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RESOLUTION OF SINGULARITIES AND
MODULAR GALOIS THEORY

SHREERAM S. ABHYANKAR

Abstract. I shall sketch a brief history of the desingularization problem from
Riemann thru Zariski to Hironaka, including the part I played in it and the
work on Galois theory which this led me to, and how that caused me to search
out many group theory gurus. I shall also formulate several conjectures and
suggest numerous thesis problems.

Section 0: Preamble

I want to tell you the story of the problem of resolution of singularities in alge-
braic geometry and its intimate relationship with Galois theory and group theory.
With a view towards making the subject more approachable to prospective stu-
dents, my story will be intermingled with personalized history.

I shall start off in Section 1 by giving examples of singularities of curves and
surfaces. Then in Section 2 we shall see what it means to resolve these singularities.
A bit of history will trace my mathematical lineage and its links to the resolution
problem in particular and algebraic geometry in general. In Section 3 we shall make
the passage from characteristic zero to positive characteristic. In Section 4 I shall
illustrate the traditional Indian method of learning by recounting my experiences
with my father. Then I shall show how my journey from India to the United States
for doing graduate work paralleled the march of algebraic discoveries from India
through Arabia to Europe in ancient times. This resulted in my meeting my Guru
Zariski at Harvard. Section 4 is concluded by describing how I found my Ph.D.
problem in Zariski’s address at the International Congress of 1950.

Section 5 gives more details of my early training under Zariski. This was marked
by the reading of the fundamental work of Krull on generalized valuations and their
use by Zariski to explain birational transformations. Then in Section 6 we come to
the high regard held by Zariski for the works of Jung and Chevalley. Jung’s work
on complex surface singularities dates back to 1908. Chevalley’s fundamental paper
on local rings appeared in 1943. Zariski asked me to put these two together. In this
an important role is played by Zariski’s theory of normalization which, following
Dedekind, gets rid of singularities in codimension 1. Also topological ideas come to
the fore. They tell us the Galois structure of singularities. This amalgamates the
ideas of Galois and Riemann.
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In Section 7, we come to Zariski’s returning from an Italian trip, and my making
counter-examples. These counter-examples show a fundamental difference between
the Galois theories of singularities in characteristic zero and prime characteristic p.
As a result, for resolving singularities, it becomes necessary to augment the abstract
college algebra arsenal of local rings and valuations by the explicit manipulations of
high-school algebra. It took another ten years to inject more and more high-school
algebra for converting the characteristic p surface desingularization to arithmetic
surfaces and characteristic p solids. But unlike the surface case, the solid case is
settled only over algebraically closed ground fields. Section 8 takes up the solid
case over finite fields. There a simultaneous resolution conjecture is formulated
for deducing the finite field case from the algebraically closed case. Also there
is an analogous birational factorization conjecture. Both of these have local and
global versions. Some progress in these was done by some of my former students.
Indeed, as I shall relate throughout the paper, in addition to having an illustrious
line of teachers and teacher’s teachers, I have been blessed with numerous brilliant
students who continue pushing the frontiers of the subject. It is a fulfilling pleasure
to be sandwiched in between.

In Section 9, to make matters more precise, I take recourse of the language of
models. Points and curves on a surface are replaced by their local rings. Likewise
irreducible subvarieties of a higher dimensional variety are replaced by their local
rings. A projective model is a suitable collection of local rings. Birational transfor-
mations are converted into dominating models. Numerous problems in the area of
resolution of singularities are formulated as precise Ph.D. or post-Ph.D. problems.

Expanding on the thoughts of Galois and Riemann, Section 10 relates funda-
mental groups from topology to Galois groups from algebra via monodromy groups
from analysis. There I list the books which Zariski advised me to read concerning
this matter.

This brings us to the second part of the paper emphasizing Galois theory and
group theory. Section 11 explains how the nonadaptability of Jung’s desingulariza-
tion method to characteristic p led me to formulate some Galois theory conjectures
for the affine line and more generally for affine curves. The great interest shown
by Serre brought me back to this topic after a thirty-year gap. In the meantime
several talented students kept me busy with singularities of special subvarieties of
flag manifolds and related combinatorics of Young tableaux.

As described in Section 12, soon it became clear to me that to pursue Galois
theory, a retooling in group theory was essential. So I renewed my acquaintance
with Walter Feit, and made the acquaintance of numerous other group theory gurus
from Bill Kantor to Ernie Shult and Michael O’Nan. Of special importance in this
activity are the various recognition theorems of group theory described in Section
13. The tie up with them is provided by the method of throwing away roots as
explained in Section 14. Putting all this together, in Section 15 it is shown that some
explicit unramified coverings of the affine line which were divined in my 1957 paper
have various interesting groups as Galois groups. These include the alternating
and symmetric groups, the five Mathieu groups, and several finite classical groups.
Some of this is joint work with my students and collaborators.

Section 16 continues the mathematical genealogy by recording that David Har-
bater, who settled the affine curve conjecture, is my nephew, since he was a student
of Mike Artin, who in turn was a student of Zariski. Harbater based his proof on
the work of Raynaud, who had settled the affine line conjecture. Various other
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Galois theory conjectures for curves and higher dimensional varieties are formu-
lated in Sections 16 to 19, and some of them are posed as Ph.D. and post-Ph.D.
problems. In Section 17 we provide links between these conjectures and the the-
ory of permutation polynomials. Likewise, in Section 18 we link them to Galois
embedding problems and in Section 19 with generalized iterates coming out of the
seminal work of Carlitz on explicit class field theory.

With this survey of the contents at hand, let us start by asking:

Section 1: What are singularities?

At a singularity a curve crosses itself or has a special beak-like shape or both.
For instance the alpha curve y2 − x2 − x3 = 0 crosses itself at the origin, where
it has the two tangent lines y = ±x. Such a singular point is called a node. The
cuspidal cubic y2 = x3 has a beak-like shape at the origin. Such a singularity is
called a cusp. Most points of a curve are simple points. Singularities are those
points where the curve has some special features. The vertex of the quadratic cone
z2 = x2 + y2 is an example of a surface singularity. Thus the origin (0, 0, 0) is a
double point of the cone, and all other points of the cone are simple points.

Quite generally most points of a hypersurface in n-space given by a polynomial
equation f(x1, . . . , xn) = 0 are simple points. At a simple point P at least one of
the partial derivatives of f is not zero. Say the partial of f with respect to x1 is
not zero at P . Then by the implicit function theorem we can solve f = 0 near P
by expressing x1 as a function of x2, . . . , xn. When we cannot do this, we have a
singular point. Thus the singular points of the hypersurface are where f as well as
all its partials are zero. Here by partials we mean the first partials.

If all the first partials of f are zero at a point P , but some second partial is not,
then P is called a double point. Similarly for triple or 3-fold, 4-fold, . . . , e-fold
points. Thus simple means 1-fold. If the locus in n-space we are studying is given
by several equations f1 = 0, . . . , fm = 0 in x1, . . . , xn, then instead of taking the n
first partials of the single polynomial f , we take the m× n jacobian matrix of the
first partials of the polynomials f1, . . . , fm with respect to the variables x1, . . . , xn.
Now the singular points are defined to be those where the rank of this matrix is
not maximal. Alternatively, simple points are those where its rank is maximal,
and then by the multivariate implicit function theorem, near a simple point, all
of the variables can be expressed as functions of some of them, say d of them.
The given locus consisting of the common solutions of the simultaneous equations
f1 = 0, . . . , fm = 0 is called an algebraic variety of dimension d.

Section 2: What does it mean to resolve them?

Let us make the substitution x = x′ and y = x′y′ in the equation of the nodal
cubic, i.e., the alpha curve given by y2− x2 − x3 = 0. This gives us y2− x2 − x3 =
x′2y′2 − x′2 − x′3 = x′2(y′2 − 1− x′). Discarding the extraneous factor x′2 we get
the proper transform y′2 − 1− x′ = 0, which being a parabola has no singularities.
Thus the singularity of the nodal cubic is resolved by one quadratic transformation.
The inverse of the quadratic transformation is given by x′ = x and y′ = y/x. The
indeterminate form y/x indicates that, as x and y both approach zero, y′ takes all
possible values. In other words, the origin (0, 0) of the (x, y)-plane blows-up into the
line x′ = 0 of the (x′, y′)-plane which we call the exceptional line. It is this explosion
that unravels the singularity. By putting x′ = 0 in the original equations x = x′ and
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y = x′y′ we directly see that the exceptional line shrinks to the origin (0, 0) of the
(x, y)-plane. The total transform of the nodal cubic consists of the exceptional line
together with the proper transform which is a parabola. At any rate a quadratic
transformation and its inverse both involve only rational expressions, and so a
quadratic transformation is birational. A birational transformation of a plane is
called a Cremona transformation in honor of the originator of such transformations.
As a piece of history, Cremona was my triple-parama-guru. Veronese was a pupil
of Cremona. Castelnuovo was a pupil of Veronese. My own guru Zariski was a
pupil of Castelnuovo. This makes Castelnuovo my parama-guru and Veronese my
parama-parama-guru.

In the latter half of the nineteenth century there was close communication be-
tween the Italian algebraic geometry school led by Cremona and the German alge-
braic geometry school led by Felix Klein and Max Noether. Taking the cue from
Cremona [Cre], in 1873 Noether [NoM] showed that the singularities of any plane
curve can be resolved by a finite succession of quadratic transformations.

As Klein says in his colorful book [Kle], Entwicklung der Mathematik im neun-
zehnten Jahrhundert (Development of Mathematics in the Nineteenth Century), he
and Noether were both disciples of Clebsch, who in turn was a follower of Riemann.
Indeed it was Riemann who in his 1851 thesis [Rie] introduced the Riemann surface
of y as an algebraic function of x when y is related to x by a polynomial equation
f(x, y) = 0. This may be regarded as the first proof of resolution of singularities
of plane curves. Riemann’s construction of the Riemann surface is topological and
function-theoretic. Noether tremendously simplified the matter by replacing topol-
ogy and function theory by algebra and geometry. Indeed, sometimes Noether is
called the father of algebraic geometry. However, again referring to his Entwicklung,
Klein says that, “we, the young Germans, learned algebraic geometry from Salmon-
Fiedler,” which refers to Fiedler’s German translation of Salmon’s 1852 book [Sal]
on Higher Plane Curves. In turn, Salmon, in the preface to his book, says that
he was only reporting on the works of his two friends, Cayley [Cay] and Sylvester
[Syl]. So there is justification in saying that algebraic geometry started in England
around 1840 in the hands of the invariant trinity (Klein’s words) Cayley-Sylvester-
Salmon. Of course, we may even stretch back the birth of algebraic geometry to
the works of Isaac Newton [New] around 1660.

I am well aware that this view of the origins of algebraic geometry may differ
from some people’s strong belief that the entire subject was spontaneously born in
Grothendieck’s mind [Gro] around 1962 and revealed to the rest of mankind by the
kind agency of Hartshorne [Har] in 1977.

For the viewpoint that algebraic geometry started with Newton, or even with the
Indian mathematicians Shreedharacharya and Bhaskaracharya of 500 A.D. and 1100
A.D. respectively, you may see my 1976 American Mathematical Monthly article
[A11] entitled “Historical ramblings in algebraic geometry and related algebra”,
which was later expanded into my 1990 American Mathematical Society book [A15]
entitled Algebraic Geometry for Scientists and Engineers.

Section 3: Resolution from Riemann through Zariski to Hironaka

Thus Riemann’s topological and function-theoretic construction of the Riemann
surface of f(x, y) = 0 was algebracized (or geometrized) by Noether in resolving
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the singularities of the curve C : f(x, y) = 0 by a succession of Cremona qua-
dratic transformations. Another way of algebracizing the Riemann construction
was put forward by Dedekind in the Dedekind-Weber paper [DWe] of 1882. To wit,
Dedekind took the integral closure of the affine coordinate ring of C in its quotient
field and, lo and behold, the singularities of C are resolved in one fell swoop. Emmy
Noether [NoE], the daughter of Max, followed Dedekind in developing the college
algebra of groups-rings-fields by adding to it a rich chapter of ideal theory. On
the other hand, Max Noether’s algebraization belonged to the high-school algebra
of polynomial and power series manipulation. Thus Max Noether, in addition to
being a possible father of algebraic geometry, could also be called a grandfather of
modern algebra.

Amongst the three approaches to curve resolution, namely that of Riemann,
Noether, and Dedekind, it was primarily Noether’s method which found its flow-
ering in resolution of singularities of surfaces and solids (= 3-dimensional objects)
by Zariski [Za2], [Za4] in 1939-1944, and then in 1964 by Hironaka [Hir] for all
dimensions. However, the Zariski-Hironaka work was restricted to characteristic
zero, i.e., when the coefficients of the polynomials defining the variety are in a field
of characteristic zero such as the field of real or complex numbers. A field is a set
of elements with the operations of addition and multiplication defined on them. It
is of characteristic zero means that in it 1 + 1 + · · ·+ 1 is never zero. It is of prime
characteristic p if in it 1 + 1 + · · · + 1, taken p times, equals zero. For example
we could add and multiply any two of the integers 0, 1, . . . , 6 and then replace the
result by the remainder obtained after dividing it by 7; this gives us a field of char-
acteristic 7; in it for instance we have 4 + 4 = 1 and 4 × 4 = 2. So what about
resolving singularities of surfaces, solids, and higher dimensional varieties, over a
field of characteristic p? This is where I entered the picture.

