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Anomalous Viscous Loss in Emulsions
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We propose a model for concentrated emulsions based on the speculation that a macroscopic shear
strain does not produce an affine deformation in the randomly close-packed droplet structure. The
model yields an anomalous contribution to the complex dynamic shear modulus that varies as the
square root of frequency. We test this prediction using a novel light scattering technique to measure
the dynamic shear modulus, and directly observe the predicted behavior over six decades of frequency
and a wide range of volume fractions.

PACS numbers: 82.70.Kj, 61.43.—j, 62.20.Dc, 83.50.Fc

An emulsion is a dispersion of liquid droplets suspendedwhich controls the very low frequency behavior). We
in a second, immiscible liquid that contains a surfactantest this prediction by exploiting a new light scattering
to stabilize the interfaces. Because they are deformablégchnique [8] that enables us to measure the moduli
droplets can be packed to very high volume fractions whileof concentrated emulsions over the required extended
still retaining integrity. These concentrated emulsions ardérequency range. We directly observe the prediateéd
remarkable because they are highly elastic, even thougtontribution over several decades of frequency for a wide
they are made up entirely of liquids [1,2]. They also pos-range of volume fractions.
sess viscous properties; this makes them viscoelastic. SuchThe central assumption of our model is that slip can
materials are often characterized by their complex dynamioccur in a local region, but only parallel to a certain
shear modulusG*(w) = G'(w) + iG"(w), whereG'(w)  plane. One physical realization of this weak plane is
is the elastic or storage modulus a6d(w) is the vis- two well-aligned layers of droplets that can slip relative
cous or loss modulus. These moduli reflect the in-phasto each other. However, more complex realizations
and out-of-phase responses to a small oscillatory shear ate also possible because the droplets can shift their
frequencyw. For concentrated emulsionS!(w) is large  positions. The essential requirement is that there is
compared toG"(w) at low frequencies, reflecting their no linear restoring force, and therefore no local static
elastic nature. Howeve6'(w) is anomalously low com- shear modulus, for strains of the entire region where the
pared to any reasonable expectation based on the dropldisplacement gradient is normal to the local weak plane.
deformations [2]. By contrast;’(w) is anomalously large Because the droplet packing is disordered, the orientations
compared to any reasonable expectation based on the fluid these weak planes vary randomly throughout the
viscosities [3]. While most work to date has focused on thesample. Thus the material has randomly anisotropic shear
storage modulus [1,2,4—7], the behavior of the loss modumoduli. This randomness leads to a broad range of stress
lus is equally important and interesting, and many dissiparelaxation rates, which yields the predicted power-law
tive mechanisms have recently been considered [3]. behavior of the macroscopic dynamic shear modulus.

Here we suggest an alternate mechanism that may To calculate the dynamic shear modulus, we construct
describe the origin of the puzzling behavior of the lossthe elastic free energy of a local region with a weak
modulus. We speculate that a macroscopically applieglane. We assume that the system is incompressible. We
shear strain does not produce an affine deformatiodefine a local Cartesian coordinate systesiic} and take
because the droplets are randomly packed. Insteathe local weak plane to be normal to tkeaxis. We
some regions slip instead of deforming. This increaseassume that the region is isotropic in theé plane and
the viscous dissipation and decreases the elasticity. lhasc — —c reflection symmetry; however, this degree
this Letter, we focus on those regions that slip, andof symmetry is not crucial. The elastic free energy of a
present a simple model to account for the anomalousegion centered at can then be written as [9]
behavior of the loss modulus. We show that, if the |
directions of the local planes of easy slip are randomly ~ F = 7 M(Pug, + o(F) [(uaa — upp)* + 4ul,]
orlen.ted,.there is acqntrlbutlon that vaneswa’é? Tr_ns . — As(Ptgattpy + Ma(F) 2, + 13,), 1)
contribution can dominate the usual viscous contribution
proportional tow (which controls the very high frequency where u;; is the symmetric strain tensor [9]. The first
behavior) as well as the constant elastic contributiorterm represents the energy cost of uniaxial compressions
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and must always be positive. The second and thirdion functions of the form{u,, (7, t)u..(0,0)) [10]. The
terms represent costs of deformations within #ré  essential approximation in this step is the breaking of av-
plane. Since the:-b plane is the weak plane, there is erages over the coordinate aXe#c} and strain variables
no energy cost for a shear gradient in thedirection, u;;. The strain-strain correlation functions are difficult
and the coefficienfy(¥) must vanish. To calculate the to compute becausg, b, and ¢ also vary withr. We
macroscopic mechanical response, we must average ovavoid this difficulty by assuming that the dominant con-
the orientational variation in space of thec} coordinate tribution comes from regions over which the coordinate
system with respect to the Cartesian coordinates in theystem{abc} is highly correlated [10]. Therefore the re-
lab frame,{xyz}. This is analogous to the problem of sponse of a given correlated region to shear is calculated
randomly oriented smectics, for which the free energyas if the region were infinite in extent, and individual re-
is given by Eq. (1) withA,(F) = A3(F) = A4(F) = 0,  gions are assumed to be uncorrelated from each other. This
and with ¢ varying randomly in space [10,11]. Model approximation is clarified by an alternate approach which
(1) with A4(F) = 0 has also been used to describeconsiders the zero-temperature response of the system to
anisotropic glasses [12] and “decoupled” lamellar phasean externally applied strain [11]. The desired quantity
of tethered membranes [13]. Note that it is ill behavedS(k = 0, ) can therefore be expressed as a sum of integrals
when A4(7) = 0; in the lamellar case, there are higher over wave vectog of products of disorder averages of the
order gradient terms in the elastic free energy, namelyform(a.(g)a,(¢)a.(—q)a,(—g)) and strain-strain correla-
bending elastic terms, that stabilize the free energy. Inion functions of the form(ii,, (g, t)it..(— g, 0)) [10]. To
the case of emulsions, however, it is unclear whether thevaluate the disorder averages, we assume that the coor-
appropriate stabilizing term is of the form of a bendingdinate axegabc} are correlated only over a characteristic
energy. Fortunately, the bending modulus does not affedistanceé, the size of the local region of slip:
the dynamic shear modulus at frequencies above a low e el 5 n
frequency cutoff,wmi, [10]. We may therefore neglect (@:(9)ay(@ax(=q)a,(=q) = flg™€7). (5)
the bending modulus for frequencies abavgi,, which  Since the local axes are uncorrelated with each other, cor-
is found experimentally to be about 10 Hz for emulsions. relation functions of the forna. (§)a, ()5, (—4)b,(—3))
To obtain the macroscopic dynamic shear modulusyanish. Finally, the strain is a derivative of the displace-
we must average the stress-stress correlation functioment, so the strain-strain correlation functions can be
S(F,1) = (o (F,1)0,(0,0)) over all 7. Thus G*(@)  written in terms of displacement correlation functions:
depends on the spatial Fourier transform of the stress-stregs, (g, 1) ii,,(— 3, 0)) = q%it,(§.1) t,(—§,0)), where
correlation function at zero wave vector, ga = ¢  a. The displacement correlations are calculated
Stk =0,1) = (Gy(k = 0,05k = 0,0). (2 from _the. Langevin equation _foﬁ(Z;,t),_Which includes

