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Abstract. We study the statistical properties and dynamics of flexible fluid membranes containing
active transmembrane proteins and find that such active membranes can be either stable or unstable
to small disturbances, depending on the signs of certain crucial parameters characterising the
protein-membrane interaction. A major finding is that the shape-fluctuation spectrum in the stable
case for a zero-tension active membrane has the same form over a large range of length scales as at
equilibrium, but with a nonequilibrium `̀ noise temperature'' determined by the activity.
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1. Introduction and results

1.1 Motivation

The living cell [1, 2] is a system far from equilibrium, maintained as such by a variety

of active energy-dissipating processes. These often involve the directed transport of

substances across the cell wall or through internal boundaries, facilitated by specific

proteins confined to the membrane that constitutes these boundaries. When such a protein

is held in its active state (say by an imposed electrochemical gradient, as in ion channels,

or the uptake of ATP or light energy, as in molecular pumps), it transfers ions and solvent

across membrane in a specified direction. In doing so it exerts a force Fa � T=w along the

local normal to the membrane, where T and w are respectively the temperature and a

molecular length. The force always acts towards a specific end of a given protein molecule,

which we shall call its head (and the other end its tail). Figure 1 shows schematically a

membrane containing a collection of such proteins. The filled (empty) circles have their

heads (tails) up.

Despite the ubiquity of such active, nonequilibrium processes in biological membranes,

the attention of physicists has largely been restricted to the statistical mechanics of

membranes at thermal equilibrium [3, 4]. Although such an approach has been very

succesful in describing the shapes of vesicles and their statistics, there is growing

evidence that there is more [5, 6] to the flicker of red blood cells than is contained in the

equilibrium analysis of [7]. The first theoretical studies of `̀ active membranes'', i.e.,
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membranes containing energised active proteins, predict striking nonequilibrium enhance-

ments of fluctuations [8] and remarkable, fluctuation-induced long-range interactions [9].

Perhaps most dramatic are recent micropipette experiments on membranes laden with the

photoactive proton pump bacteriorhodopsin (BR). When the BR is activated, the fluctua-

tions have a form superficially identical to that at equilibrium, but with a magnitude much

larger than can be accounted for by the thermodynamic temperature of the system [10].

1.2 Summary of model and results

In this paper, we consider the statistical mechanics and dynamics of a fluid membrane

containing a distribution of identical, active proteins (hereafter often called `̀ pumps'') free

to move in the plane of the membrane (see figure 1). We shall call a protein a `̀ � pump''

(`̀ ÿ pump'') if the vector from its tail to its head points parallel to (antiparallel to) a fixed

outward normal of the membrane. We forbid flips from � to ÿ, which are prohibitively

slow in any real system. We shall call a membrane `̀ balanced'' or `̀ unbalanced'' according

to whether the numbers of � and ÿ pumps are equal or unequal. It is crucial to note that

the functional asymmetry of the protein (unidirectional pumping) implies a structural

asymmetry as well [11]: the `̀ head'' will in general be larger or smaller than the `̀ tail'',

and the protein will therefore favour one sign of the membrane mean-curvature over the

other (see figure 2). Gradients of the local mean curvature will thus give rise to motions of

the pumps in the plane of the membrane.

Our main results, obtained largely within a linearised description of the membrane

dynamics, are as follows: (i) The flat, homogeneous state of an active membrane can be

either linearly stable or linearly unstable [12], depending on the signs of certain parameters

arising only in the active state, and related to the structural and functional asymmetry of

the protein. (ii) In the linearly stable case, an active membrane is in a nonequilibrium

steady state with statistical properties which can mimic those of a membrane at thermal

equilibrium. Specifically, for a `̀ balanced'' active membrane with zero tension, we show

that the height variance over a wide range of wavenumbers q is � 1=q4, but with a

coefficient independent of the bending rigidity, inversely proportional to the transverse
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Figure 1. A membrane with pumps. Black circles: heads up; white circles: heads
down.
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mobility of the protein and proportional to the protein activity. These features testify to the

truly nonequilibrium origins of the fluctuations, which arise from variations in the local

normal force caused by the Brownian motion of the pumps. The effect, in remarkable

agreement with the observations of [10], is independent of the concentration of pumps. (iii)

More detailed results on the statistical and dynamical properties of active membranes will

appear elsewhere [14]. These include: (a) the occurrence of propagative modes with a

speed independent of the membrane elasticity; (b) the ultimate fate of the linear instabilities

(ordered patterns, coarsening, or spatiotemporal chaos) [15, 16]; and (c) nontrivial scaling

exponents when nonlinearities are taken into account in the stable noise-driven case.