Section 4: How I got interested in doing resolution

To start at the beginning, my father taught me mathematics by the ancient In-
dian method. Thus he would recite to me a few lines from the geometry and algebra
books written by Bhaskaracharya around 1100 A.D. These books, called Leelavati
and Beejganit, being the first two parts of his five-part treatise on astronomy, are
in Sanskrit verse. I would then commit those lines to memory by repeating them
several times. My father would follow it up by reciting a few more lines. With
the implicit faith that their sound would eventually reveal their meaning, I would
repeat the new lines several times, and so on. The solution of a quadratic equation
by completing the square which I had memorized in this manner is reproduced in
my 1982 Springer Lecture Notes on Canonical Desingularization [A12]. There I
go on to say that the entire essence of Hironaka’s proof lies in generalizing this
completing of the square method.

This is an example of the dictum that history should be interesting and inspiring,
though not necessarily completely true. What I am referring to is the fact that
although I did learn from my father, when I was about ten, Bhaskaracharya’s book
on geometry called Leelavati, it was much later when I was about forty-five that
at my request my father made a Marathi translation of Bhaskaracharya’s book on
algebra called Beejganit, and it was only then that I memorized the verse giving
the completion of the square method of solving quadratic equations.
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At any rate, armed with the high-school algebra (i.e., manipulative algebra)
training from my father, in July 1951, when I was twenty, I set out for America by
boat.

Embarking from the Bombay pier my boat took the same path by which algebra
had traveled from India to Europe via Arabia, where it acquired its current Arabic-
derived name as opposed to its original Sanskrit name Beejganit. Refueling at the
Arabian Sea port of Aden, the boat proceeded to touch land next in Italy, where,
in the sixteenth century, cubic and quartic equation were solved by Cardano and
Ferrari. Next stop was Marseille, in France. There I said, “Aha, here is where the
youthful Galois, in 1830, proved the impossibility of solving quintic equations by
introducing the Galois group.” Once again this is an example of making history
colorful, because actually by the time the boat touched port in Marseille I had
become unconscious because of typhoid fever, which I caught on the boat. Also
the boat may have landed in Italy only in my imagination. From there we went
on to England, where I was stranded for two months in the Seaman’s Hospital. In
my hospital bed I may have been (?) absorbing the sympathetic waves radiated
by Caley-Sylvester-Salmon as they went about creating algebraic geometry from
1840 to 1880. Was I also imbibing the spirit of Newton, which is perennially alive
in his binomial theorem with exponents integral or fractional and in his fractional
power series expansions, which were rediscovered one hundred fifty years after him
by Puiseux?

Thus I was a month and a half late arriving at Harvard. It happened to be a
Saturday, when normally professors do not come to the department. Luckily for me
on that Saturday the departmental secretary was there and pointed out to me, “Mr.
Zariski is here, so you may go and talk to him.” I proceeded to have a long two-
hour conversation with Zariski. He asked me many questions and I reciprocated,
not yet being exposed to the western etiquette of avoiding personal questions. So
he found out that my father was a math professor, and I found out that he was
brought up by his mother in a town where the borders changed between Russia
and Poland, but he regarded himself as a Russian. He told me that his mother
had a cloth shop. My teachers in Bombay had suggested I take three elementary
courses and one advanced course, as was allowed to entering graduate students at
Harvard, but after talking to me Zariski completely changed my plan, and so I
ended up with three advanced courses and only one elementary course and that too
only because Zariski was teaching it. Thus, I never took a basic course on linear
algebra. I at once proceeded to take Zariski’s advanced course based on notes of
his forthcoming book, which eight years later metamorphed into his two-volume
treatise [ZSa] with Samuel. The elementary course which I took with Zariski was
Math 103 on projective geometry.

On that same eventful Saturday, at Zariski’s suggestion, I walked to his house to
borrow his copy of Veblen and Young’s book [VYo] on projective geometry, which
was being used in the course. This was the first of many trips to his house, later
accompanied by meals there due to the kindness of Mrs. Yole Zariski. Especially I
remember the tasty salads made with romaine lettuce.

So my relationship with Zariski started the very first day I arrived in America.
At the end of the first semester, seeing how excited I had become about the

projective geometry course, Zariski said to me, “Projective geometry is a beautiful
dead subject. Do not try to do research in it.” Nevertheless, in my second semester,
being scared out of Whitney’s topology course, I took yet another semester of higher
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dimensional projective geometry with Zariski, in which he explained Grassman
coordinates.

During the summer between my first and second years in graduate school I spent
most of my time, almost twelve hours a day, in the library looking through many
of Zariski’s papers. I came upon Zariski’s hour lecture at the International Con-
gress of Mathematicians held two years before in Cambridge. It was the first such
meeting after the sixteen-year interruption caused by the war and its aftermath.
Zariski’s paper [Za5] was on ideas of abstract algebraic geometry. In it he described
how he resolved the singularities of surfaces and solids in characteristic zero and
declared the problem in characteristic p to be intractable even for the innocent-
looking surface zp = f(x, y). He continued by saying, “It is not a problem for the
geometer, but it is a problem for the algebraist with a feeling for all the unpleasant
things which can happen in characteristic p.” On reading this, I immediately said
to myself, “This is what I am going to do for my thesis.”

Section 5: Zariski gives me a reading course

Towards the end of my first summer at Harvard, i.e., late August or early Sep-
tember of 1952, one day I met Zariski riding home on his bicycle. Seeing me he got
down, and we chatted a bit. Then I asked him if I could have a reading course with
him that fall. Whereupon he asked me if I was going to register for his course on
algebraic curves. When I said I did not know, he responded that then he would not
give me a reading course. To that I shrugged my shoulders, and he started riding
away. After going a bit he returned. Getting down from his bicycle, he asked me
whether I was going to work with him. Again, when I said I did not know, he
repeated that he would not give me a reading course and started riding away. After
riding off a short distance he again returned. Again getting down from his bicycle,
he said, “All right, you may have the reading course,” and he rode away. So in
the end I did register for his course on algebraic curves and for the reading course.
I found his very first lecture on algebraic curves, full of places and valuations, so
exciting that at the end of it I went up to him and told him that yes, I did want
to work with him and have chosen as my thesis topic the problem of characteristic
p resolution mentioned in his International Congress Address of 1950. To that he
smiled and let it pass. During the next several months he tried to indicate that
this was not a thesis problem and I should be working on something easier. Then
in the spring he went off to Italy for a semester.

Having taken three courses with Zariski and having gotten so interested in his
work, why was I being so evasive about working with him? The problem was that
Pesi Masani, my teacher in Bombay, was a student of Garrett Birkhoff. Masani
had communicated with Birkhoff regarding my admission to Harvard. On the boat
from Bombay I had solved one and a half unsolved problems listed in Birkhoff’s
book [Bir] on lattice theory. Birkhoff assumed that this would form the main
part of my thesis. In later years I had many pleasant contacts with Birkhoff,
and in fact my “Historical ramblings” article [A11] was written largely due to his
constant encouragement. Moreover, my early training in lattice theory had gotten
me interested in ordered structures. That is what immediately attracted me to the
problem of resolution of singularities with its close connection to valuation theory
which involves ordered abelian groups. The original construction of real valuations
by Ostrowski [Ost] in 1918 was generalized by Krull in his 1932 paper [Kr1] on
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“Allgemeine Bewertungstheorie”, where he employed values in any ordered abelian
group. These general valuations of Krull form the basis of Zariski’s paper [Za3] on
birational correspondences, where he uses them to algebracize the idea of limits.

Section 6: Zariski asks me to read Jung and Chevalley

In the spring of 1953, while Zariski was in Italy, we corresponded several times.
Seeing that I was not giving up on characteristic p resolution, he wrote me a four-
page letter suggesting possible approaches. Specifically he suggested that I should
read the 1908 paper [Jun] of Jung, where he proved a local version of resolution of
singularities of complex surfaces. Zariski went on to say that I should also study
the 1943 local rings paper [Che] of Chevalley and use it to algebracize Jung’s proof
with a view of adapting it to characteristic p. Zariski continued by summarizing
Jung’s proof thus. Let us project the given algebraic surface S : f(x, y, z) = 0 of
z-degree n onto the (x, y)-plane. Then above most points of the (x, y)-plane there
lie n points of the surface S. Those points above which there are fewer than n
points are called discriminant points. They fill up a curve D in the (x, y)-plane
given by the vanishing of the z-discriminant of f , i.e., the z-resultant of f and its
z-derivative fz. Applying Noether’s resolution process to D, we may suppose that
D has only normal crossings, i.e., only nodes for its singularities. Now the local
fundamental group at a simple point of D is cyclic, and at a node it is abelian
on two generators; and hence in the former case the corresponding points of S are
simple, and in the latter case they are ‘nice’ singularities which can be resolved
without much effort. This is what I was supposed to algebracize and adapt to
characteristic p if possible. In the claim that points of S, above a simple point
of D, are simple for S, we are actually replacing S by its normalization. It was
this process of normalization of surfaces and higher dimensional varieties by which
Zariski, in his 1939 paper [Za1], had generalized Dedekind’s idea of curve resolution
by passing to the integral closure, the clue being the fact that a normal variety has
no singularities in codimension 1. Eventually I ended up by showing that Jung’s
method cannot be adapted to characteristic p because, even at a simple point of
the branch locus, the local fundamental group need not be abelian and actually
may even be unsolvable, and points of the normal surface above it may be singular.
For a normal variety, the discriminant locus coincides with the branch locus. In
general, the discriminant locus is the union of the branch locus and the projection
of the singular locus.

Towards the end of his stay in Italy, Zariski sent me a postcard suggesting that
I go over to his house in Cambridge to meet his son, Raphael, who would let me
take whatever of Zariski’s reprints I could find, including the only remaining copy
of his 3-dimensional resolution paper [Za4], and to get Raphael’s help for getting
a summer job in the Harvard University Press, where he was working. In the
same postcard Zariski informed me, referring to his recent ulcer operation, that
a 3-dimensional singularity was removed from his stomach. This was a picture
postcard of Michaelangelo’s statue of Moses. It is still in my possession. Ever
since, in my mind, I have always identified Zariski with the wise Moses.

Section 7: I make counter-examples

In the fall of 1953, when Zariski returned from Italy, I presented him with my
50-page essay on the algebraization of local fundamental groups as a family of
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Galois groups, which is how I paraphrased Jung’s ideas by using Chevalley’s local
rings paper supplemented by the equally fundamental 1938 local rings paper [Kr2]
of Krull and the 1946 local rings paper [Coh] of Cohen. This essay was subtitled
“My attempt at understanding your four-page letter” together with the sentence
“Please tell me if I am studying in the right direction.” I followed this up by
biweekly ten-page bulletins entitled “On uniformization i” with i = 1, 2, . . . , 9. In
Bulletin 1, I gave a counter-example to the local fundamental group at a normal
crossing being abelian even in characteristic p. Then Zariski said that at least at
a simple point of the branch locus the local fundamental group should be cyclic.
In Bulletin 2, I showed that, in characteristic p, this need not even be solvable.
Then Zariski suggested that at least points of the surface above a simple point of
the branch locus should be simple. In Bulletin 3, I gave a counter-example to this
also. After two or three further such negative bulletins, Zariski said that his ideas
were exhausted. After a couple of more weeks of hard work I dialed TR(owbridge)
6-7938, which was Zariski’s home phone number, still etched in my memory, and
told him that I cannot do characteristic p resolution. Zariski responded that all
right, after some time we could discuss a suitable thesis problem for me.

After that phone call, continuously for three days and three nights, that is
seventy-two hours at a stretch, I kept working on characteristic p surface resolu-
tion and got the first positive result by uniformizing valuations whose value group
consists of rational numbers with unbounded powers of p in their denominators,
since, in his 1950 International Congress Address, Zariski had declared these to be
the most intractable. As a beginning I dealt with the case of p = 2. Excitedly,
late at night I telephoned Zariski with the good news. Early next morning he came
to the department, and I started explaining the matter to him on the blackboard.
When I fumbled, Zariski said, “What is the matter with you, Abhyankar? In spite
of having a fever I have come to listen to you.” Fortunately my fumble was only
temporary. Then in the next three or four biweekly bulletins I finished resolving
singularities of characteristic p surfaces. This positive result appeared in my 1956
paper [A02]. The various counter-examples appeared in my 1955 paper [A01]. Two
years later, in my 1957 paper [A05], by taking plane sections of the surfaces involved
in these counter-examples, I was led to a conjecture about fundamental groups of
affine curves in characteristic p. Then, in my 1959-60 papers [A06], I used the local
fundamental group results of [A01] to obtain some results on global fundamental
groups of surfaces in characteristic p.

