REVIEW

Hepatitis E: An overview and recent advances in clinical and laboratory research

RAKESH AGGARWAL* † AND KRZYSZTOF KRAWCZYNSKI*

*Hepatitis Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA, and †Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Abstract Hepatitis E virus (HEV) is a non-enveloped RNA (7.5 kb) virus that is responsible for large epidemics of acute hepatitis and a proportion of sporadic hepatitis cases in southeast and central Asia, the Middle East, parts of Africa and Mexico. Hepatitis E virus infection spreads by the faecal–oral route (usually through contaminated water) and presents after an incubation period of 8–10 weeks with a clinical illness resembling other forms of acute viral hepatitis. Clinical attack rates are the highest among young adults. Asymptomatic and anicteric infections are known to occur. Chronic HEV infection is not observed. Although the mortality rate is usually low (0.07–0.6%), the illness may be particularly severe among pregnant women, with mortality rates reaching as high as 25%. Recent isolation of a swine virus resembling human HEV has opened the possibility of zoonotic HEV infection. Studies of pathogenetic events in humans and experimental animals reveal that viral excretion begins approximately 1 week prior to the onset of illness and persists for nearly 2 weeks; viraemia can be detected during the late phase of the incubation period. Immunoglobulin M antibody to HEV (anti-HEV) appears early during clinical illness but disappears rapidly over a few months. Immunoglobulin G anti-HEV appears a few days later and persists for at least a few years. There is no specific treatment available for hepatitis E virus infection. Ensuring a clean drinking water supply remains the best preventive strategy. Recombinant vaccines are being developed that may be particularly useful for travellers to disease-endemic areas and for pregnant women.

Hepatitis E, previously known as enterically transmitted non-A, non-B hepatitis, is an infectious viral disease with clinical and morphological features of acute hepatitis. The disease was first recognized as a distinct, clinical entity in the 1980s when sera from persons affected during a large waterborne epidemic of viral hepatitis during 1955–56 in Delhi, India¹ and another epidemic in Kashmir were found to lack serological markers of acute hepatitis A and B.² The occurrence of the first recorded epidemic of hepatitis E as late as 1955 and the infrequency of this disease in developed countries suggest that hepatitis E is a new, emerging infectious disease. However, several epidemics of enterically transmitted hepatitis with epidemiological features similar to those of hepatitis E outbreaks occurred in Europe and the United States in the 18th and 19th centuries.³⁴ It can be postulated, therefore, that hepatitis E virus (HEV) infection may have once been prevalent in various parts of the world and has only recently become restricted to certain geographical areas, mostly underdeveloped regions with poor environmental sanitation.

The first proof of the existence of a new viral hepatitis agent was obtained in 1983, when virus-like particles were detected by immune electron microscopy in faeces collected from a volunteer who was infected with faecal material from patients with suspected enterically transmitted non-A, non-B hepatitis.⁵ The disease was successfully transmitted to cynomolgus monkeys who excreted similar virus-like particles in their faeces.⁶ The
genome of this virus, now known as HEV, was cloned in 1990 and fully sequenced shortly thereafter.

