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Abstract

We have studied single crystals of C7g by Raman scattering and photolumi-
nescence in the pressure range from 0 to 31.1 GPa. The Raman spectrum at
31.1 GPa shows only a broad band similar to that of the amorphous carbon
without any trace of the Raman lines of Cry. After releasing the pressure
from 31.1 GPa, the Raman and the photoluminescence spectra of the recov-
ered sample are that of the starting C7g crystal. These results indicate that
the C'7p molecules are stable upto 31.1 GPa and the amorphous carbon high
pressure phase is reversible, in sharp contrast to the results on solid Cgy. A

qualitative explaination is suggested in terms of inter- versus intra-molecular
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interactions.
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Among the many fascinating properties of fullerenes, studies on structure of Cgy and
C7 and their structural transformations as a function of temperature and pressure have
attracted considerable attention [[. The orientational order-disorder transition occurs at
T. ~ 250 K in Cg [P] and the transition temperature increases with pressure (~ 100 K/GPa)
resulting in the room-temperature phase transition at ~ 0.4 GPa [J]. The stability of the
Cgo buckyballs at high pressures and the nature of the compressed phase have been debated
extensively in the last two years 0. Early x-ray diffraction experiments [H] showed a
structural phase transition of cubic Cgy to a lower symmetry phase at ~ 20 GPa under
non-hydrostatic compression. Raman Spectroscopy [B] and optical reflectivity [[] studies
showed that the solid Csp undergoes an irreversible transformation to an amorphous carbon
phase at pressures greater than 22 GPa. Moshary et al. [[] reported anomalously high
transparency of the irreversible high pressure phase thus suggesting the collapse of the Cg
molecules into a new structure of carbon. However, the recent measurements [§ of optical
absorption at high pressures do not find any evidence of high transparency and reconfirm
the earlier conclusion of irreversible transformation of Cgy to amorphous carbon. It has also
been reported [J] that rapid, non-hydrostatic compression of solid Cg transforms it to cubic
diamond at about 20 + 5 GPa. Such a conversion to the cubic diamond has not been seen
in hydrostatic pressure experiments [g].

Compared to Cy, the stability of C7y - the second most abundant fullerene present in
the arc-processed carbon deposits, with respect to compression and the nature of the high
pressure phase is relatively much less understood. The order-disorder transitions occur at
~ 276 K and 337 K [L0[I]. Recent high pressure x-ray diffraction experiments [I[J] at
room temperature reveal fcc — rhombohedral phase transition at 0.35 GPa with fcc phase
coexisting till ~ 1 GPa. On further compression beyond 18 GPa, solid Cyy transforms to an
amorphous phase. Though it has been stated [[J] that the transition is irreversible, there
are no results on decompression and on the pressure-cycled recovered sample.

In this paper we report our high pressure Raman and photoluminescence (PL) results on

single crystals of C';gp upto 31.1 GPa. Raman lines, characteristic of intramolecular modes



of Cy could be followed upto 12 GPa. The lines broaden and shift with pressure, with a
characteristic change of slope at ~ 1 GPa which can be attributed to orientational ordering
transition. At P > 20 GPa, the Raman spectra starts showing a broad band near 1650 cm ™1,
matching very well with the high pressure phase of the amorphous carbon [[J| and there
are no Raman signatures corresponding to the intramolecular vibrations of the C7y. The
most spectacular result is that the Raman spectra at 0.1 GPa in the decreasing pressure run
and in the recovered sample (outside the diamond anvil cell(DAC)) are that of the starting
C7o crystal. In addition to Raman studies, PL. measurements have also been carried out as
a function of pressure. The PL of the pressure-cycled sample is seen to be similar to that
of the starting C79 sample. These results unambigously indicate that the amorphous phase
at high pressures is reversible and the C%; molecules are stable upto 31.1 GPa, in sharp
contrast to the high pressure results on the solid Clg.

The mixture of Cgy and C7y was prepared by the well-known contact-arc vaporization of
graphite in helium atmosphere. The soxhlet extract was subjected to repeated chromato-
graphic separation using neutral grade alumina column using toluene and hexane as eluent.
Based on the UV-visible absorption, infrared and Raman spectra, the purity of Cyq is esti-
mated to be better than 99%. Small single crystals were grown by the temperature gradient
vapour deposition method. High pressure Raman and PL experiments were carried out using
5145 A argon laser line (power < 5 mW before the DAC) at room temperature in a gasketed
Mao-Bell type DAC with 4:1 methanol-ethanol mixture as pressure-transmitting medium.
Pressure was measured by the well-known ruby fluorescence technique. The interference of
the ruby fluorescence (~ 1.78 eV to 1.67 eV at ambient pressure) with the PL of the Cry crys-
tal was minimised by keeping the ruby crystal (size ~ 20 um) as far away from the sample as
possible in the gasket hole (size ~ 200 um). The spectra were recorded using a DILOR-XY
spectrophotometer equipped with a liquid nitrogen cooled CCD detector as well as using
a Spex Ramalog with a cooled photomultiplier tube (Burleigh C31034A). Twelve pressure
runs were done reaching a maximum pressure of 31.1 GPa. The ruby fluorescence lines were