In April or May of 1954 Zariski said that I should submit my Ph.D. thesis, but
I held off, saying that I wanted to do it for any dimension. By August, Zariski
insisted I finish. In fact he had already applied to the newly formed National
Science Foundation to grant me a post-doctoral fellowship for the academic year
1954-55, saying in the application that during that year I was well qualified to do
the higher dimensional problem. When in September 1954 Zariski gave a dinner
party to celebrate my thesis, he told me that he too was unhappy that I was about
to give up the problem, because, although it was his duty to say that it was not
a thesis problem, he had very much hoped I would be able to solve it. Another
pleasant memory I have about my thesis is that John Tate joined the Harvard
math department the day I defended my thesis, and I was able to answer all the
questions he asked me in my oral exam. Yet another amusing memory is that when
originally I had written only a two-page introduction to my thesis, Zariski wrote
from his Nantucket vacation cottage that I must do a better job in my introduction,
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because that was the only part which Richard Brauer, who was the second reader,
was expected to read. When I ended up writing a twelve-page introduction, Zariski
was very happy. In spring 1953, when Zariski was in Italy, I had taken a course
on noncommutative rings with Brauer, and when I proposed Cohen’s paper [Coh]
as a topic for the term paper for that course, Brauer said, “No, that is too much
Zariski-type,” and so I ended up writing about Hochschild cohomology. It took
me another thirty-five years to realize what great group theory pioneering work
Brauer had done. Also I have pleasant memories how, during my post-doctoral
year 1954-55, Tate used to come over to my apartment to give me private lessons in
algebraic number theory. During that year I also heard some inspiring MIT lectures
of Iwasawa on infinite Galois theory of algebraic number fields. The influence of
Brauer, Iwasawa, and Tate is evident in my work on algebraic fundamental groups.

In spite of Zariski saying to NSF that I was well equipped to do higher dimen-
sional resolution during the academic year 1954-55, actually it took me ten more
years to do characteristic p resolution for dimension 3, as reported in my 1966
Academic Press book [A08], and for dimensions higher than that the problem still
remains open. In the meantime in my 1965 Purdue Conference paper [A07], I had
proved resolution of singularities for arithmetical surfaces, i.e., surfaces defined by
polynomials with integer coefficients, which in my 1969 Tata Institute Conference
paper [A10] I extended to the still more general situation of 2-dimensional excellent
schemes. Again the resolution problem remains open for three and higher dimen-
sional arithmetical varieties or excellent schemes. Seeing that not much progress
in the resolution problem was made after my 1966 book, Springer-Verlag put out
a new edition [A31] of it in 1998. In this new edition, I have added an appendix
giving a short proof of analytic resolution for all dimensions in characteristic zero.
This proof is a consequence of a new avatar of an algorithmic trick which I had
used in the original edition of the book. The same algorithmic trick was also used
in my 1966 paper [A09], dedicated to the centenary of my parama-guru (= guru’s
guru) Castelnuovo, to prove some lemmas leading to local uniformization of valua-
tions of maximal rational rank for all dimensions in characteristic p. This analytic
proof should provide a good introduction to the great papers of Zariski and Hiron-
aka. Hopefully it should also provide an impetus to young algebraic geometers to
complete the resolution problem. In particular:

Section 8: Here is a start-up resolution problem for a thesis

Unlike the surface case, where I proved resolution of singularities over any field
of characteristic p for 3-dimensional varieties, in my 1966 book [A08] I proved it
only over algebraically closed fields of characteristic p; actually, in [A08] I assumed
p > 5, and, as reported on page 253 of [A15], I dealt with p ≤ 5 elsewhere. These
restrictions were due to the fact that in [A08] I used an Auxiliary Theorem which
says that any d dimensional variety over an algebraically closed ground field can
be birationally transformed to a variety having no e-fold point for any e > d!.
I proved this Auxiliary Theorem by generalizing an argument used by Albanese
[Alb] in the surface case and by repeated use of the Veronese embedding invented
by my parama-parama-guru Veronese. This refers to the fact that by referring to
the ∞5 conics in the projective plane as hyperplane sections in the 5-dimensional
projective space we get an embedding of the projective plane in the projective 5-
space, and similarly referring to all m-degree hypersurfaces in the projective n-space
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as hyperplanes we embed it in the projective r-space with r =
(
n+m
m

)
− 1. Since

the Auxiliary Theorem is proved by projecting from rational e-fold points with
large e, the ground field is required to be algebraically closed. Now 3-dimensional
resolution over finite fields, which is in great demand for arithmetical applications,
would follow from 3-dimensional resolution over algebraically closed fields if the
Weak Simultaneous Resolution Conjecture, which I made in my 1956 paper [A04],
can be proved in its local form in the 3-dimensional case.

In his 1951 paper [Za6] on Holomorphic Functions, which was declared “bahn-
brechend” by Krull, Zariski generalized the concept of the normalization of a variety
V in its function field K to the normalization of V in a finite algebraic field exten-
sion K ′ of K. If we can find a nonsingular variety W which birationally dominates
V and whose normalization in K ′ is nonsingular, we may say that we have Simul-
taneous Resolution for V in K ′. In [A04] I showed that this is not always possible
even locally for surfaces. This led me to make the Weak Simultaneous Resolution
Conjecture, which says that it should be possible to find a normal W birationally
dominating V such that the normalization of W in K ′ is nonsingular, and to the
corresponding Local Conjecture, which says that this can be done along any valu-
ation. The two-dimensional case of the said Local Conjecture played an important
role in my proof of characteristic p surface resolution given in [A02] and also in my
arithmetic surface resolution proof given in [A07]. The thesis problem which I am
suggesting, and which would complete the proof of 3-dimensional resolution over
finite fields, is to settle the said Local Conjecture for dimension three. Some cases
of this were done in the 1996 thesis [Fu1] of David Fu, the twenty-second of my
twenty-four Ph.D. students.

To pose another related thesis problem, suppose that a nonsingular variety
W birationally dominates a nonsingular variety V . We may then ask if W is
necessarily an iterated monoidal transform of V , i.e., if there exists a sequence
V = V0, V1, . . . , Vs = W of birationally equivalent nonsingular varieties which
are successively obtained by blowing-up nonsingular subvarieties. In [Za4] Zariski
proved this to be so for characteristic zero surfaces, and then in [A03] I generalized
it for general surfaces. In his 1971 thesis [Sha] my fourth Ph.D. student, David
Shannon, showed that this is not true for dimension three even locally. This led
me to make the Weak Birational Factorization Conjecture saying that there al-
ways exists an iterated monoidal transform V of V such that V is also an iterated
monoidal transform of W , and also the corresponding Local Conjecture along any
valuation. This Local Conjecture was solved by my eighth Ph.D. student, Chris
Christensen, in his 1977 thesis [Chr] for some 3-dimensional local cases. Recently,
in [Cu1] and [Cu2], Dale Cutkosky settled the Local Conjecture for any dimension
in characteristic zero. So I am glad to declare Dale to be my adopted post-doctoral
student. As a thesis problem, I propose the Local as well as Global versions of the
Weak Birational Factorization Conjecture for all dimensions and all characteristics,
including arithmetical varieties.

Section 9: More precisely speaking

Since I am suggesting these as thesis problems, let me depart from the informal
style which I have followed so far and state things more precisely. So here is a brief
review of the relevant definitions; details can be found in my books [A08] and [A15].
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Let k be either a field or the ring of ordinary integers; i.e., let us be in the
algebraic or the arithmetical case respectively. Let K be a function field over k;
i.e., let K be an overfield of k such that K is the quotient field of a finitely generated
ring extension of k. Let d be the dimension of K over k; i.e., if k is a field, then
d equals the transcendence degree of K over k, and if k is the ring of integers,
then d equals one plus the said transcendence degree. The problem of resolution
of singularities amounts to finding a nonsingular projective model of K/k. Before
defining these terms, let us introduce local rings.

A quasilocal ring R is a (commutative) ring (with 1) having a unique maximal
ideal M(R). A local ring R is a noetherian quasilocal ring; the smallest number
of elements which generate M(R) is called the embedding dimension of R, and the
maximum length l of chains of distinct prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pl in R is
called the dimension of R; we always have emdim(R) ≥ dim(R), and R is said to
be regular if equality holds. A typical example of an n-dimensional regular local
ring is the (formal) power series ring in n indeterminates with coefficients in any
field. For any (integral) domain A, the set of all localizations AP of A with respect
to the various prime ideals P in A is denoted by V(A). Here AP is the set of all
x/y with x ∈ A and y ∈ A \ P ; it is a quasilocal ring with M(AP ) = PAP and
A∩M(AP ) = P ; if A is noetherian, then so is AP ; if A is a regular local ring, then
so is AP . If B is a polynomial ring over k, then every member of V(B) is regular;
geometrically speaking this says that the geometric and arithmetical affine spaces
are nonsingular.

A quasilocal ring R∗ dominates a quasilocal ring R means R is a subring of R∗

and M(R) = R∩M(R∗). A quasilocal ring R∗ dominates a set Λ of quasilocal rings
means R∗ dominates some member of Λ. A set Λ∗ of quasilocal rings dominates a
set Λ of quasilocal rings means every member of Λ∗ dominates Λ. A valuation of
K/k is a map v : K → Γ∪{∞}, where Γ is an ordered abelian group, such that for
all a 6= 0 6= b in K we have v(ab) = v(a) + v(b) and v(a+ b) ≥ min(v(a), v(b)), for
any a ∈ K we have: v(a) =∞⇔ a = 0, and for all 0 6= c ∈ k we have v(c) = 0. By
omitting this last condition we get the definition of a valuation of any field K. By
the valuation ring of v we mean the set Rv consisting of all a ∈ K with v(a) ≥ 0;
note that Rv is a quasilocal ring with quotient field K, and M(Rv) consists of all
a ∈ K with v(a) > 0. We say that a valuation v dominates a quasilocal ring R or
a set of quasilocal rings Λ, meaning that Rv dominates R or Λ respectively.

By an affine subring of K/k we mean a subring A of K with quotient field K
such that A = k[ξ1, . . . , ξn] for a finite number of elements ξ1, . . . , ξn in A; we
then say that V(A) is an affine model of K/k. By a projective model of K/k we
mean a set of local rings which can be expressed as a union ∪0≤i≤nV(Ai) of affine
models of K/k for which there exist nonzero elements η0, . . . , ηn in K such that
Ai = k[η0/ηi, . . . , ηn/ηi] for 0 ≤ i ≤ n. To see that affine models correspond to
affine varieties, let Q be the kernel of the k-epimorphism of the polynomial ring
B = k[x1, . . . , xn] onto A which sends xi to ξi. Let Z(Q) be the variety in the affine
n-space over k defined by Q, i.e., the zero-set of Q. Then Z(P ) 7→ AP/Q, with P
varying over all prime ideals in B with Q ⊂ P , gives a bijection of the set of all
irreducible subvarieties of Z(Q) onto V(A). Similarly, projective models correspond
to projective varieties. All this is very clear when k is an algebraically closed field;
in the more general case it is somewhat make-believe.

More generally, by a model of K/k we mean a set V of local rings which can
be expressed as a nonempty finite union of affine models of K/k such that any
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valuation v of K/k dominates at most one member of V which, if it exists, is called
the center of v on V . A model of K/k is said to be nonsingular if every member
of it is regular. A model of K/k is said to be complete if every valuation of K/k
dominates it. A projective model of K/k is clearly a complete model of K/k. Now
we are ready to state the precise versions of the Resolution Conjecture and the
Uniformization Conjecture.

Resolution Conjecture. There exists a nonsingular projective model of K/k.

Uniformization Conjecture. Given any valuation v of K/k there exists a pro-
jective model of K/k on which the center of v is regular.

Clearly the Resolution Conjecture is stronger than the Uniformization Conjec-
ture. As I have already said, these were settled affirmatively by: (1) Riemann for
d = 1 and k = the complex field, (2) Dedekind for d = 1 and any k, (3) Zariski for
d ≤ 3 and k = a field of characteristic zero, (4) Hironaka for any d and k = a field
of characteristic zero, and (5) me for d = 2 and any k as well as for d = 3 and k =
an algebraically closed field of characteristic p. In all other cases these conjectures
are wide open and are inviting attention of young algebraic geometers.

To make the Birational Factorization Conjectures precise, let us define monoidal
transformations. First, for the local version, given a regular local ring R, by a
nonsingular ideal in R we mean a nonzero nonunit ideal I in R such that R/I is
a regular local ring, and given a valuation v of the quotient field of R dominating
R, by a monoidal transform of R along v we mean a local ring R1 of the form
R1 = R[I/ζ]M(Rv)∩R[I/ζ] for some nonsingular ideal I in R and some nonzero
element ζ of I with R[I/ζ] ⊂ Rv, and we note that then R1 is a regular local ring
which dominates R and is dominated by v. By an iterated monoidal transform of
R along v we mean a regular local ring R for which there exists a finite sequence
R = R0, R1, . . . , Re = R such that Ri is a monoidal transform of Ri−1 along v for
1 ≤ i ≤ e. Next, for the global version, by an ideal I on a projective model V of K/k
we mean an assignment which, to every R ∈ V , assigns an ideal I(R) in R, such that
for every affine subring A of K/k with V(A) ⊂ V we have (∩R∈V(A)I(R))R = I(R)
for all R ∈ V(A), and, assuming V to be nonsingular, we say that I is nonsingular
if, for every R ∈ V , the ideal I(R) in R is either the unit ideal or a nonsingular
ideal. By a monoidal transform of a nonsingular projective model V of K/k we
mean a set V1 of local rings such that for some nonsingular ideal I on V we have
V1 = {R ∈ V : I(R) = R} ∪R∈V with I(R) 6=R (∪06=ζ∈I(R)V(R[I/ζ])), and we note
that then V1 is a nonsingular projective model of K/k which dominates V . By an
iterated monoidal transform of V we mean a nonsingular projective model V of
K/k for which there exists a finite sequence V = V0, V1, . . . , Ve = V such that Vi is
a monoidal transform of Vi−1 for 1 ≤ i ≤ e. Now here are the precise versions of
the Birational Factorization Conjectures.