VIROLOGY

Hepatitis E virus virions are small, non-enveloped, 32–34 nm diameter particles with icosahedral symmetry. The viral genome, approximately 7.5 kb in length, is a single-stranded, positive-sense, polyadenylated RNA molecule that contains short 5' and 3' non-coding regions of 27 and 68 nucleotides, respectively. It contains three overlapping open reading frames (ORF) (Fig. 1). Open reading frame 1 is 5079 nt long and is predicted to code for a 1693 amino acid (aa) polyprotein consisting of non-structural proteins that are involved in viral genome replication and viral protein processing, as its sequence contains motifs characteristic of viral methyltransferases, papain-like cysteine proteases, helicases and RNA-dependent RNA polymerases. In addition, ORF1 has two regions called Y and X domains, whose functions remain unknown. The ORF2 begins 38 nt 3' of the termination of ORF1 and consists of 1980 nt. It contains a typical signal sequence at its 5' end, contains three probable glycosylation sites and encodes for the viral capsid protein. This protein is apparently synthesized in the endoplasmic reticulum as a 71-kDa, 660-aa long precursor, processed to a mature, glycosylated form (gpORF2), and then transported to the cell surface, directly or through the cis-Golgi compartment. The mature form of ORF2 protein appears to be a N-terminus truncation of the 660-aa ORF2 protein by 111 aa to a 58-kDa protein; the latter is processed further by a C-terminus truncation to produce a final 50-kDa protein, which has been shown to assemble into empty virus-like particles in vitro. Open reading frame 3 is 369 nt long, overlaps ORF1 and ORF2 by 1 and 328 nt, respectively, and encodes for a 123-aa protein (pORF3) which is expressed intracellularly. Recent studies of the biology of HEV replication have shown that pORF3 may be capable of associating with the liver cell cytoskeleton. The ORF3 protein also has a cysteine-rich region near its amino terminus and has been shown to bind HEV RNA and enters into a complex with pORF2, the major capsid protein. The pORF3 appears to serve as a cytoskeletal anchor site, where pORF2 and RNA can bind and form complexes. Several aspects of HEV genomic transcription, viral protein synthesis, final assembly and release of progeny virions remain unknown. Establishment of a reliable in vitro tissue culture system for propagation of HEV will be critical for better understanding HEV replication. In vitro-infected hepatocytes have recently been shown to support HEV replication after isolation and placement into tissue culture.

On the basis of its structural and physiochemical properties, HEV has provisionally been classified in the family Caliciviridae, genus Calicivirus. However, its genomic organization more closely resembles that of rubella virus and plant furoviruses than that of caliciviruses. The HEV-RNA sequence data show that the virus has two main geographically distinct strains, Burmese (or Asian) and Mexican. Overall nucleotide homology among various isolates from Asia (e.g. India, Burma, Pakistan) ranges from 92 to 99% and that between Mexican and Burmese strains is much lower, being 75%. The corresponding figures of variability in amino acid sequences are from 95 to 99%, and 86%, respectively. Hepatitis E virus isolates from Africa (Chad, Algeria) appear to be related more closely to the Burmese strain than to the Mexican strain. Despite the genomic variability, the two geographically distinct isolates share at least one major cross-reactive epitope, as evidenced by data from various serological tests identifying anti-HEV antibodies.

A new isolate of HEV was recently identified in the United States in a patient who had no history of travel to the disease-endemic areas. Molecular analysis

Figure 1 Genomic organisation of hepatitis E virus. ORF, open reading frame. () Methyl transferase, () domain Y, () papain-like cysteine protease, () proline ‘hinge’, () domain X, () helicase, () RNA replicase, () potential glycosylation site.
of this isolate, designated HEV US-1, has shown only 78.2–79.6% nucleic acid identity and 90.2–91.8% amino acid homology in an ORF2 region of the Mexican and the Burmese HEV strains, respectively. The serum of the infected patient was positive for immunoglobulin (Ig)G anti-HEV antibody, indicating immunological cross-reactivity with the structural protein of the other HEV strains. The HEV US-1 is genetically similar to swine HEV recently identified in pigs in the midwestern United States. These two viruses have 97% homology in ORF2 at the amino acid level, and 92.1 and 93.5% homology in ORF3 at nucleic acid and amino acid levels, respectively. Swine HEV, which appears to be ubiquitous in pigs, naturally infects most pigs before 3 months of age, inducing transient viraemia and histological hepatitis without clinical illness. A comparison of swine HEV with Burmese and Mexican isolates of human HEV has shown approximately 90.2–91.7% and 78.9–82.9% identity at the amino acid level in ORF2 and ORF3 regions, respectively. In comparison, the US isolate of HEV had 97.7 and 93.5% identity with swine HEV at the aa level in these regions, respectively, indicating that the US isolate is phylogenetically closer to swine HEV. In recent experimental studies, the US strain of human HEV has been shown to be infectious to specific, pathogen-free pigs and swine HEV has been transmitted to primates, suggesting that swine HEV may be capable of infecting humans. However, in another study, Asian and Mexican isolates of HEV failed to induce disease in pigs. Thus, further studies are required to elucidate the relationship of swine HEV to human HEV.

