
that of an equilibrium membrane. We believe this is the explanation of the observations
of [10], and we urge further experiments to test our predictions. Departures from the
simplifying assumptions of this paper lead to further interesting predictions, including
propagating modes and nontrivial scaling exponents. In addition, we have merely
mentioned the possible mechanisms for instability in active membranes. A complete
treatment of these intriguing effects, including the asymptotic long-time behaviour in the
linearly unstable case, will appear elswehere [14—16].

Acknowledgements

We thank P B Sunil Kumar, R Nityananda, A Pande, R Pandit, and M Rao for valuable
discussions, and A Guha for help with figures.

References

[1] H Lodish et al, Molecular Cell Biology, 3rd edition (W H Freeman, New York, 1995)
[2] M D Houslay and K K Stanley, Dynamics of Biological Membranes (Wiley, New York, 1982)
[3] P B Canham, J. Theor. Biol. 26, 61-81 (1970)
W Helfrich, Z Naturforsch. C28, 693-703 (1973)
[4] U Seifert, Adv. Phys. 46, 13-137 (1997)
[5] S Levin and R Korenstein, Biophys. J. 60, 733-737 (1991)
[6] S Tuvia et al, Proc. Natl. Acad. Sci. U.S.A. 94, 5045-5049 (1997)
[7] F Brochard and J-F Lennon, J. Phys. 36, 1035-1047 (1975)
[8] J Prost and R Bruinsma, Europhys. Lett. 33, 321-326 (1996)
[9] J Prost, J-B Manneville and R Bruinsma, Eur. Phys. J. B1, 465-481 (1998)
[10] J B Manneville, P Bassereau, D Lévy and J Prost, Phys. Rev. Lett. 82, 4356-4359 (1999)
[11] More precisely, it means that we cannot on symmetry grounds rule out such a structural
asymmetry and must therefore allow for it
[12] This instability is independent of the equilibrium instability of two-component membranes
[11]
[13] D Andelman, T Kawakatsu and K Kawakatsu, Europhys. Lett. 19, 57 (1992)
P B Sunil Kumar and M Rao, Phys. Rev. Lett. 80, 2489-2492 (1998)
[14] S Ramaswamy, J Toner and J Prost (in preparation)
[15] A Pande R Pandit and S Ramaswamy (unpublished)
[16] P B Sunil Kumar, M Rao and S Ramaswamy (unpublished)
[17] M Doi and S F Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)

242 Pramana - J. Phys., Vol. 53, No. 1, July 1999