Weak Birational Factorization Global Conjecture. Given any nonsingular
projective models V and W of K/k, there exists an iterated monoidal transform V
of V such that V is also an iterated monoidal transform of W .

Weak Birational Factorization Local Conjecture. Given any projective
models V and W of K/k, and any regular members R ∈ V and S ∈ W which
are dominated by a common valuation v of K/k, there exists an iterated monoidal
transform R of R along v such that R is also an iterated monoidal transform of S
along v.
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Again, as I have said, the d = 2 case of both of these was done by Zariski [Za4] and
I [A03], some cases of the d = 3 Local Conjecture were done by Christensen [Chr],
and the general d case of the Local Conjecture when k is a field of characteristic
zero was done by Cutkosky [Cu1], [Cu2]. All other cases are open as possible thesis
problems. The weaker versions of these two Conjectures may be stated as:

Birational Domination Global Conjecture. Given any nonsingular projective
models V and W of K/k, there exists an iterated monoidal transform V of V such
that V dominates W .

Birational Domination Local Conjecture. Given any projective models V and
W of K/k, and any regular members R ∈ V and S ∈ W which are dominated by
a common valuation v of K/k, there exists an iterated monoidal transform R of R
along v such that R dominates S.

For both of these: the d = 2 case was done by Zariski [Za2] and me [A03], the
d = 3 case was done by Zariski [Za4] and me [A08] when k is a field of characteristic
zero or nonzero respectively, and the general d case was done by Hironaka [Hir] when
k is a field of characteristic zero. All other cases are good thesis problems.

Note that for d = 1 the above four as well as the next four conjectures are triv-
ially true. Also note that for d = 2 the Birational Factorization Conjectures follow
from the corresponding Birational Domination Conjectures in view of the above
stated fact that, for d = 2, Zariski [Za4] and I [A03] had proved “Strong Birational
Factorization”, saying that a nonsingular projective model W of K/k which domi-
nates another nonsingular projective model V of K/k must be an iterated monoidal
transform of V . Again as stated above, for d = 3, “Strong Birational Factorization”
was disproved by Shannon [Sha].

Turning to the Simultaneous Resolution Conjectures, recall that a local ring is
normal means it is integrally closed in its quotient field, and a model is normal
means every member of it is normal. Let K ′ be a finite algebraic field extension
of K, let V be a normal projective model of K/k, and let R ∈ V . By a local ring
in K ′ lying above R we mean the localization of the integral closure of R in K ′ at
a maximal ideal in the said integral closure. By the normalization of V in K ′ we
mean the set V ′ of all local rings in K ′ which lie above various members of V ; it
can be shown then that V ′ is a projective model of K ′/k. Now we may state the
Simultaneous Resolution Conjectures.

Weak Simultaneous Resolution Global Conjecture. Given any normal pro-
jective model V of K/k, any finite algebraic field extension K ′ of K, and any
nonsingular projective model V ′ of K ′/k which dominates the normalization of V
in K ′, there exists a normal projective model W of K/k dominating V such that
the normalization of W in K ′ is an iterated monoidal transform of V ′.

Weak Simultaneous Resolution Local Conjecture. Given any normal pro-
jective model V of K/k, and any finite algebraic field extension K ′ of K, let V ′ be
any normal projective model of K ′/k which dominates the normalization of V in
K ′, and let v′ be any valuation of K ′/k whose center R′ on V ′ is regular. Then
there exist normal projective models W and W ′ of K/k and K ′/k respectively such
that for the center S′ of v′ on W ′ we have that S′ is an iterated monoidal transform
of R′ along v′ and for S = K ∩ S′ we have that S ∈W and S′ lies above S.
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For d = 2, the above Local Conjecture played an important role in my surface
resolution proofs given in [A02], [A07], and some cases of the above Global Con-
jecture were done in my paper [A04]. For d = 3, some cases of the above Local
Conjecture are in Fu’s thesis [Fu1]. All other cases of the above two conjectures
provide excellent thesis problems. In particular, in case of d = 3 and k = a finite
field, a positive answer to the above Local Conjecture will provide a positive answer
to the Resolution Conjecture.

With the definition of monoidal transformations at hand, we may strengthen the
Resolution and Uniformization Conjectures thus. Given a principal ideal I in a reg-
ular local ring R, we say that I has a normal crossing at R if I = xu1

1 . . . xunn R where
u1, . . . , un are nonnegative integers and (x1, . . . , xn)R = M(R) with dim(R) = n;
if the number of nonzero ui is t, then we say that I has a t-fold normal crossing
at R. By a nonzero principal ideal on a model V of K/k we mean an ideal I on
V such that, for every R ∈ V , the ideal I(R) in R is a nonzero principal ideal.
A nonzero principal ideal I on a nonsingular projective model of K/k is said to
have only normal crossings on V if, for every R ∈ V , the ideal I(R) has a normal
crossing at R. Given any nonsingular projective model W of K/k dominating a
nonsingular projective model V of K/k and given any ideal I on V , we get a unique
ideal IW on W such that for all R ∈ V and S ∈ W with S dominating R we have
(IW )(S) = I(R)S; it is clear that if I is a nonzero principal ideal on V , then IW
is a nonzero principal ideal on W . Now we are ready to state:

Embedded Total Resolution Conjecture. Given any nonzero principal ideal I
on any nonsingular projective model V of K/k, there exists an iterated monoidal
transform W of V such that the ideal IW has only normal crossings on W .

Embedded Total Uniformization Conjecture. Given any projective model V
of K/k, any regular R ∈ V , any nonzero principal ideal I in R, and any valuation
v of K/k dominating R, there exists an iterated monoidal transform S of R along
v such that the ideal IS has a normal crossing at S.

Both these were done by me for d = 2 in [A03], [A32] and for d = 3 with any
field k in [A08], and by Hironaka for any d with a characteristic zero field k in [Hir].
All other cases constitute top-notch thesis problems.

Section 10: Fundamental groups and Galois theory

Zariski’s fall 1952 course on algebraic curves was very algebraic. In the entire
course he drew a picture only once. That was to explain the relation of fundamental
groups from topology to Galois groups from algebra via monodromy groups from
complex function theory, which made me rather nostalgic, because while I was in
college in India, I had studied plenty of complex function theory from British books,
such as Forsyth’s 1893 book [For], although I did not know much about algebraic
geometry as such. Indeed, seeing that in the various footnotes in Forsyth’s book
the frequent message was “for a thorough and rigorous treatment see such and such
source material in German,” during my first year in college I spent eight hours a
day studying German. This came in handy when, in spring 1953, the four books
on algebraic geometry which Zariski advised me to study were all in German. In
addition to Severi’s Vorlesungen [Sev], they were the three old Riemann Surface
books by Neumann [Neu], Stahl [Sta], and Weyl [Wey]. About Stahl’s book I have
an entry in my diary calling it the book I enjoyed most. Actually, although I
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distinctly remember Zariski talking about the fundamental group of the punctured
real plane (= complex line) in terms of the standard loops around the punctures, I
do not really remember his relating it to Galois groups.

In any case, to discuss this relationship let us consider a univariate monic poly-
nomial

F (Y ) = Y n +
∑

1≤i≤n
aiY

n−i =
∏

1≤j≤n
(Y − αj)

of degree n > 0 with coefficients ai in a field K, and roots αj in an overfield of K.
Assume that F is separable; i.e., the roots αj are distinct. Let Sn be the permuta-
tion group on n letters. According to Galois’ original definition, the Galois group
Gal(F,K) is the group of all relations preserving permutations of the roots of F ,
i.e., the subgroup of Sn consisting of all σ ∈ Sn such that Φ(ασ(1), . . . , ασ(n)) = 0
for all polynomial relations Φ(α1, . . . , αn) = 0 over K. According to the more
modern definition, Gal(K ′,K) is the group of all K-automorphisms of the splitting
field K ′ = K(α1, . . . αn) of F over K, and Gal(F,K) is the permutation represen-
tation of Gal(K ′,K) which sends each τ ∈ Gal(K ′,K) to the σ ∈ Sn such that
τ(αi) = ασ(i). Better still, thinking of Sn as acting on α1, . . . , αn, we simply have
τ(αi) = σ(αi).

When the coefficients a1, . . . , an of F are themselves polynomials in a multivari-
ableX = (X1, . . . , Xd), a knowledge of the Galois group of F helps us to understand
the singularities of the d-dimensional hypersurface F = 0. In case these polynomi-
als in X have complex coefficients, by giving various values to X and solving for
Y , we get n determinations of Y as a function of X . These n determinations per-
mute amongst themselves when X traverses various closed paths emanating from a
fixed point P in the d-dimensional complex space Cd punctured at the discriminant
points ∆ of F , which are the values of X to which correspond less than n values of
Y . Note that ∆ is the zero-set of the Y -discriminant of F which is obtained by elim-
inating Y between F and its Y -derivative FY . The totality of these permutations of
the n determinations constitute the monodromy group of F , which was introduced
by Riemann [Rie] in 1851. It is easy to see that the Galois group of F is isomor-
phic as a permutation group to its monodromy group. Moreover, the monodromy
theorem of complex analysis says that when two paths are homotopic, i.e., can be
continously deformed into each other, they give rise to the same permutation of the
n determinations. This sets up a homomorphism from the topological fundamental
group π1(Cd \∆, P ) of the punctured d-space Cd \∆ with base point P onto the
monodromy group of F , and hence also onto the Galois group Gal(F,C(X)) of F
over the rational function field C(X) which consists of quotients of polynomials in
X with complex coefficients. Note that π1(Cd \∆, P ) is the group of all homotopy
equivalence classes of closed paths in Cd \∆ emanating from P . Thus calculations
of Galois groups and fundamental groups reflect on each other.

Section 11: Unsolvable surface coverings

To show that Jung’s 1908 proof of a local version of resolution of singularities
of complex surfaces does not adapt to characteristic p, in my 1955 paper [A01], I
considered the surface given by

F̂ (Y ) = Y p+1 +XY + Z
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and projected it onto the (X,Z)-plane. To find the discriminant locus for this
projection, we calculate the Y -derivative to be F̂Y = Y p + X , and eliminating Y
between it and F̂ we get F̂ − Y F̂Y = Z. Thus the discriminant locus is the line
Z = 0 which has a simple point at the origin X = Z = 0. Now the algebraic
reflection of the local fundamental group is the local Galois group Gal(F̂ , K̂) where
K̂ is the (formal) meromorphic series field k((X,Z)) over the algebraically closed
field k of characteristic p. In [A01], for p = 5, by direct computation I showed
that Gal(F̂ , K̂) is unsolvable. Thirty-five years later, in [A17], I proved that for
any p we have Gal(F̂ , K̂) = PGL(2, p), where we recall that for any integer m > 0
and any power q > 1 of p, the m-dimensional general linear group GL(m, q) is the
group of all m×m nonsingular matrices over the Galois field GF(q) of q elements,
and the projective general linear group PGL(m, q) is the homomorphic image of
GL(m, q) when we mod it out by all scalar matrices. Also note that the special
linear group SL(m, q) consists of all members of GL(m, q) whose determinant equals
1, and the projective special linear group PSL(m, q) is the corresponding subgroup
of PGL(m, q).

Stepping back to relate things chronologically, in my 1957 paper [A05], i.e., two
years after the 1955 paper [A01], I took a plane section of the above surface covering
and by generalizing it obtained several explicit equations giving unramified covering
of the affine line Lk over k. These equations included the trinomials

Fn(Y ) = Y n +XY t + 1 where 0 < n− p = t 6≡ 0 mod p,

and I proposed that their Galois groups Gal(Fn, k(X)) be computed. Without
actually computing these Galois groups, but indirectly manipulating with the above
coverings, I showed that by taking subquotients of the algebraic fundamental group
πA(Lk) we get all finite groups. This led me to make the following conjecture where
Q(p) is the set of all quasi-p groups, that is finite groups G which are generated by
their p-Sylow subgroups.

Affine Line Conjecture. πA(Lk) = Q(p).

Here the algebraic fundamental group πA(Lk) is defined to be the set of all finite
Galois groups of unramified coverings of Lk, and the subquotients of πA(Lk) are
the homomorphic images of the subgroups of the groups belonging to πA(Lk). As I
noted in [A05], the inclusion πA(Lk) ⊂ Q(p) is an easy consequence of the Riemann-
Hurwitz genus formula. In [A05] I also made the following stronger conjecture where
Qt(p) is the set of all quasi-(p, t) groups, i.e., finite groups G such that G/p(G) is
generated by t generators, with p(G) = the subgroup of G generated by all of its
p-Sylow subgroups.

Affine Curve Conjecture. For any nonnegative integer t we have πA(Lk,t) =
Qt(p) where Lk,t = Lk minus t points, and more generally for any nonsingular
projective curve Cg of genus g over k we have πA(Cg,t) = Q2g+t(p) where Cg,t = Cg
minus t+ 1 points.

Again, the algebraic fundamental groups πA(Lk,t) and πA(Cg,t) are defined to
be the sets of all finite Galois groups of unramified coverings of Lk,t and Cg,t
respectively.