EPIDEMIOLOGY

Main epidemiological features

Hepatitis E virus infection is endemic in Southeast and Central Asia. Several outbreaks of hepatitis E have been observed in the Middle East, northern and western parts of Africa and North America (Mexico) (Fig. 2). In other parts of the world, HEV infection is infrequent and is restricted predominantly to persons who have travelled to disease-endemic areas. Hepatitis E outbreaks are large, affect several hundred to several thousand persons, and vary from short-lived, single-peaked outbreaks to prolonged, multimodal epidemics lasting for more than a year (Table 1). During these outbreaks, overall attack rates range from 1 to 15%, being higher among adults (3 to 30%) than among children (0.2 to 10%). The lower attack rates among children may reflect a higher frequency of anicteric and/or subclinical HEV infections in this age group. Males are usually more frequently affected. The outbreaks are characterized by a particularly high attack rate and mortality (as high as 25%) among pregnant women. In areas where hepatitis E outbreaks occur, HEV infection accounts for a substantial proportion of acute sporadic hepatitis in both children and adults. In India, HEV infection accounts for 50 to 70% of all patients with sporadic hepatitis. Demographic and clinical features of patients with sporadic hepatitis E (age distribution of cases, severity and duration of illness, worse prognosis among pregnant women and absence of chronic sequelae) resemble those of patients with epidemic hepatitis E.
Table 1 Epidemiological features of hepatitis E

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large outbreaks involving several thousand persons in</td>
</tr>
<tr>
<td>developing countries</td>
</tr>
<tr>
<td>Sporadic hepatitis cases frequent in disease-endemic areas</td>
</tr>
<tr>
<td>Sporadic hepatitis cases uncommon in non-endemic areas</td>
</tr>
<tr>
<td>(occur mainly among travellers to disease-endemic areas)</td>
</tr>
<tr>
<td>Faecal–oral transmission (usually through contaminated</td>
</tr>
<tr>
<td>water)</td>
</tr>
<tr>
<td>Highest attack rate among young adults aged 15–40 years,</td>
</tr>
<tr>
<td>with relative sparing of children</td>
</tr>
<tr>
<td>Insignificant person-to-person transmission</td>
</tr>
<tr>
<td>No evidence of parenteral or sexual transmission</td>
</tr>
<tr>
<td>Mother-to-newborn (transplacental) transmission probable</td>
</tr>
<tr>
<td>High attack rate among pregnant women, particularly those</td>
</tr>
<tr>
<td>in second and third trimesters</td>
</tr>
</tbody>
</table>

Sporadic hepatitis E has been observed in several countries where outbreaks have not been reported, including Egypt, Hong Kong, Senegal, and Turkey.35–39 In non-endemic regions, the disease accounts for fewer than 1% of reported cases of acute viral hepatitis; these hepatitis E cases are almost always associated with travel to HEV-endemic regions.40,41 Although some cases have been reported among persons with no history of such travel.42–44 In the United States, all cases of HEV infection had been related to travel to disease-endemic countries until recently, when HEV infection was reported in a patient without such a travel history.23 Molecular studies have shown that the patient was infected with the novel HEV isolate (HEV US-1) described above.

Transmission, routes of spread and reservoirs

The faecal–oral route is the predominant mode of transmission of epidemic HEV infection. Most reported epidemics have been shown to be related to consumption of faecally contaminated drinking water.1,3,28,31 The outbreaks frequently follow heavy rains and floods, when water sources become contaminated.1,49,50 Some epidemics have occurred in hot summer months, when the reduction of water flow in rivers and streams may contribute to an increased risk of infection.25,48 In the Indian subcontinent, China, Indonesia and Central Asian republics of the former Soviet Union, a pattern of recurrent epidemics has been observed; this is probably related to continuous existence of conditions that allow faecal contamination of water.