seen to broaden beyond 12 GPa but were clearly resolved upto the highest pressure.
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We shall first discuss the Raman results. In the spectral range of 200 - 1700 cm™!, we
observe 20 distinct intramolecular modes at almost ambient pressure (< 0.1 GPa) with the
sample in the DAC, similar to the earlier reports [[4[[. The region 1300 - 1400 cm™" is
dominated by the first order Raman line of the diamond anvils at 1332 cm~*. The variation
of Raman lines with increase in pressure in the range 0 to 31.1 GPa are shown in Fig. 1(a)
and (b). As the pressure increases, C7p Raman lines broaden and their intensities decrease
substantially. Even the 1567 cm™! mode which is most intense at ambient pressures can be
followed only upto ~ 12 GPa after which it merges with the background (see Fig. 1(a)).
We find that the slopes in the pressure dependence of the peak position of Raman modes
at 1567, 1516, 1470 and 1449 cm™! change at ~ 1 GPa [[@], which can be related to the
reported orientational ordering phase transition from fcc to rhombohedral structure observed
by x-ray diffraction [[[J.

At high pressures (P > 20 GPa), only a broad Raman band appears between 1500 and
1900 em~!. The intensity of this band is very weak. In order to improve signal to noise
ratio, these measured spectra (at P > 20 GPa) were subjected to discrete wavelet transform
filtering [[q]. The Raman spectrum at pressure 31.1 GPa shows a broad band peaked at
1720 cm~!. This broad band is exactly similar to the corresponding high pressure Raman
spectrum of the amorphous carbon which has a Raman band centered about w = 1580 cm™!
at ambient pressure and pressure derivative dw/dP of 4.4 cm™!/GPa [[3. On decrease of
pressure from 31.1 GPa, the Raman measurements at 10 GPa still show a broad band at 1600
cm™! (see inset Fig. 2), implying that the amorphous phase is present upto this pressure.
The most interesting result is that the Raman spectra at 0.1 GPa and that of the recovered
sample outside the DAC are that of the starting Cyy crystal wherein 20 lines are again seen
in the range of 200 - 1700 cm™!.

Fig. B(a) shows the PL spectra of the Cyy crystal in the DAC at four different pressures
of 0, 0.7, 1.7 and 2.8 GPa in the increasing pressure run. The PL spectrum of the starting
C'yo crystal is similar to the one reported earlier of the Cy film on Si substrate [[§]. The PL

bands move to lower energies with increasing pressure, similar to that in Cgy. At P > 2.8

>



GPa, the PL band shifts to less than 1.4 eV, the lower limit of detection in our experiments.
The red-shift of the PL band with pressure (~ - 0.09 eV/GPa) is mostly associated with the
reduction of the band gap which, in turn, is related to the broadening of the valence and
conduction bands due to pressure-induced enhancement of intermolecular interactions [[J].

The PL of the sample recovered after cycling to 31.1 GPa (Fig. B(b)) is very similar to
the starting sample, except for a small blue shift of 0.1 eV. The blue shift which reflects
a decrease in overlap between (7 orbitals can be either due to defects or clathration of
the alcohol molecules in Cyg, as seen in the case of Cg crystals [RJ]. The results shown in
Fig. f and Fig. B(b) unambiguously show that the amorphous phase as identified by Raman
spectra at high pressures beyond 20 GPa (cf Fig. 1(b)) reverts back to the solid C7y on
release of pressure. This is in sharp contrast to the irreversible amorphization of solid Cg
at P > 22 GPa. In the case of graphite (the parent material for fullerenes), transformation
to an amorphous phase occurs at 23 GPa [2I]] which has been reported to be reversible on
decompression [fj].

At this stage, we address the question if the possible quasi-hydrostatic nature of the
pressure in the DAC can influence the reversible nature of the high pressure phase. Broad-
ened linewidths and the separation (A) of the Ry and Ry ruby flurescence lines are generally
regarded as indicators of the presence of non hydrostatic stress components. In our exper-
iments, the R; and Ry lines are clearly resolved even at the highest pressure of 31.1 GPa,
although their linewidths are broadened for P > 12 GPa. The pertinent observation in
relation to our results is that in the return pressure run, the linewidth and the separation A
for P = 10 GPa and 0.1 GPa remain nearly similar whereas the measured Raman spectra
are drastically different. This indicates that the nature of pressure, in particular the extent
of non-hydrostaticity, does not influence our main results.