After another two years, in the series of papers [A06] which I wrote in 1959-60,
I used the local results of the 1955 paper [A01] to prove some global results about
coverings of varieties with branch loci having only normal crossings. It may be
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noted that in writing the papers [A05] and [A06] I was influenced by Serre, who,
since 1956, has been a second guru to me.

Then for about thirty years I forgot all about coverings and fundamental groups,
until fall 1988 when suddenly Serre sent me a series of four long letters, briefly
saying that he had gone back to my 1957 paper [A05] and could prove that for
t = 1 the Galois group Gal(Fn, k(X)) equals PSL(2, p) and asking me if I could
now calculate it for t > 1. He also asked that, since my Affine Line Conjecture
implies every finite simple group of order divisible by p and hence every alternating
group An with n > p+1 > 3 belongs to πA(Lk), could I find such alternating group
coverings.

Immediately upon receiving Serre’s letters I did not pay full attention to them,
because for the last six years, that is from 1982 onwards, I was busily working on
Young Tableaux with a view of applying them to analyze the singularities of certain
special subvarieties of flag manifolds. Some of this tableaux work with applications
to Invariant Theory can be found in my book [A14] Enumerative Combinatorics
of Young Tableaux with its summary in my paper [A13] dedicated to Nagata’s
sixtieth birthday, and in my tutorial paper [A16] for a conference on Computer
Vision which has a quick introduction to flag manifolds. The combinatorial aspects
of the tableaux work can also be found in my three joint papers [AK1]–[AK3] with
my twelfth Ph.D. student, Devadatta Kulkarni; my four joint papers [AJ1]–[AJ4]
with my fourteenth Ph.D. student, Sanjeevani Joshi; and my one joint paper [AG1]
with my fifteenth Ph.D. student, Sudhir Ghorpade. Some other related tableaux
work can be found in the paper [Mul] of my tenth Ph.D. student, S. B. Mulay; in
the paper [Udp] of my thirteenth Ph.D. student, S. G. Udpikar; and in the paper
[Mod] of my seventeenth Ph.D. student, M. R. Modak.

Section 12: I meet many group theory gurus

Fortunately in Serre’s last letter of 1988 he said, “My email is....” Being a new
convert to email, I was very enthusiastic about it and so our weekly “conversation”
by email started. During the next two years we exchanged almost a hundred emails
and smails. In the first few months of our correspondence it became clear to me that
I must learn a lot of group theory, since it provides a powerful tool for computing
Galois groups. During October to December, while Serre was at Harvard, emails
from him were my primary source of picking up group theory knowledge. But then
in the middle of December 1988 Serre returned to Paris, where he did not as yet
have email.

So what to do? Looking through group theory literature and looking through
the AMS directory for emails, which were not yet very common, I realized that
Bill Kantor in Oregon might be a possible group theory guru. So I sent off an
email to him asking some questions. Back came a reply saying, “I am a walking
encyclopedia of group theory. Ask me anything.” Soon I realized this was indeed
very true. After several months of remaining an e-guru, eventually he visited me
in Purdue, where he talked all the time. Afterwards I fell into the habit of making
a bi-annual pilgrimage to Eugene, Oregon, to get my next lesson, and then the
next lesson, and so on. Bill has an uncanny intuition of how group theory can be
useful in my Galois theory work, so he throws out juicy information. But since
things are obvious to him, he is reticent about explaining them. So in Ernie Shult



RESOLUTION OF SINGULARITIES AND MODULAR GALOIS THEORY 149

of Manhattan, Kansas, I found a gentler, kinder group theorist who patiently fills
in the gaps and of course provides a lot of new information too.

By and by, to my growing list of group theory gurus I have added Peter Neumann
of Oxford, Peter Cameron of Queen Mary College in London, Martin Liebeck of
Imperial College in London, Jan Saxl of Cambridge, John Thompson of Florida
and Cambridge, Gernot Stroth of Halle, Christopher Hering of Tübingen, Bob
Guralnick of USC, Michael Aschbacher of Cal Tech, Jonathan Hall and Ulrich
Meierfrankenfeld of Michigan State, John Conway of Princeton, Steve Smith of
Chicago, and the late Michio Suzuki of Illinois.

But before meeting this long line of group theory gurus, after Serre left for Paris,
I renewed my old acquaintance with Walter Feit, dating back to 1957, and with
the late Danny Gorenstein, dating back to 1953. First in February 1989 I spent a
week at Yale as a houseguest of Walter and Sidnie Feit. In addition to reminiscing
about how we frequently used to eat together and go to movies together at Cornell
in 1957, Walter proceeded to pull me up by the bootstraps about the development
of group theory in the last thirty years. Then in April 1989 I spent a few days with
Danny Gorenstein at Rutgers and there met another very kind and gentle guru,
Michael O’Nan. Indeed in the last seven or eight years it has become my habit that
when I get stuck on some ‘obvious’ point in group theory, I call up either Ernie
Schult or Michael O’Nan.

In realizing that group theory and Galois theory are two facets of the same
fundamental entity, I was only retracing Galois’ discovery. At any rate, I am very
humbled by seeing how smart all these great group theory gurus are and how very
profound their knowledge is.

Actually, as may be clear from the fact that in my thesis I could prove the
unsolvability of certain Galois groups, my interest in group theory is long-standing
and started when, as a college student in Bombay, I was reading Birkhoff-
Mac Lane’s book [BMa] Survey of Modern Algebra and found in it the easy-to-state
conjecture of Burnside that every finite group of odd order is solvable. Fascinated
by this conjecture, I wrote to Philip Hall in Cambridge for advice. It is he who
in a way jump-started group theory in England after the pioneering days of Caley
and Burnside. In his reply, Philip Hall sent me a list of group theory papers I
could be reading. Following his advice I read some papers of Bernhard and Hanna
Neumann and some papers of Reinhold Baer. I should point out that in Bombay
I was already reading the group theory books of Carmichael [Car], Speiser [Spe],
and Zassenhaus [Z02] with occasional guidance of F. W. Levi, who was a friend of
my father and who had joined the newly opened Tata Institute as one of the two
math professors. In 1956 Levi returned to the Free University of Berlin. The other
math professor in Tata Institute, D. D. Kosambi, was also a friend of my father.
When Kosambi asked me why I was majoring in physics in spite of being more
interested in mathematics, I said, “Because of my intense interest in mathematics
and mathematics being otherworldly, I don’t know what I should do if one day I
can no longer do mathematics,” to which Kosambi replied, “Then you should kill
yourself.” In my mind that cleared the way for me to just pursue mathematics. It
was in Gwalior, where my father, S. K. Abhyankar, was a professor of mathematics,
that I was introduced to Burnside and Panton’s Theory of Equations [BPa], from
which I first learned group theory. This was William Snow Burnside and not the
group theorist William Burnside. It is only recently that I realized that there were
two Burnsides. Incidentally, both got a D.Sc. from Dublin around the same time.
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Many years later I met Zassenhaus first in Notre Dame and then in Ohio State.
When one day in June 1990 Garrett Birkhoff was our lunch guest, he told us that
Carmichael was his father’s first Ph.D. student.

After coming to Harvard, I fell under the magnetic spell of Oscar Zariski and
forgot all about group theory. It was amazing that after thirty years, when I needed
to update my knowledge of group theory, my new gurus were Walter Feit and John
Thompson, who had solved the odd order problem; Bill Kantor, who was a student
of a student (Peter Dembowski) of Reinhold Baer; Peter Neumann, who is a son of
Bernhard and Hanna Neumann; and the three brilliant students of Peter Neumann,
i.e., Peter Cameron, Jan Saxl, and Martin Liebeck. It was a happy coincidence
when, in 1983 while lecturing in Canberra, Australia, I was telling the story of
Alfred Young and a spry old gentleman from the audience started correcting me.
Lo and behold it was none other than Bernhard Neumann, to whom I was happy
to say, “Your and Hanna Neumann’s were the very first mathematical papers I ever
read.” Once, on relating all this to Serre I said, “What a small world,” to which
he replied, “No, what a nice world.”

Section 13: Recognition theorems of group theory

A more poetic title for this section could have been “Attempts to use the power
of modern group theory of finite simple groups for calculating Galois groups”.

At any rate, various Recognition Theorems of Group Theory provide powerful
tools for computing Galois groups. They also provide suggestive guidelines for
constructing explicit equations with assigned Galois groups. Examples of such
Recognition Theorems are:

(1) CT = Classification Theorem of Finite Simple Groups,
(2) CPT = Classification of Projectively Transitive Permutation Groups (using

CT),
(3) CDT = Classification of Doubly Transitive Permutation Groups (using CT),
(4) CR3 = Classification of Rank 3 Permutation Groups (again using CT),
(5) Jordan-Marggraff Theorems on Limits of Transitivity,
(6) Burnside’s Theorem (which is a special case of the O’Nan-Scott Theorem),
(7) Zassenhaus-Feit-Suzuki Theorem,
(8) Kantor’s Rank 3 Theorem (using Buekenhout-Shult’s Polar Space Theorem),
(9) Cameron-Kantor’s Theorems on Transitive Collineation Groups, and

(10) Liebeck’s Orbit Size Theorems (which use CT).

Here CT says that, in addition to the cyclic groups of prime order and the alter-
nating groups on at least 5 letters, the 16 infinite families of finite simple Lie-type
groups, i.e., matrix groups over finite fields, together with the 26 sporadic (= one
of a kind) finite simple groups, constitute a complete list of finite simple groups; for
details see Gorenstein’s article [Gor] or Kleidman-Liebeck’s book [KLi]. As related
in [Gor], CT was a team effort of several dozen group theorists carried on over the
thirty-year period 1950-1980. The prototypes of the finite simple Lie-type groups
are the projective special linear groups PSL(m, q) of dimension m over the Galois
Field GF(q) of q elements where q > 1 is a power of a prime p, excluding small
values of m and q. These linear groups, together with the symplectic, unitary, and
orthogonal groups, are called the classical groups, which have to be supplemented
by their exceptional and twisted incarnations. Note that the symplectic, unitary
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and orthogonal groups are the isometry groups of alternating, hermitian, and qua-
dratic forms respectively. Thus they are the finite field analogues of the group of
distance-preserving linear transformations of the real euclidean space; for details
see Aschbacher’s book [As2]. Recall that a finite group is simple means that it
has no nonidentity normal subgroup other than itself; as usual < and / denote
subgroup and normal subgroup respectively, and so H /G means H < G such that
gHg−1 = H for all g ∈ G; a composition series of a finite group G is a series
1 = G0 / G1 / · · · / Gl = G such that Gi/Gi−1 is simple for 1 ≤ i ≤ l; the factor
groups Gi/Gi−1 are called composition factors of G; and G is solvable means all
of its composition factors are cyclic. The oldest amongst the sporadics are the five
Mathieu groups M11,M12,M22,M23,M24 (where the subscript indicates the degree
as a permutation group, i.e., the number of letters they permute) which appeared
in his 1861 paper [Mat]. Although they all turned out to be simple, they were
originally discovered by Mathieu as exactly 4-transitive, 5-transitive, 3-transitive,
4-transitive, 5-transitive permutation groups respectively, where we recall that a
permutation group is t-transitive means it sends any t letters of the permuted set
to any other t letters of the permuted set; also transitive means 1-transitive, and
exactly t-transitive means t-transitive but not (t+ 1)-transitive. For a good discus-
sion of the Mathieu groups see Huppert-Blackburn’s book [HBl]; the remaining 21
sporadics were discovered a century later as reported in [Gor].

For CT ⇒ CPT = the classification of all subgroups of GL(m, q) acting tran-
sitively on nonzero vectors, see Kantor’s 1985 paper [Ka2], which is partly based
on Hering’s papers [He1] and [He2]. The proof of CDT uses CT directly as well
as CPT, and it also uses the O’Nan-Scott Theorem about primitive groups (see
Cameron [Cam]), which is a sharpening of Burnside’s Theorem proved in his book
[Bur], which asserts that a doubly transitive permutation group has a unique min-
imal normal subgroup, which is either elementary abelian or nonabelian simple;
note that an elementary abelian group is the direct sum of a finite number of copies
of a cyclic group of prime order. For a cursory treatment of Burnside’s theorem see
Wieland’s book [Wie], which also describes the Jordan-Marggraff theorems (Jordan
[Jor] and Marggraff [Mar]) on limits of transitivity characterizing alternating and
symmetric groups. An elementary self-contained treatment of Burnside’s theorem
may be found in my forthcoming paper [A36]. Recall that a point stabilizer Gu of
a transitive permutation group G consists of those members of G which map an
element u of the permuted set onto itself; G is primitive means Gu is a maximal
subgroup of G, the number of orbits of Gu is called the Rank of G, and their sizes
are called the subdegrees of G. The implication CT⇒ CR3 was achieved by Liebeck
[Li1] and others; it uses the fundamental results of Aschbacher [As1] on maximal
subgroups of classical groups. Yet some other consequences of CT are Liebeck’s
Orbit Size Theorems [Li2] characterizing certain classical groups by their nontran-
sitive projective actions in terms of orbit sizes. In their 1979 paper [CKa], without
using CT, Cameron and Kantor proved their theorems characterizing certain clas-
sical groups of dimension at least three by their transitive projective actions. For
the two-dimensional situation we have the Zassenhaus-Feit-Suzuki Theorem [Z01],
[Fei], [Suz] characterizing doubly transitive permutation groups in which only the
identity fixes three points. In his Rank 3 Theorem, without using CT, Kantor
[Ka1] proved that if the subdegrees of a Rank 3 permutation group coincide with
the subdegrees of a “polar geometry” (symplectic or unitary or orthogonal), then
it is a group of automorphisms of such a geometry. Kantor deduced this from the
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Buekenhout-Shult characterization of polar spaces [BSh], which in turn is based on
the work of Tits on spherical buildings [Tit].