During hepatitis E outbreaks, person-to-person transmission of HEV appears to be distinctly uncommon.1,14,9,50 Secondary attack rates among household members of hepatitis E cases are only 0.7–2.2%; in contrast, 50–75% of susceptible household contacts of hepatitis A cases are known to become infected.51,52 Even when multiple cases occur among members of a family, such occurrence is related to exposure to a common source of contaminated water rather than to person-to-person spread.49 The mode of transmission responsible for sporadic HEV infections is unclear. Water contamination appears to be responsible for most cases in this setting; it is, however, plausible that food and fomites, and even person-to-person spread, may play a role. Nosocomial spread of HEV was presumed to be responsible for acute hepatitis in three health-care workers in South Africa who had treated a patient with fulminant hepatic failure due to HEV infection.53 The reasons for differences in transmission patterns of hepatitis A virus and HEV are presently unclear but may relate to differences in viral titres in stools of infected persons, number of viral particles required to cause disease, or viability of these two viruses in the environment.

Vertical transmission of HEV infection from mother to infant is known to occur. In one study, six of eight babies born to mothers who had either acute uncomplicated hepatitis or fulminant hepatic failure from HEV infection in the third trimester of pregnancy were found to have evidence of HEV infection.54 Of these six babies, five had HEV-RNA in their cord blood; another one baby had serological evidence of HEV infection acquired before birth. There is no evidence for sexual transmission of HEV, although in a report from Italy, 20% of homosexual men had anti-HEV antibodies as compared with only 3% of intravenous drug users,55 thus suggesting faecal–oral transmission of HEV. There is no evidence for transmission of HEV by transfusion of blood or blood products; anti-HEV antibody prevalence rates among patients with haemophilia and thalassaemia and intravenous drug users are similar to those for the general population.56,57

Presumably, an environmental reservoir of HEV exists in disease-endemic areas that is responsible for recurrent epidemics.1,3,28,31 Laboratory investigations have shown, however, that HEV is a labile virus when exposed to high concentrations of salt, freeze–thawing and pelleting.58 Another potential reservoir for persistence of HEV during interepidemic periods in disease-endemic areas may be in the form of serial transmission among susceptible individuals who have sporadic or subclinical hepatitis E. Recent data suggest that hepatitis E may be a zoonotic disease. Hepatitis E virus-RNA has been detected in the faeces of domestic swine in Nepal59 and anti-HEV antibodies have been detected in the sera of pigs, cattle, sheep and rodents in disease-endemic areas.59,60 Piglets and lambs have been shown to develop transaminasaemia, histological changes in the liver and viral excretion in faeces after experimental HEV infection.61,62 In addition, as referred to above, a US isolate of HEV and swine HEV have been shown to be phylogenetically related22 and to possess cross-species infectivity,63 lending further support to the zoonosis hypothesis.

DIAGNOSIS AND SEROPREVALENCE DATA

Current laboratory tests for diagnosis of human HEV infection include molecular and immune electron
Hepatitis E: An overview

microscopic methodologies for detection of the virus in stool or serum and serological assays for identification of anti-HEV antibody of IgM and/or IgG class.

Genomic sequences of HEV can be detected in serum and stool specimens by reverse transcription-polymerase chain reaction (RT-PCR). A recent modification of RT-PCR for HEV-RNA from serum and stool has provided a 1–2-log improvement in sensitivity of this technique and made it more reproducible. Detection of HEV particles in stool specimens by immune electron microscopy is a cumbersome and insensitive technique presently almost never used in diagnostic laboratories. The HEV antigen was detected in liver tissue only in experimental pathogenetic studies in primates.

Serological diagnosis of HEV infection most commonly uses enzyme immunoassays (ELA). Target antigens in those assays are either recombinant HEV proteins or synthetic HEV peptides that correspond to immunodominant epitopes of structural HEV proteins (ORF2 and ORF3) of the two main HEV strains derived from Burma and Mexico. More recently, a synthetic gene encoding several linear immunodominant antigenic epitopes from ORF2 and ORF3 regions has been synthesized and expressed as a mosaic protein that has been used in a solid-phase ELA.