2. The model

2.1 Simplified dynamical model for a balanced membrane

The model within which these results were derived is a natural extension of the classic

models of the dynamics of membranes at equilibrium [7]. To avoid complications

associated with the hydrodynamic interaction, we shall assume in this paper that the

membrane motion is damped locally by a frictional force proportional to its velocity. Our

major results will largely be unchanged if this `̀ Rouse''-like description (by analogy with

polymer dynamics [17]) is replaced by a more realistic damping arising from coupling to

a hydrodynamic velocity field as in [7]. The Rouse description is in any case appropriate

for a membrane near a wall [9], on length scales large enough for permeation to be

important but small enough that wandering-induced collisions with the wall can be

neglected. We shall consider a membrane in which all pumps are continuously active

Figure 2. Side view of a membrane with active proteins. The asymmetric shape of
the pumps means the pump can distinguish positive and negative mean curvature. This
causes a pump to prefer regions in which the curvature is adapted to its shape, as seen
in the picture. In addition (S Ramaswamy, J Toner, and J Prost, unpublished), it allows
the pump activity to depend on the local mean curvature.
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when supplied with energy; allowing the pumps to switch on and off at random modifies

our results in a manner irrelevant at small wavenumbers [14].

Let the membrane conformation with respect to a two-dimensional reference coordinate

x at time t be described within the Monge gauge by a height function h�x; t�, and let

n��x; t� and nÿ�x; t� be the local concentrations of � and ÿ pumps respectively. Define

the protein density (irrespective of whether they are � or ÿ)

n�x; t� � n��x; t� � nÿ�x; t� �1�
and the pump density (the relative number density of � and ÿ pumps)

m�x; t� � n��x; t� ÿ nÿ�x; t� �2�
with time-averages n0 and m0 respectively. Since n plays an unimportant role in what

follows, we shall ignore its dynamics hereafter, setting its value to a constant n0. Let us

first consider the case of a membrane at equilibrium, where the proteins are present but

not activated. As remarked in x 1, the proteins will in general have an asymmetric shape,

so that � and ÿ proteins will favour opposite signs of the local mean curvature (see

figure 2).

The effective Hamiltonian describing the equilibrium statistical mechanics of the

membrane with such asymmetric but inactive proteins, to bilinear order in the variables

involved, is thus

H�m; h� � 1

2

Z
d2x ���r2h�2 � �ÿ1�mÿ m0�2 � T`mr2h�; �3�

a form studied in [13] in connection with phase separation in membranes. The energy

density in (3) has three terms. The first is the usual mean-curvature energy [3], with rigidity

�. The second is the compression energy for the signed protein number density, with

osmotic modulus �ÿ1. For convenience, we have separated out a factor of the temperature

T in the third term, which couples the signed pump density to the local mean curvature.

With this convention, the coefficient ` in (3) has dimensions of a length. Its magnitude may

be interpreted tentatively as the head-tail size difference of a protein, but its sign has a

siginficance for the dynamics in the active state, as we shall see below. The equations of

motion for the membrane at equilibrium, which we do not list separately here, follow from

the simple `̀ Rouse'' assumption, in which the normal velocity of the membrane is

proportional to the total normal force �H=�h�x; t� on the membrane, and Fick's law, i.e. the

current of m is proportional to the chemical potential gradient r�H=�m�x; t�.
The active state, in which the proteins are given a steady supply of energy, differs

qualitatively from the above equilibrium state. Several terms of nonequilibrium origin

enter the equations of motion, with a form constrained by the symmetry h! ÿh,

m! ÿm. To understand these systematically it is useful to distinguish, as we did in

section 1.1, the balanced (m0 � 0) and unbalanced (m0 6� 0) cases. The balanced case is

the simplest, and is appropriate for experiments such as those of [10] on large membranes

in which there is little control on the orientation of the implanted proteins. This means in

particular that the mean normal drift speed of the membrane on macroscopic scales is

zero. Many of the nonequilibrium terms are nonlinear, involving products of m�x; t� with

itself or with derivatives of the height field. Many of our results, however, are obtained

within a strictly linearised description of fluctuations in the balanced case m0 � 0. Away
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from this simplifying but physically relevant limit, additional nonequilibrium terms arise

which we shall discuss in detail elsewhere [14].