Clearly for any n > 0 the symmetric group Sn is n-transitive, and for any n > 2
the alternating group An is (n − 2)-transitive. It was a spectacular consequence
of CDT, and hence of CT, that other than the alternating and symmetric groups,
the four Mathieu groups M11,M12,M23,M24 are the only 4-transitive permutation
groups.

Section 14: Throwing away roots

One of the basic tools which links up the RTG = the Recognition Theorems of
Group theory with the calculation of Galois groups and which was initiated in my
1992 paper [A17] is the MTR = the Method of Throwing away Roots. To explain
this, first note that, for any field K, the polynomial

F (Y ) = Y n +
∑

1≤i≤n
aiY

n−i ∈ K[Y ]

with ai ∈ K is irreducible in K[Y ] iff its Galois group G = Gal(F,K) < Sn is
transitive, where Sn is the symmetric group on its roots α = α1, . . . , αn. Now the
point stabilizer Gα of G may be regarded as a subgroup of the symmetric group
Sn−1 on α2, . . . , αn, and then G is 2-transitive iff Gα is transitive. This suggests
that we should throw away a root, say α, of F to get its “naive” derivative

F ′(Y ) =
F (Y )
Y − α =

F (Y )− F (α)
Y − α ∈ K(α)[Y ]

which, not to confuse it with the usual derivative, may be called the “twisted”
derivative. Thus G is 2-transitive iff F and F ′ are both irreducible, where the
irreducibility of F ′ is in K(α)[Y ]. Moreover, assuming F to be irreducible in K[Y ],
the rank of G is one plus the number of irreducible factors of F ′(Y ) in K(α)[Y ],
and their degrees are the subdegrees of G except for the subdegree 1 belonging to
the linear factor we threw away. So when F ′ is irreducible we may use CDT, and
when F ′ has two factors we may use CR3. In the former case we may even be
able to use the Jordan-Marggraff Theorems on Limits of Transitivity, or Burnside’s
Theorem, or the Zassenhaus-Feit-Suzuki Theorem, or Cameron-Kantor’s Theorems
on Transitive Collineation Groups. For instance, as I have shown in my recent
1997 paper [A30], Burnside’s Theorem is sufficient to prove the unsolvability of the
surface covering Y p+1 + XY + Z considered in my 1955 paper [A01], and this in
turn settles the two-variable case of Hilbert’s 13th problem [Hi1], [Hi2] by giving
an example of an algebraic function of two variables which cannot be expressed
as a composition of algebraic functions of one variable. In the latter case we may
be able to use Kantor’s Rank 3 Theorem. When in 1989 I was busily using CDT
to calculate Galois groups, Kantor visited me in Purdue and said, “Why are you
interested only in doubly transitive groups? Here is a remarkable theorem about
Rank 3 groups,” and he wrote on my blackboard his Rank 3 Theorem. It took me
almost five years of meditation on his suggestion to start effectively using it.

The preamble to Kantor’s theorem is the fact that the transitive action of the
symplectic, unitary, and orthogonal groups on their singular projective hyper-
quadrics, that is where the corresponding forms vanish, is of Rank 3. Kantor’s
theorem says that the subdegrees of these Rank 3 actions determine the forms.
This he proves by applying Sylow theory to the Buekenhout-Shult characterization
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of polar spaces from their paper [BSh]. Roughly speaking, the said characteriza-
tion asserts that a hyperquadric is determined by knowing the points and lines on
it and knowing that they satisfy the one or all axioms. According to this axiom,
given any line λ on the hyperquadric and any point π not on λ, either all the lines
joining π to various points of λ are on the hyperquadric or this is so for exactly one
point of λ. This characterization was a tremendous simplification over the char-
acterization contained in Tits’ Springer Lecture Notes [Tit] on spherical buildings.
Tits’ characterization itself was a simplification of the original characterization of
hyperquadrics given in Veldkamp’s 1959 papers [Vel]. This brings me to what I said
in my discursive Tata Institute paper [A23] pointing out that even a great man like
Zariski can be wrong once. I was referring to the assertion which he made to me at
the end of his projective geometry course that projective geometry was a beautiful
but dead subject and that it was not worth doing research in it. As I have just
pointed out, projective geometry had a robust rebirth around 1960.

Actually, there is a situation when factorization is useful for Galois group com-
putation even when F is not irreducible. That is so when a priori we know that the
Galois group of F is a subgroup of PGL(m, q) and we are ready to use Liebeck’s
Orbit Size Theorems. To explain this, assume that K contains the Galois field
GF(q) where q > 1 is a power of a prime p, and for some integer m > 0 we have
n = 〈m− 1〉 and ai = 0 whenever i is not of the form 〈m− j − 1〉 with 1 ≤ j ≤ m,
where we are using the abbreviation

〈l〉 = 1 + q + · · ·+ ql

with the understanding that 〈−1〉 = 0. We then call F a projective q-polynomial
of q-degree m over K. Also assume that am 6= 0; i.e., F is separable. In [A21] and
[A29] I have shown that then in a natural manner Gal(F,K) < PGL(m, q). This is
deduced by vectorizing F to get

E(Y ) = Y F (Y q−1) = Y q
n

+
∑

1≤i≤m
biY

qm−i

with bi ∈ K and bm 6= 0, which we call a separable vectorial q-polynomial of q-degree
m over K, and noting that then Gal(E,K) < GL(m, q) and Gal(E,K) maps onto
Gal(F,K) under the canonical epimorphism of GL(m, q) onto PGL(m, q). Note
that for the projectivization F of E we have

F (Y ) = Y 〈m−1〉 +
∑

1≤i≤m
biY
〈m−i−1〉

with bi ∈ K and bm 6= 0. Again, to make history interesting, the evolution from the
covering Y p+1 +XY +Z considered in [A01] to the general projective polynomial F
displayed above can be explained by saying that first I changed the exponent of Y
from p+1 to q+1; then changed the “polynomial” q+1 to the “power series” 1+q,
which by adding more terms could be generalized to 1 + q + · · ·+ qm−1 = 〈m− 1〉,
giving the more general surface F̂m(Y ) = Y 〈m−1〉+XY +Z; and then by inserting
more similar terms in Y obtained F . The thought process to go from q+1 to 〈m−1〉
took almost four years. At any rate, for the meromorphic series field K̂ = k(X,Z)
over an algebraically closed field k of characteristic p, essentially in [A17], by us-
ing the Zassenhaus-Feit-Suzuki Theorem, I proved that Gal(F̂2, K̂) = PGL(2, q);
and then essentially in [A21], by using Theorem I from the Cameron-Kantor pa-
per [CKa], I proved that Gal(F̂m, K̂) = PGL(m, q) for all m > 2. Moreover, as
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pointed out in [A28] and [A29], for the rational function field K̃ = k(X,Z) we have
Gal(F̂m, K̃) = PGL(m, q) for all m > 1, and for the corresponding vectorial polyno-
mial Êm(Y ) = Y q

m

+ XY q + ZY we have Gal(Êm, K̃) = Gal(Êm, K̂) = GL(m, q)
for all m > 1,

It is quite an interesting story how I met Martin Liebeck. On one of my pilgrim-
ages to Manhattan, Kansas, Ernie Shult explained to me how symplectic groups
have one projective orbit, unitary groups have two, and orthogonals three. On
hearing this I asked whether just as Kantor’s Rank 3 Theorem can recognize these
three groups from the three subdegrees of their action on the singular hyperquadric,
could one recognize the orthogonal groups from their three orbit sizes? To which
Ernie said, “Most likely.” That year Bill Kantor was in Japan and, having asked
him whom I should consult while he was away, told me to talk to his friends Steve
Smith of Chicago and Jonathan Hall of Michigan State. So I asked my question
of Steve Smith. He proceeded to email it to Martin Liebeck in London, Jan Saxl
in Cambridge, and Cheryl Praeger (another student of Peter Neumann) in Perth,
Australia. A reply came from Martin that yes, he can show that the orbit sizes do
determine the orthogonal groups and also the unitary groups. At my request he
published his Orbit Size Theorems in his paper [Li2] as a companion to my paper
[A24]. In the meantime I had also visited Michigan State, where Jonathan Hall,
being busy as a new chairman, suggested I talk to the young German group theorist
Ulrich Meierfrankenfeld. In Ulrich I had acquired a third friendly and kind group
theory guru, like Michael O’Nan and Ernie Shult, to whom I could ask obvious (not
to me) questions.

Recently, when I was spending a month in London learning group theory from
Martin Liebeck, he told me how he and Gary Seitz, in their paper [LSe], used
Lang’s Theorem to simplify Aschbacher’s 1984 paper [As2]. Although I was a
junior colleague of Serge Lang in Columbia University, during the two-year period
1955-57, it has taken me forty years to become a fan of his, for as it is said, “For
everything there is a season under Heaven.” At any rate, Lang’s Theorem, which
he proved in his 1956 paper [Lan], is a versatile technique for first proving things
over the algebraic closure of GF(q) and then bringing them down to the level of
GF(q). In its most primitive form it says that given any x ∈ GL(m, q) = the group
of all nonsingular m×m matrices over the algebraic closure of GF(q), we can find
y = (yij) ∈ GL(m, q) such that x = y(q)y−1 where y(q)

ij = yqij . Note the resemblance
of this with the (q − 1)-cyclic equation Y q−1 = X over GF(q)(X).

Section 15: Nice equations for nice groups

Returning to a chronological recounting of the story, after getting Serre’s letters
of 1988 and after retraining myself in group theory, in my 1992 paper [A17] I
showed the answers to both of his questions to be the same by proving that for the
Galois group Gn = Gal(Fn, k(X)) of the trinomial Fn(Y ) = Y n +XY t + 1 over an
algebraically closed field k of characteristic p where n and t are any integers with
0 < n− p = t 6≡ 0 mod p, we have Gn = the alternating group An provided t > 1
except when (p, t) = (7, 2). This I proved by using MTR + CDT. I also showed
that in the exceptional case Gn = A9 or PSL(2, 8) depending on whether a certain
six-degree polynomial with coefficients in a hyperelliptic function field over GF(7)
does or does not factor.
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Then, as reported in my 1994 paper [A20], after intensively working day and
night for four months, I managed to factor the said polynomial and thereby proved
that for (p, t) = (7, 2) we have Gn = PSL(2, 8). As I said in [A20], the deep con-
centration reached during the factorization gave me the semblance of Savikalpa
Samadhi, which is one step lower than Nirvikalpa Samadhi, the ultimate goal of
Dhayna Yoga. After giving up this body, the devotees of Shiva go to his abode
Kailasa, and similarly the devotees of Vishnu go to his abode Vaikuntha and the
devotees of Krishna go to Goloka = the Cow-Heaven. So I may aspire to go to the
Factor-Heaven. After all, what is Galois Theory but Group Theory plus Factoriza-
tion!

Ultimately, from the above proof, in case of t > 2, I was able to replace CDT
by the Jordan-Marggraff Theorems on limits of transitivity, but in case of t = 2, I
have not been able to remove CDT, and hence CT, to this day. To do so is a good
thesis problem.

The construction of explicit unramified coverings of the affine line for the re-
maining alternating groups and, in case of p = 2, for the symmetric groups was
achieved in my papers [A17] and [A19]. In case of p = 2, as reported in [AOS], the
assistance of my sixth Ph.D. student, Avinash Sathaye, was valuable.

Before tackling the t > 1 case, I first gave my own proof of the t = 1 case by using
the Zassenhaus-Feit-Suzuki Theorem. My proof as well as Serre’s original proof
served to show that more generally we have Gal(Y q+1 +XY +1, k(X)) = PSL(2, q)
for any power q > 1 of p. Serre described my proof as an ascending proof versus
his descending proof. Serre’s proof was included in an appendix to my 1992 paper
[A17]. After the paper was published Serre found out that his proof was essentially
given in Carlitz’s 1956 paper [Ca2]. Let me also note that after the factorization
yoga of my paper [A20], Serre found a “modular” substitute for it, as he wrote me
in letter [Se3], which appeared in the Springer volume of papers presented at my
60th birthday conference, edited by Chandrajit Bajaj.

In studying Volume III of Huppert-Blackburn [HBl], I learnt enough about the
Mathieu groups to prove that, as reported in my papers [A18], [A22] together with
my joint paper [APS] with Popp-Seiler and my joint papers [AY1], [AY2] with my
twenty-first Ph.D. student, Ikkwon Yie, and computing Galois groups over k(X),
for p = 3 the Galois group of Y 11 + XY 2 + 1 is M11 and it is isomorphic with
the Galois group of Y 12 + Y + X , verifying the fact that M11 has a permutation
representation of degree 12, and for p = 2 the Galois groups of Y 23 + XY 3 + 1
and Y 24 + Y +X are M23 and M24 respectively, with similar explicit polynomials
having Galois groups M22,M12 and Aut(M12) in case of p = 2. Again all these
give unramified coverings of the affine line. The M24 polynomial was “found” by
heuristically integrating the M23 polynomial to get Y 24 +XY 4 +Y +C and putting
in it X = 0 and C = X .