During acute HEV infection, IgM anti-HEV precedes the IgG by a few days, appears during early phase of clinical illness and disappears rapidly over 4–5 months. In one study of sera collected from patients during various hepatitis E outbreaks 1–40 days, 3–4 and 6–12 months after the onset of jaundice, 100, 50 and 40%, respectively, tested positive for IgM anti-HEV. In outbreak settings, IgM anti-HEV has been detected in more than 90% of patient serum samples obtained within 1 week to 2 months after the onset of illness. The IgG response appears shortly after the IgM response, and its titre increases throughout the acute phase into the convalescent phase, remaining high from 1 to 4.5 years after the acute phase of illness. The exact duration of persistence of anti-HEV is not known. In one study, anti-HEV was detected in 47% of persons 14 years after acute HEV infection. Determination of IgM anti-HEV is useful for the diagnosis of acute infection, whereas the presence of IgG anti-HEV indicates HEV infection, not necessarily recent.

The prevalence of anti-HEV in healthy subjects has been studied in various populations worldwide to measure the extent of exposure to HEV. It has been found that anti-HEV antibodies are present in persons living in all geographical areas. In disease-endemic areas of Asia and Africa, the prevalence rates among healthy populations are much higher than those in non-endemic areas. In most disease-endemic areas, anti-HEV has been detected in as many as 5% of children less than 10 years of age, and this ratio increases to 10–40% among adults older than 25 years of age. These findings suggest that HEV infection, unlike that of other enterically transmitted agents, is infrequent among young children in developing countries. However, in a recent report from India, anti-HEV antibodies were detected in more than 60% of children below the age of 5 years. These differences between different disease-endemic areas may be related to varying epidemiological conditions in different geographical areas, differences in diagnostic techniques used, or both.

In developed countries of Europe and North America, 1–5% of the population have anti-HEV; in this range appears to be relatively high compared with the low rate of clinically evident hepatitis E disease in these areas. However, in a recent study that used two different serological tests to estimate the prevalence of anti-HEV, concordance between the two tests was only 27%. Thus, it remains unclear whether the anti-HEV seroreactivity in non-endemic areas reflects subclinical and/or anicteric HEV infection, serological cross-reactivity with other agents, false-positivity of serological tests, or a combination of all these factors. It is also conceivable that relatively high prevalence of anti-HEV among healthy individuals in the United States may be related to subclinical infection with swine HEV.

Enzyme immunoassays currently used in various laboratories were directly compared using a panel of coded serum samples. The assays compared in this study used recombinant HEV proteins or synthetic peptides, which differ in length, part of the genome with which they correlate, and the geographical strain of HEV to which they correspond. The study suggested that currently available assays for detection of anti-HEV are proficient when applied to patients with acute disease, particularly in disease-endemic areas, whereas the interpretation of seroprevalence studies that use anti-HEV assays remains questionable.

CLINICAL FEATURES

The incubation period of hepatitis E ranges from 2 to 10 weeks. Clinical manifestations of HEV infection are similar to those of infection with other hepatitis viruses and encompass a wide spectrum of symptoms (Table 2).

Acute icteric hepatitis, the commonest recognizable form of illness, is usually insidious in onset and has an initial prodromal phase lasting a few days, with a variable combination of flu-like symptoms, fever, mild chills, abdominal pain, anorexia, nausea, aversion to smoking, vomiting, clay-coloured stools, dark or tea-coloured urine, diarrhoea, arthralgia, asthenia and a transient macular skin rash (Table 3). These symptoms are followed in a few days by darkening of the urine, lightening of the stool colour and the appearance of jaundice. Iching may also occur. With the onset of jaundice, fever and other prodromal symptoms tend to diminish rapidly and soon disappear entirely.