We can attempt to rationalise the pressure behaviour seen in C in comparison with
those observed earlier in Cg [f] and graphite [RIJ] based on intramolecular distances and

steric constraints [P4]. It must be remarked that pressure-induced amorphization is also

seen in other molecular crystals like SiOy B3], AIPO, [B4] and LiCsSO,4 [RF]. Some of these

6



systems like SiO, retain their amorphous nature on pressure release whereas other like AIPO4
and LiCsSOy4 recrystallise. In this picture pressure reduces the nearest neighbour distance
between the molecules and below a limiting distance, the intermolecular interactions can
become comparable to intramolecular interactions themselves, resulting in the distortion of
the molecular units and the formation of a new phase having different bonding and structure.

The nearest carbon-carbon distance between the neighbouring bucky balls is dg_¢ =
d,,_, - o, where d,,_,, is the nearest neighbour distance between the centres of the molecules
and o is the relevent molecular dimension. The Cgy molecules are spherical with ¢ = 7.06
A [. The Cy molecules, on the other hand are ellipsoidal [26] with long axis of 7.916
A and short-axis of 7.092 A and are oriented in the high pressure rhombohedral phase (P
> 1 GPa) with the long axis along the [111] direction and therefore, in the close packing
(110) plane, o = 7.092 A. The pressure dependence of de_¢, related to d,_, has been
obtained from the Murnaghan equation of state [27] using the known bulk modulus and its
pressure-derivative [[,[3,29]. For Cg solid, de_¢ reduces from 3.04 A (P = 0) to 1.89 A at
22 GPa whereas for Cyg solid it decreases from 3.39 A (P = 0) to only about 2.67 A at 20
GPa. In graphite, interlayer separation along the c-axis (equivalent to do_¢) reduces from
3.35 A (P =0) to 2.76 A at 23 GPa. The decrease of do_¢ is steeper in Cgo than that
of C7o and graphite. Theoretical calculations in Cgo indicate [R9] that as do_c decreases,
the intermolecular interaction, which is van-der Waal type at ambient pressure, acquires
some covalent character with an associated partial conversion from sp? to sp® hybridization.
When the fraction of sp® bonds increases at high pressures, the structure can be close to
amorphous carbon which is characterised by the presence of ~ 15% sp® bonding [B{]. A
similar mechanism could account for the amorphisation of C7g with pressure. The question
of reversibility of the high pressure phase on decompression should be related to the relative
strengths of the inter- versus intramolecular interactions. If the latter is sufficiently stronger,
the molecules will not be permanently distorted /destroyed and the high pressure amorphous
phase will be reversible on decompression. This seems to be the case in solid C%y where the

contact intermolecular distance (de_c = 2.67 A at 20 GPa) is much larger than in the
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high pressure phase of the Cg (do_c = 1.89 A at 22 GPa). While we have provided a
qualitative explanation as to why reversible transition is observed in Cy in contrast to Cl,
the present results should motivate detailed molecular dynamics simulation to understand
the high pressure phase of C'7o. It will be worthwhile to extend the measurements to higher
pressures to explore the possibility of irreversible transformations, if any, in Cr.

In conclusion, we have shown that the high pressure phase of the solid C7y has Raman
signatures of the amorphous carbon. The amorphous phase reverts to the crystalline Cy
on decompression as evident by the Raman lines associated with the intramolecular vibra-
tions of C7g and the PL, implying that the C7y molecules are stable upto 31.1 GPa. Our
experiments also suggest a need to do careful high pressure x-ray diffraction experiments
with particular emphasis on the decreasing pressure cycle and the pressure-cycled recovered
samples. Further, high pressure experiments on higher fullerenes will be interesting to see if
solid C'7y is unique in its ability to withstand pressure without irreversible transformation.
The present experiments on Cyg, in conjuction with those in Cgy and graphite should help
to obtain an understanding of the nature of C-C interactions and the relative stability of

different forms of carbon.
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FIGURES

FIG. 1. (a) Raman spectra in the range of 1400 - 1700 cm~! at different pressures upto 15.3
GPa in the increasing pressure cycle. Magnification factors are indicated. (b) Raman spectra in
the spectral range 1400 - 1900 cm™! at higher pressures. The thick solid lines are the wavelet

transforms of the corresponding recorded spectra, shown by thin lines.

FIG. 2. Raman spectra of C7g cycled to 31.1 GPa during the decreasing pressure run. The inset
shows the spectra at 10 GPa and 0.1 GPa, note that the full spectrum of the recovered sample

shows all the characteristic Raman lines of the starting C7g sample.

FIG. 3. Photoluminescence spectra (a) at four typical presssures in the increasing pressure cycle
and (b) of the recovered sample after cycling to 31.1 GPa, simultaneously recorded with Raman
spectrum shown in Fig. 2 (P = 0(Recovered)). Asteriks in top curve of (a) mark the contributions

from the ruby fluorescence.
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