As I have indicated, by first changing the exponent of Y from q+ 1 to 1 + q and
then to 1 + q + · · ·+ qm−1 = 〈m− 1〉 for any integer m > 1, from the polynomial
Y q+1 +XY + 1, in [A21], I obtained the unramified covering of the affine line given
by

F ∗(Y ) = Y 〈m−1〉 +XY + 1 with Gal(F ∗, k(X)) = PSL(m, q),

and by taking X from the Y -term to the constant term, I obtained the unramified
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covering of the once punctured affine line given by

F ∗∗(Y ) = Y 〈m−1〉 + Y +X with Gal(F ∗∗, k(X)) = PGL(m, q).

In my paper [A24], by using Liebeck’s Orbit Size Theorems from his companion
paper [Li2], I showed that if q = q′2 where q′ is a power of p, then by “inserting” one
term in F ∗ we get an unramified covering of the affine line given by the quartinomial

F †(Y ) = Y 〈2m−2〉 +Xq′Y 〈m−1〉 +XY 〈m−2〉 + 1

with Gal(F †, k(X)) = PSU(2m− 1, q′)

where PSU denotes projective special unitary group. Likewise in my papers [A25]
and [A26], by using Kantor’s Rank 3 Theorem from his paper [Ka1] and Theorem
II from Cameron-Kantor’s paper [CKa], I showed that by “inserting” two or three
terms in F ∗ we get unramified coverings of the affine line given by a quintinomial
and a sextinomial with Galois groups PSp(2m, q) and PΩ−(2m, q) respectively,
where these denote the projective symplectic group and the projective “negative”
orthogonal group, i.e., the one with Witt index m− 1; the one with Witt index m
may be called “positive.”

It is amazing that all the above nice equations are special cases of the explicit
equations giving unramified coverings of the affine line which, by divine guidance
aided by experience with singularities, I wrote down in my 1957 paper [A05].

Section 16: Nephews and nieces

Then as a pleasant finale, in their brilliant 1994 papers [Ray] and [Ha1], Michel
Raynaud and David Harbater proved the Affine Line Conjecture and Affine Curve
Conjecture respectively. Since their proofs are existential, it seems worthwhile
to march on with the project of finding explicit nice equations for nice groups,
especially because this contributes to the following conjecture which I made in my
1995 paper [A22] and repeated in my 1999 paper [A33] and which says that for any
power q > 1 of the prime characteristic p we have:

Affine Arithmetical Conjecture. πA(LGF(q)) = Q1(p).

This is based on the philosophy that going from an algebraically closed ground
field to a finite field is like adding a branch point, and so πA(LGF(q)) should equal
πA(Lk,1) where k is an algebraically closed field of characteristic p.

Here is another conjecture which I communicated to Harbater some years ago
and which follows the philosophy that, in characteristic p, whatever could happen
should happen (provided there is enough room).

Affine Inertia Conjecture. Let G be a quasi-p group together with a subgroup H
such that H and its conjugates generate G, and H has a normal p-Sylow subgroup
P with cyclic quotient H/P . Then there exists an unramified covering of the affine
line Lk with Galois group G such that H is the inertia group at some point above
the point at infinity.

Since Mike Artin and I were both students of Zariski, we are gurubandhus,
where bandhu is brother in Sanskrit. Harbater, being a student of Artin, is my
nephew. For the same reason Caroline Melles, who encouraged me to write this
historical essay, is my niece. Again, Kate Stevenson, who has contributed to the
Affine Arithmetical Conjecture in her joint paper [GSt] with Bob Guralnick, and
Rachel Pries, who has contributed to the Affine Inertia Conjecture in her paper
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[Pri], being students of Harbater, are my grandnieces. Once again, what a small or
nice world!

Somewhat stretching the genealogy, Mike Artin’s father, Emil Artin, being
Zariski’s friend, was supposed to have become my mathematical uncle (= post-
doctoral mentor) when, as suggested by him and Zariski, I was in 1958-59 working
for a year in Princeton; however, before I arrived, Artin returned to Germany. Like-
wise, Claude Chevalley, another friend of Zariski, was supposed to have become my
mathematical uncle when, at his invitation, in 1955 I accepted a job in Columbia,
but he returned to France before I arrived. Many years later, when my father
passed away, I found among his correspondence a letter which Zariski wrote to him
in 1954 saying, “Your son has solved a problem which both Chevalley and I had
unsuccessfully worked on.”

Originally I came to the Affine Arithmetical Conjecture when, influenced by Mike
Fried’s frequent comments, I started calculating the Galois groups of my previous
nice equations over prime fields as opposed to my earlier calculations which were
over algebraically closed fields. That is, in Fried’s language, I started calculating
the arithmetic monodromy groups in addition to the geometric monodromy groups.
As reported in my papers [A33] and [A34], it turned out that then the linear
and symplectic groups got enlarged to their semilinear incarnations. For instance
PGL(m, q) got enlarged to PΓL(m, q) = ΓL(m, q)/(scalar matrices) where ΓL(m, q)
may be defined to be the semidirect product of Aut(GF(q)) and GL(m, q) with the
componentwise action of the former on the latter.

In my 1996 paper [A27] I revisited the factorizations which I had developed in
establishing the symplectic, unitary, and orthogonal group coverings and, at the
end of that paper, codified them into a mantra.

By using this mantra, in my joint papers [AL1], [AL2] with my twenty-fourth
Ph.D. student, Paul Loomis, more evidence towards the Affine Arithmetical Con-
jecture is provided by showing that the Galois group calculations of the symplectic
polynomials remain valid if the assumption of the ground field being algebraically
closed is replaced by the weaker assumption that it contains GF(q). Again by us-
ing the mantra, it is also shown that by deforming those polynomials their Galois
groups are enlarged from the isometry groups PSp(2m, q) to the similitude groups
PGSp(2m, q); note that a similitude is a linear transformation which may magnify
the form instead of leaving it unchanged as in an isometry.

The evidence gathered so far supports more the following variation of the Affine
Arithmetical Conjecture where, for any field κ, by πA(Lκ,∞), we denote the alge-
braic fundamental group of Lκ minus all of its points, i.e., the set of all finite Galois
groups of finite Galois extensions of κ(X) without any ramification condition.

Total Arithmetical Conjecture. πA(LGF(q),∞) = the set of all finite groups.

Section 17: Permutation polynomials and genus zero coverings

The calculation of the Galois groups of the polynomials considered so far was
facilitated by the fact that they are genus zero over the algebraically closed ground
field k of characteristic p in the sense that they are of the form h(Y ) +Xĥ(Y ) with
0 6= h(Y ) ∈ k[Y ] and 0 6= ĥ(Y ) ∈ k[Y ], and hence can be “solved” for X . Thus, for
instance, the polynomial F ∗ is genus zero over k. Some of our polynomials, such
as F ∗∗, are actually strong genus zero over k in the sense that they are of the form
h(Y )+X , but these tend to give unramified coverings of Lk,1 rather than Lk, which
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explains why most of our polynomials were genus zero but not strong genus zero.
Actually the unitary polynomial F † is not genus zero over k, but it is almost genus
zero over k in the sense that some irreducible factor of it is genus zero over k and
has the same splitting field over k(X) as F †. Similarly, the orthogonal polynomial
is also weak genus zero, whereas the symplectic polynomial is actually genus zero.
Likewise some polynomials could be almost strong genus zero in an obvious sense.

Recently I was able to grow certain PPs (=Permutation Polynomials) and EPs
(=Exceptional Polynomials) into odd dimensional orthogonal group coverings. To
explain this, recall that, for a power q∗ > 1 of p, a univariate polynomial h(Y ) with
coefficients in GF(q∗) is said to be a PP over GF(q∗) if the map GF(q∗)→ GF(q∗)
given by c 7→ h(c) is bijective. Moreover, h(Y ) is said to be an EP over GF(q∗)
if every irreducible factor of the bivariate polynomial [h(Y ) − h(Z)]/(Y − Z) in
GF(q∗)[Y, Z] is reducible in GF(p)[Y, Z] where GF(p) is the algebraic closure of
GF(p). Clearly [h(Y )− h(Z)]/(Y −Z) is the twisted derivative of h(Y ) +X . Now
it is a basic fact (see Fried [Fri]) that a separable h(Y ), i.e., h(Y ) ∈ GF(q∗)[Y ] \
GF(q∗)[Y p], is an EP over GF(q∗) iff it is a PP over GF(q∗∗) for infinitely many dif-
ferent powers q∗∗ of q∗. Since the compositions of EPs are themselves EPs, it suffices
to study indecomposable EPs. The search for PP’s goes back at least to Dickson’s
thesis of 1897, which was essentially included in his 1901 book [Dic]. Spurred on
by the Carlitz Conjecture of 1966, it culminated in the 1993 seminal paper [FGS]
of Fried-Guralnick-Saxl, where it was settled affirmatively by invoking CT. In 1993
Wan [Wan] put forward a stronger version of the Carlitz conjecture which was set-
tled by Lenstra [Len] in 1995 without using CT. The Carlitz Conjecture says that,
assuming p 6= 2, the degree of any indecomposable EP over GF(q∗) is necessarily
odd. The Wan Conjecture says that, without any assumption on p, for the degree
n of any indecomposable EP over GF(q∗) we must have GCD(n, q∗ − 1) = 1.

Again let q > 1 be a power of p, let m > 0 be an integer, and recall that an
affine group is a subgroup of the semidirect product of GL(m, q) acting on GF(q)m,
and hence its degree is a power of p. In the Fried-Guralnick-Saxl paper [FGS] it
was shown that except when p = 2 or 3 the Galois group of an indecomposable
EP must be an affine group. This was rounded off by the discovery of the MCM
and LZ polynomials, by which we respectively mean the p = 2 family of EPs of
degree q(q− 1)/2 found by Mueller-Cohen-Matthews [Mue], [CMa] in 1994 and the
p = 3 family of EPs of degree q(q − 1)/2 found by Lenstra-Zieve [LZi] in 1996;
both of these have PSL(2, q) as Galois group over k(X). In the direction of pure
Galois Theory the results of the FGS paper were extended by Guralnick-Saxl in
their follow-up guiding-light paper [GSa] of 1995 in which they studied the Galois
groups of h(Y ) + X for an arbitrary univariate polynomial h(Y ) over k(X). In
particular, in Theorem 3.1(B) on page 131 of the Guralnick-Saxl paper [GSa] there
is a list of all the possible classical groups which may occur as Galois groups of
h(Y )+X , i.e., of strong genus zero equations over k. Amazingly, this list is exactly
complimentary to the list of classical Galois groups of nice equations which I had
found and, as noted above, all of which are almost genus zero over k. Actually this
is not so surprising, because I was usually looking for unramified coverings of Lk
rather than Lk,1.

In greater detail, the list of classical groups I had found consisted of symplectic
groups, odd dimensional unitary groups, and even dimensional “negative” orthog-
onal groups, whereas the Guralnick-Saxl list consists of even dimensional unitary
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groups, even dimensional “positive” orthogonal groups, and odd dimensional or-
thogonal groups.

As partly reported in [A27], I was able to grow the MCM and LZ polynomials
into strong genus zero coverings with odd dimensional orthogonal groups as Ga-
lois groups. Similarly, I was able to grow some Dickson polynomials into strong
genus zero coverings with even dimensional “positive” orthogonal groups as Galois
groups; for the two-dimensional case of this together with an introduction to Dick-
son polynomials see my joint paper [ACZ] with Steve Cohen and Mike Zieve. For
even dimensional unitary groups I am preparing a joint paper with Nick Inglis.

In his forthcoming paper [Gur], Bob Guralnick has put forward an exciting new
conjecture, which supports my experience with genus zero coverings and which says
that except for a finite number of simple groups, the composition factors of the
Galois groups of (almost) genus zero coverings over k are either cyclic, alternating,
or Lie-type in the same characteristic p as k.

Section 18: Higher dimensional algebraic fundamental groups

Turning to varieties of dimension d > 1 over an algebraically closed ground field
k of characteristic p, for any integer t ≥ 0 let Pt(p) be the set of all (p, t)-groups,
i.e., finite groups G such that G/p(G) is an abelian group generated by t generators.
Note then that for t ≤ 1 we have Pt(p) = Qt(p), but for t > 1 the set Pt(p) is much
smaller than the set Qt(p).

The following conjectures which were implicit in my 1955 paper [A05] and my
1959-60 papers [A06] respectively were made explicit in my 1997 paper [A28].

Normal Crossings Local Conjecture. πLA(Nd
k,t) = Pt(p) for d > 1 and t > 0.

Normal Crossings Global Conjecture. πA(Ldk,t) = Pt(p) for d > 1 and t ≥ 0.