Physical examination reveals jaundice and a mildly enlarged, soft and slightly tender liver and, in some patients, a soft, palpable spleen. Laboratory test abnormalities include bilirubinuria, variable degree of rise in serum bilirubin (predominantly conjugated),
marked elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase and gamma-glutamyltransferase activities, and a mild rise in serum alkaline phosphatase activity. A rise in aminotransferase levels may precede the onset of symptoms by as long as 10 days and reaches a peak by the end of the first week. The magnitude of transaminase rise does not correlate well with the severity of liver injury. As the illness subsides, serum aminotransferase and bilirubin abnormalities start receding, reaching normal values by 6 weeks in most patients.\(^8\)

The illness is usually self-limiting and typically lasts 1–4 weeks.\(^8\) No evidence of chronic hepatitis or cirrhosis has been detected following acute hepatitis E.\(^9\)–\(^13\) A few patients, however, have a prolonged clinical illness with marked cholestasis (cholestatic hepatitis), including persistent jaundice and prominent itching. In these cases, laboratory tests show a rise in alkaline phosphatase and a persistent bilirubin rise even after transaminase levels have returned to normal. The prognosis is good as jaundice finally resolves spontaneously after 2–6 months.

Other infected individuals have a milder clinical course and develop only non-specific symptoms that resemble those of an acute viral febrile illness without jaundice (anicteric hepatitis). In these patients, liver involvement is recognized only if laboratory studies are performed. In its most benign form, HEV infection is entirely unapparent and asymptomatic and passes unnoticed. The exact frequencies of asymptomatic infection and of anicteric hepatitis are not known but probably far exceed that of icteric disease as, in disease-endemic areas, a large proportion of individuals who test positive for anti-HEV antibodies do not recall having had jaundice.

A small proportion of patients have a more severe disease with fulminant or subacute (or late-onset) hepatic failure. In disease-endemic regions, this infection constitutes an important cause of fulminant hepatic failure. In India, for instance, HEV infection (alone or in combination with other hepatitis viruses) was responsible for 62% of adult patients and 40% of children with sporadic fulminant hepatitis.\(^94\),\(^95\) In Pakistan, two-thirds of a group of pregnant women with fulminant liver failure had HEV infection.\(^96\)

The case-fatality rate in many reports has ranged from 0.5 to 4%,\(^97\)–\(^98\) these reports, however, are based on hospital data and, thus, may over-estimate mortality. Studies based on population surveys during outbreaks report lower mortality rates varying from 0.07 to 0.6%.\(^28\),\(^87\),\(^97\) In an epidemic among army personnel in Ethiopia, no patient among 423 individuals with icteric hepatitis developed fulminant hepatic failure or died.

Pregnant women, particularly those in the second and third trimesters, are more frequently affected during hepatitis E outbreaks and have a worse outcome. Mortality rates among pregnant women, especially those infected in the third trimester, range between 15 and 25%.\(^30\),\(^31\),\(^50\),\(^98\) In an epidemic in Kashmir, India, attack rates among those in the first, second and third trimesters were 8.8, 19.4 and 18.6%, respectively, as compared with 2.1% among non-pregnant women and 2.8% among men.\(^98\) Further, fulminant hepatic failure developed in 22.2% of the affected pregnant women, in comparison with 2.8 and 0% of affected men and non-pregnant women, respectively. Frequency of abortions, still births and neonatal deaths is also increased among pregnant women with HEV infection.\(^30\)

Histological features of hepatitis E may differ from those of other forms of acute viral hepatitis. Nearly half of hepatitis E patients have a cholestatic-type of hepatitis, which is characterized by canalicular bile stasis and gland-like transformation of parenchymal cells. In these patients, degenerative changes in hepatocytes are less

Table 2 Clinical features of hepatitis E

<table>
<thead>
<tr>
<th>Incubation period 2–10 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable clinical manifestations including:</td>
</tr>
<tr>
<td>Icteric hepatitis</td>
</tr>
<tr>
<td>Severe hepatitis leading to fulminant hepatic failure</td>
</tr>
<tr>
<td>Anicteric hepatitis</td>
</tr>
<tr>
<td>Inapparent, asymptomatic infection</td>
</tr>
<tr>
<td>Clinical illness similar to other viral hepatitis (except among pregnant women)</td>
</tr>
<tr>
<td>Milder illness in children</td>
</tr>
<tr>
<td>Low mortality rate (0.07–0.6%)</td>
</tr>
<tr>
<td>High mortality (15–25%) among pregnant women</td>
</tr>
<tr>
<td>No relationship with chronic hepatitis, cirrhosis or hepatocellular carcinoma</td>
</tr>
</tbody>
</table>