In the linearised m0 � 0 limit, the membrane height field satisfies

@h

@t
� �p�ÿ�H=�h� Fam� � fh

� �p�ÿ�r4hÿ T`r2m� Fam� � fh �4�
and the pump density obeys the conservation law

@m

@t
� �r2�H=�m�r:fm

� ��ÿ1r2mÿ �T`r4h�r:fm �5�
with H given by (3). Equation (4) says that the vertical speed of the membrane is given by

a mobility (�p, the permeation kinetic coefficient) times the areal force density. The latter,

in parentheses on the first line of (4), has two pieces. The first is the elastic restoring force

of the membrane, and the second the force density arising from the protein activity. Each

active protein exerts a force Fa normal to the membrane. A pump density m�x; t� thus

yields a force density Fam�x; t�, neglecting for simplicity any dependence of the activity

of a given protein on the presence of other proteins. The head-tail asymmetry of a pump

allows its activity to depend on the local mean curvature, so that (4) should contain an

additional nonequilibrium term proportional to r2h. Such a term is unimportant to the

discussion below; its effects, in particular an instability if the term has a negative

coefficient, will be presented elsewhere [12].

Equation (5) at this level of description is precisely as it would be at equilibrium: the

pump density diffuses in response to chemical potential gradients, with a mobility �.

Equations (4) and (5) contain spatiotemporally white noise sources fh and fm respectively.

At thermal equilibrium, these have variance proportional to �p and � respectively. We

will retain this form in the active state as well, since the dissipative processes that gave

rise to it are still present; we ignore for now the possibility of additional sources of noise.

In (4) and (5), we take Fa > 0 without loss of generality. All other parameters are

positive, except `, the phenomenological coupling between curvature and pump density.

For ` < 0, the equations are linearly unstable at small wavenumber. We defer

consideration of this interesting possibility to a later publication [14], and assume

` > 0 in the treatment below.

For ` > 0, (4) and (5) lead to a stable nonequilibrium steady state, with a height

variance hjhkj2i � 1=k4 for wavenumber k! 0, with a coefficient independent of �. To

see this, Fourier-transform (4) and (5) in space and time, invert the resulting linear system

to yield the fourier-transformed fields hk! and mk! for wavevector k and frequency ! in

terms of the noise sources, and calculate hjhk!j2i and hjmk!j2i using the statistical

properties of the noise. Then

hjhkj2i �
Z

d!

2�
hjhk!j2i

� �pFa

��ÿ1`k4
: �6�
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The behaviour predicted by (6), namely, variance scaling as 1=k4 and depending neither

on the bending modulus nor on the number density of active proteins, is precisely as seen

in experiments by Manneville et al [10]. The crossover to the equilibrium form T=�k4 is

subtle and takes place after passage through an intermediate kÿ6 regime (the analogue in

this `̀ Rouse'' model of the kÿ5 predicted in [8] in a treatment ignoring the curvature-

concentration coupling ` of (3)).

3. Conclusion

Working to strictly linear order in the dynamical fields, and assuming a linearly stable,

`̀ balanced'' membrane, we have arrived at the startling prediction that an active membrane

can display nonequilibrium height fluctuations whose wavenumber dependence can mimic

that of an equilibrium membrane. We believe this is the explanation of the observations

of [10], and we urge further experiments to test our predictions. Departures from the

simplifying assumptions of this paper lead to further interesting predictions, including

propagating modes and nontrivial scaling exponents. In addition, we have merely

mentioned the possible mechanisms for instability in active membranes. A complete

treatment of these intriguing effects, including the asymptotic long-time behaviour in the

linearly unstable case, will appear elswehere [14±16].
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