In the Local Conjecture, Nd
k,t represents a neighborhood of a simple point on a

d-dimensional algebraic variety over k from which we have deleted a divisor having
a t-fold normal crossing at the simple point, and πLA(Nd

k,t) is the corresponding
algebraic local fundamental group, by which we mean the set of all Galois groups of
finite unramified local Galois coverings of Nd

k,t. Algebraically speaking, let R be the
formal power series ring k[[X1, . . . , Xd]], let I be the quotient field k((X1, . . . , Xd))
of R, let Ω̂ be the set of all finite Galois extensions of I in a fixed algebraic closure
of I, and let Ω be the set of all J ∈ Ω̂ such that X1R, . . . ,XtR are the only
height-one primes in R which are possibly ramified in J . We may now identify
πLA(Nd

k,t) with the set of all Galois groups Gal(J, I) with J varying in Ω. In the
1955 paper [A01] I proved the inclusion πLA(Nd

k,t) ⊂ Pt(p), and by examples showed
that πLA(Nd

k,t) contains unsolvable groups. By refining these examples, in [A28]
and [A29] I showed that, for any integer m > 1 and any power q > 1 of p, upon
letting K̃d = k(X,Z,X3, . . . , Xd) and K̂d = k((X,Z,X3, . . . , Xd)) with 〈m − 1〉 =
1+q+ · · ·+qm−1, for the projective polynomial F̂m(Y ) = Y 〈m−1〉+XY +Z and its
vectorization Êm(Y ) = Y q

m

+XY q +ZY , we have Gal(F̂m, K̃d) = Gal(F̂m, K̂d) =
PGL(m, q) and Gal(Êm, K̃d) = Gal(Êm, K̂d) = GL(m, q). It follows that πLA(Nd

k,t)
contains PGL(m, q) and GL(m, q) for every integer m > 1 and every power q > 1
of p.

In the Global Conjecture, Ldk,t represents the d-dimensional affine space Ldk over
k from which we have deleted t hyperplanes H1, . . . , Ht which together with the
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hyperplane at infinity have only normal crossings, and πA(Ldk,t) is the set of all finite
Galois groups of unramified coverings of Ldk,t. Again, in the 1959-60 papers [A06]
I proved the inclusion πA(Ldk,t) ⊂ Pt(p), and the above projective and vectorial
polynomials show that πA(Ldk,t) contains PGL(m, q) and GL(m, q) for every integer
m > 1 and every power q > 1 of p. In [A28] the Global Conjecture is generalized
by replacing hyperplanes by hypersurfaces, and also a Local-Global Conjecture is
formulated.

In a recent discussion, David Harbater has raised the question whether all the
members of πLA(Nd

k,t) as well as πA(Ldk,t) actually belong to P ′t (p) where P ′t (p) is the
set of all G in Pt(p) for which p(G) has an abelian supplement in G, i.e., an abelian
subgroup of G which together with p(G) generates G. To examine Harbater’s
question, I asked Gernot Stroth to make me some examples of groups in Pt(p)
which are not in P ′t (p). Here are some of the beautiful examples produced by Stroth
for t = 3, for which I have been scanning (so far unsuccessfully) the existence or
nonexistence of suitable coverings. To review the standard terminology used below,
Zn is the cyclic group of order n, and Z(A) is the center of a group A; i.e., Z(A)
is the set of all elements of A which commute with every element of A. For any
groups A and B with Z(A) = Z(B) = Z2 = {1, i}, the central product A ∗ B of
A and B is the quotient of their direct product A × B by the normal subgroup
{(1, 1), (i, i)} of order 2. Finally, for any groups A and B, by an A-extension of
B we mean a group C together with an exact sequence 1 → A → C → B → 1;
this extension is split means some subgroup of C maps isomorphically onto B, and
central means the image of A in C is Z(C).

The first set of Stroth groups G are for p = 3, and they are G = A ∗ GL(2, 3),
where A is either the dihedral group D8 of order 8 or the quaternion group Q8 of
order 8. Moreover, GL(2, 3) can be replaced by its flat version GL[(2, 3), by which
we mean the other group which, like GL(2, 3), is a nonsplit central Z2 extension of
PGL(2, 3). Similarly, for any prime power q ≡ 3(4) of any odd prime p, we get four
Stroth groups by replacing GL(2, 3) by the unique group H (or its “flat version”
H[) such that SL(2, q) < H < GL(2, q) with [H : SL(2, q)] = 2. Turning to p = 2,
we get Stroth groups G = B ∗GL(3, 4) where B is an extra-special group of order
27; i.e., B is a nonsplit central Z3 extension of Z2

3 with Z(B) = Z3; note that
there are two versions of B, depending on whether it has only elements of order
3 (quaternion type) or also elements of order 9 (dihedral type); again, instead of
GL(3, 4) we can take its flat version GL[(3, 4).

I would like to assign as a thesis problem determining whether Q8 ∗ GL(2, 3)
belongs to πLA(N3

k,3) for p = 3.
As an aid to the above problem, in the paper [A35] I have obtained an Embedding

Criterion. To explain this, recall that a GEP (= Galois Embedding Problem) is
a (finite) Galois extension K ′/K together with an epimorphism r : G′′ → G′ of
finite groups and an isomorphism r′ : G′ → Gal(K ′,K). A solution to this GEP
is a Galois extension K ′′/K together with an isomorphism r′′ : G′′ → Gal(K ′′,K)
such that K ′′ is an overfield of K ′ and the diagram commutes, i.e., r′r = sr′′

where s : Gal(K ′′,K) → Gal(K ′,K) is the Galois theoretic epimorphism. Then
the Embedding Criterion proved in [A35] says that the GEP with the canonical
epimorphism r : GL(m, q) = G′′ → G′ = PGL(m, q), where m is divisible by
q − 1 and GF(q) ⊂ K, has a solution iff K ′/K is the splitting field of a separable
projective q-polynomial of q-degree m over K. This I deduced from the Polynomial
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Theorem, which I proved in [A35] and which says that if K ′′/K is a Galois extension
where K is an overfield of GF(q) having at least qm elements, then Gal(K ′′,K) is
abstractly isomorphic to a subgroup of GL(m, q) iff K ′′/K is the splitting field of
a separable vectorial q-polynomial of q-degree m over K.

When, while proving the above Embedding Criterion, I did not know whether
the diagram commuted, Michael Aschbacher very kindly helped out to make it
commute by showing that every automorphism of PGL lifts to an automorphism of
GL. The main lesson I learnt in doing this lifting is the importance of transvections,
which are the basis-free incarnations of elementary row and column operations of
basic matrix theory.

Section 19: Generalized iteration and modular Galois descent

Let m > 0 be any integer, let q = pu > 1 be any power of a prime p, and let us
consider the generic vectorial q-polynomial

E](Y ) = Y q
m

+
∑

1≤i≤m
XiY

qm−i

of q-degree m over K] = kq(X1, . . . , Xm) where X1, . . . , Xm are indeterminates
over a field kq of characteristic p which we assume contains GF(q). Now, as proved
by E. H. Moore in his path-breaking 1896 paper [Moo], Gal(E],K]) = GL(m, q);
for a very short elementary proof of this see my 1999 paper [A34]. However, as
shown in [A34], if we do not assume that kq contains GF(q), then the Galois group
gets bloated towards ΓL(m, q); and in fact if kq coincides with GF(p), then the
Galois group coincides with ΓL(m, q). Thus, referring to the Total Arithmetical
Conjecture, although we succeed in showing that ΓL(m, q) belongs to πA(LGF(p),∞),
we lose GL(m, q). So we want to find a method of descending from GF(q) to GF(p).
More generally, given any integer n > 0, we shall try to descend from GF(qn) to
GF(q), which amounts to ascending from GF(q) to GF(qn). As we shall explain
in a moment, we do this by introducing Generalized Iteration. The fact that the
Total Arithmetical Conjecture deals with coefficients in the one variable polynomial
ring kq[X ], whereas here we are working with the many variable polynomial ring
kq[X1, . . . , Xm], can be taken care of by invoking Hilbert Irreducibility, as explained
in Helmut Voelklein’s new book [Vo3], to specialize to one variable.

A similar situation prevails for the Affine Arithmetical Conjecture vis-a-vis the
vectorization E∗∗(Y ) = Y q

m

+ Y q + XY of the projective trinomial F ∗∗(Y ) =
Y 〈m−1〉 + Y q +XY ; namely, as I have shown in [A33], we have Gal(E∗∗, kq(X)) =
GL(m, q) and Gal(E∗∗,GF(p)(X)) = ΓL(m, q). Since this gives an unramified
covering of the once punctured affine line rather than the affine line itself, we
should really be working with the vectorization of the projective trinomial F ∗(Y ) =
Y 〈m−1〉 + XY q + Y , for the details of which see [A33].

The idea of Generalized Iteration came out of Carlitz’s explicit class theory [Ca1]
(for a modern version see Hayes [Hay]), which was revived by Drinfeld [Dri]; my
Drinfeld Module Theory gurus have been Gekeler [Gek], Goss [Gos] and Thakur
[Tha], and I spent several weeks visiting them in Saarbrücken, Ohio State and
Arizona respectively. To explain it, let K be any overfield of GF(q), and let

E(Y ) = Y q
n

+
∑

1≤i≤m
biY

qm−i
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with bi ∈ K and bm 6= 0 be any separable monic vectorial q-polynomial of q-degree
m over K. For every nonnegative integer j we inductively define the (ordinary)
j-th iterate E[[j]] of E by putting E[[0]] = E[[0]](Y ) = Y , E[[1]] = E[[1]](Y ) = E(Y ),
and E[[j]] = E[[j]](Y ) = E(E[[j−1]](Y )) for all j > 1. Next we define the generalized
r-th iterate E[r] of E for any r = r(T ) =

∑
riT

i ∈ K[T ] with ri ∈ K (and
ri = 0 for all except a finite number of i), where T is an indeterminate, by putting
E[r] = E[r](Y ) =

∑
riE

[[i]](Y ). Note that for the Y -derivative E[r]
Y (Y ) of E[r](Y )

we clearly have E[r]
Y (Y ) = E

[r]
Y (0) = r(bm), and hence if r(bm) 6= 0, then E[r] is a

separable vectorial q-polynomial over K whose q-degree in Y equals m times the
T -degree of r. Now let us fix

s = s(T ) ∈ GF(q)[T ] of T -degree n with s(Xm) 6= 0

and note that then E[s] is a separable vectorial q-polynomial of q-degree mn in Y
over K. Let GF(q, s) be the zero dimensional local ring GF(q)[T ]/s(T )GF(q)[T ],
and let GL(m, q, s) be the group of all invertible m×m matrices over GF(q, s). Note
that if s is irreducible in GF(q)[T ], then GL(m, q, s) is isomorphic to GL(m, qn).
In [A34] I made the following:

Generalized Iteration Conjecture. Gal(E][s],K]) = GL(m, q, s).

Carlitz [Ca1] proved this for m = 1, and in my joint paper [AS1] with my twenty-
third Ph.D. student, Ganesh Sundaram, it was proved for s = T n. Assuming s to
be irreducible in GF(q)[T ] and recalling that q = pu, in my forthcoming joint paper
[AS2] with Ganesh it is proved when m is square-free with GCD(m,n) = 1 and
GCD(mnu, 2p) = 1. This proof uses CPT = Classification of Projectively Transitive
Permutation Groups, whose foundation is Burnside’s Theorem; it also uses the
Carlitz case, as well as the Singer Cycle Lemma, which implies that the determinant
of any Singer Cycle, i.e., a matrix of order qm−1 in GL(m, q), is an element of order
q − 1 in GF(q). In my forthcoming paper [A37] I have extended this proof when
the last hypothesis is replaced by the weaker hypothesis that GCD(m, p) = 1. In
another forthcoming paper [A36] I have proved the case when m = n = 2. Likewise,
in my forthcoming paper [AKe] with my twentieth Ph.D. student, Pradipkumar
Keskar, I have proved the case when n < m and GCD(m,n) = 1.

When Serre told me that his proof of the Galois group of Y q+1 +XY + 1 being
PSL(2, q) included in an appendix of my paper [A17] was essentially Carlitz’s 1956
proof [Ca2], I thought that was my first encounter with Carlitz. Then I remembered
that a Binomial Lemma in my resolution proof of arithmetical surfaces turned out
to be related to some Binomial Identities proved by Carlitz in the thirties, as was
pointed out to me by my Purdue colleague Michael Drazin. Counting the Carlitz
Conjecture incidence to be the third, the present one becomes my fourth encounter
with the great Carlitz, who wrote more than 700 papers and who passed away a
few months ago at the ripe old age of 92.

In my various trips to Cambridge and Florida, John Thompson has been very
helpful in patiently explaining to me the mysteries of Singer Cycles, Burnside’s
Theorem, CPT, and other group theory folklore which I needed to use. Eventually
I may aspire to enter the rarefied atmosphere of his [Th1], [Th2], as well as Matzat-
Malle’s [MMa] and Voelklein’s [Vo1], [Vo2], characteristic zero Galois theory work.
I hope to do so by “lifting” some of my equations from characteristic p to character-
istic zero. Indeed that is why I have called some of them E to remind us of elliptic
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curves and more generally of abelian varieties; in turn, E[s] should remind us of
s-division points of abelian varieties, since in the theory of Generalized Iteration
I am trying to mimic Serre’s characteristic zero work [Se1] on division points of
elliptic curves and his unpublished generalization of it [Se2] to abelian varieties.
My joint paper [ACZ] with Cohen and Zieve may be viewed as a small beginning
of the lifting project.

By now it should be abundantly clear that my own personal interest and pleasure
is in finding explicit nice equations with prescribed Galois groups, which I can hold
in my hand, rather than in simply saying that “there exist” such and such coverings
or whatever. The trouble with that is the lack of such an abstract concept of “there”
in my Indian background or, if you prefer, in my child-like high-school or grade-
school mind. I want to know “where” does it (or does it not) exist? Though of
course, with great respect, I bow my head to the abstract existential work of my
superiors.
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