Table 3 Clinical findings (% occurrence) in hepatitis E outbreaks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaundice</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Malaise</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Anorexia</td>
<td>79</td>
<td>66</td>
<td>63</td>
<td>63</td>
<td>95</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>79</td>
<td>79</td>
<td>83</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>46</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Nausea, vomiting</td>
<td>66</td>
<td>79</td>
<td>79</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Fever</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Pruritus</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
</tbody>
</table>
In other patients, changes resemble those of other forms of acute hepatitis, such as the presence of ballooned hepatocytes and acidophilic bodies, and focal or confluent hepatocyte necrosis. No particular zonal distribution of hepatocyte damage is observed. In both forms, lobules contain an inflammatory infiltrate consisting predominantly of macrophages and lymphocytes and, in patients with a cholestatic type of hepatitis, of a few polymorphonuclear leucocytes. The Kupffer cells appear prominent. Portal tracts are enlarged and contain an inflammatory infiltrate consisting of lymphocytes and a few polymorphonuclear leucocytes and eosinophils; polymorphonuclear cells are particularly increased in the cholestatic type of lesion. In cases with severe liver injury, a large proportion of hepatocytes are affected, leading to submassive or massive necrosis with collapse of liver parenchyma.

PATHOGENESIS

Several elements of pathogenesis can be outlined on the basis of data from human patients and those from experimentally infected animals (Fig. 3). The incubation period in human volunteers after oral exposure is 4–5 weeks, but the route and mechanism by which the virus reaches the liver from the intestinal tract remain unknown. Hepatitis E virus can be detected in stools beginning approximately 1 week before the onset of illness and persists for as long as 2 weeks thereafter. Hepatitis E virus-RNA can be detected in faeces of most patients with acute hepatitis E by RT-PCR for approximately 2 weeks, in some cases, RT-PCR has yielded positive results for as long as 52 days after onset. The HEV-RNA has regularly been found in serum by RT-PCR in virtually all patients in the first 2 weeks after the onset of illness; prolonged periods of HEV-RNA positivity in serum ranging from 4 to 16 weeks have also been reported.

Experimental infection with HEV leading to varying levels of virus excretion, liver enzyme elevations and histopathological changes in liver has been demonstrated in several non-human primates, including cynomolgus macaques, chimpanzees, rhesus, and owl monkeys, and tamarins. Hepatitis E virus infection in cynomolgus macaques is a reproducible and widely used experimental model that has provided valuable data regarding pathogenetic events in this infection. Infection can be transmitted to cynomolgus macaques by either the intravenous or oral route; the former, however, is much more reproducible. In this model, the average incubation period for acute hepatitis E is approximately 21 days. Hepatitis E virus-

![Figure 3](https://example.com/figure3.png)

Figure 3 A graphical representation showing time course of events during hepatitis E virus (HEV) infection based on studies in human subjects and in experimentally infected primates. (--) alanine aminotransferase, (→) immunoglobulin (Ig) G antibody to HEV (anti-HEV), (→) IgM anti-HEV, (square) HEV-RNA in stool, (square) HEV antigen in the liver, (square) HEV-RNA in serum.
RNA, as detected by RT-PCR, appears in serum, bile and faeces a few days before the onset of the transaminase rise. After intravenous inoculation of HEV in cynomolgus macaques, expression of HEV antigen in hepatocytes, indicative of viral replication, first appears at approximately day 7 post-infection. It reaches a peak, at which it can be detected in 70–90% of hepatocytes and begins to decline after the ALT peak is reached (K Krawczynski et al. unpubl. data, 1989). Hepatitis E virus antigen has been detected simultaneously in hepatocyte cytoplasm, bile and faeces during the second or third week after inoculation, and before and concurrently with the onset of ALT elevation and histopathological changes in the liver.106,108,109 These findings suggest that HEV may be released from hepatocytes into bile before the peak of morphological changes in the liver, during the highly replicative initial phase of infection. The onset of ALT elevation and the presence of histopathological changes in the liver generally correspond to the detection of anti-HEV in serum and with decreasing levels of HEV antigen in hepatocytes. These findings suggest that liver injury may be largely immune-mediated, especially as infiltrating lymphocytes in the liver have been found to have a cytotoxic/suppressor immunophenotype.110 The reason for particularly severe liver damage in pregnant women with hepatitis E is not known.

PREVENTION

Preventing hepatitis E in disease-endemic areas depends primarily on providing a clean drinking water supply and strict attention to sewage disposal. During an epidemic, steps to improve water quality can lead to rapid abatement of the occurrence of new cases.47 Boiling water before consumption appears to reduce the risk of acute hepatitis E.111 Isolation of affected persons is not indicated as person-to-person transmission is uncommon.49

The protective role of anti-HEV antibodies in humans requires further study. The occurrence of large hepatitis E epidemics among adults in disease-endemic areas suggests either that anti-HEV antibody may not be fully protective or that antibody levels decline with time and gradually reach an unprotective level. However, no reduction in disease rates could be shown in pre- or post-exposure prophylaxis studies among recipients of immunoglobulin preparations manufactured in hepatitis E-endemic areas.112,113 In a recent study, administration of immune serum globulin to pregnant women during an outbreak was shown to reduce the number of total fresh HEV infections, although the number of clinical cases was unchanged.114 However, in another study, intramuscular administration of serum obtained from a human volunteer 4 years after acute HEV infection did not confer any protection against HEV challenge to monkeys.115 Thus, further work may be necessary before a definitive opinion about the role of immune serum globulin can be made.

In experimental studies in primates, passive transfer of anti-HEV has been shown to alleviate the course of HEV infection.116 Susceptible primates (cynomolgus macaques) were also used in preliminary trials of HEV recombinant vaccines.117,118 The earlier studies showed protection against hepatitis and viraemia following HEV challenge after immunization with recombinant proteins corresponding to HEV capsid protein, but faecal excretion of the virus was not prevented.119 More recently, immunization of mice with naked complementary DNA corresponding to HEV capsid protein was shown to induce the development of anti-HEV.120 This latter approach, if successful, may be advantageous as DNA immunization usually induces cellular immune response in addition to antibody response and, thus, might provide a longer duration of protection. In addition, swine HEV, which has immunological cross-reactivity with antibodies against the capsid protein of human HEV, may be considered for experimental vaccination to induce anti-HEV antibodies protective against subsequent HEV challenge. More studies in susceptible primates are needed to evaluate the experimental HEV vaccines, as even short-term protection conferred by a vaccine may be useful for travellers to disease-endemic areas and for persons at high risk of developing a serious illness if infected, such as pregnant women living in HEV-endemic areas.

ACKNOWLEDGEMENTS

During this work, Rakesh Aggarwal was supported in part by a fellowship from the Department of Biotechnology, Government of India.

REFERENCES

Hepatitis E: An overview

12 McAtee CP, Zhang Y, Yarbough PO, Bird T, Fuerst TR.

13 Li TC, Yamakawa Y, Suzuki K
14 Cubitt D, Bradley DW, Carter MJ et al.
35 Tassopoulos NC, Krawczynski K, Hatzakis A et al. Case report: Role of hepatitis E virus in the etiology of com-
79 Paul DA, Knigge MF, Ritter A et al. Determination of hepatitis E virus seroprevalence by using recombinant

112 Khuroo MS, Dar MY. Hepatitis E: Evidence for person-to-person transmission and inability of low dose immune serum globulin from an Indian source to prevent it. *Indian J. Gastroenterol.* 1992; 11: 113–16.