_ _ _ contributions from both elastic and viscous forces [10].

Hel’e, tildes refer to Spatlal Fourier tranSfOFmS, andThe Langevin equation y|e|ds Overdamped modes for fre-
oy (7, 1) is thexy component of the stress at positién guencies low compared 0, = n/p(27/£)? ~ 10° Hz,
and timer. The brackets correspond to both thermal anCl/vherep ~ 1 g/cn? is the mass density; = 1 cp is the

disorder averages [10]. We use the fluctuation-dissipatiofim viscosity, andé =~ 3 um, several droplet diameters,

theorem to obtain the dynamic shear modulus, is the estimated size of a local slip region. There are only
] * . two modes due to incompressibility. Thus
G'(w) =iwng(w) = kl—wT dte 'Sk =0,1). ) P y
B4 JO Sk=0,1)= jd(pd cog6)
)
The stress is the derivative of the free energy with respect X[ f1(6, ) e OO 1 £.(9, p) e 2091,
to the strain, calculated in the laboratory coordingtes}: ©6)
o (F,1) = a(Fay(F) B—Ii + by (F)by(F) 5—{ wherel’;(0, ¢) are the relaxation rates for the two modes
OUaa(r, 1) Supp(r, 1) with wave vectorg oriented at Eulerian angleg¢ and
+ cr(P)ey(7) oF ¢ relative to the local coordinatdabc}. The functions
Y Suee (7, 1) fi(6, ¢) depend on integrals over the magnituge= ||
1o oy, SF of f(g*>&?) defined in Eq. (5). Since the low frequency
* 2 L (F)by (7) + ay ()b (7)] Suay(F, 1)’ behavior ofG*(w) is controlled by the long time behavior

(4) of §(k = 0,1), we need only consider the long time limit
of Eq. (6). By low frequencies, we mean < w, =
wherea; (7), b;(7), andc;(7) are the components of the lo- ¢/na, where the high frequency cutodf, =~ 107 Hz is
cal Cartesian coordinatésbc}. Using Eq. (4) in Eq. (2), a characteristic relaxation frequency, given by the ratio of
we can express the stress-stress correlation fungtign)  an elastic constant to the viscosity. For an emulsion, the
in terms of a sum over products of disorder averages oflastic constants are of ordet/a, whereo is the surface
the form(a,(r)a,(7)a.(0)a,(0)) and strain-strain correla- tension anda is the droplet radius. Because there is a
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weak plane, one of the relaxation ratég, vanishes for DWS measurements, and use Eq. (7). Typical results are
0 = /2, while the other always remains of order.. = shown by the open symbols in Fig. 1(a) for an emulsion
Therefore values o nears /2 dominate the integral in with ¢ = 0.67. The data extend over seven decades to
Eqg. (6) at long times, and we may neglect the second termery high frequencies, illustrating the utility of this tech-
in the integrand. Physically, the regions with weak planesiique. They also exhibit the expected behavior; at low
nearly parallel to the directiodg = ¢/q of the shear frequencies, they are nearly independentspfeflecting
gradient exhibit the most solidlike response and thereforéhe dominant elastic behavior of a compressed emulsion;
have the slowest stress relaxation raiés We find at high frequencies, they approach a linear dependence on
thatI';y depends on the projecticgfpy = ¢ - ¢ = co®¥ = s, reflecting the dominant viscous behavior of a system
7/2 — 6. By symmetry,I'; cannot depend on the sign comprised solely of fluids. To determine the frequency
of g.. Thus we find that at long times the integral is of dependence in the intermediate regime, we subtract from
the formS(k = 0,7) ~ [dxe ', wherex = 7/2 — 6.  the data a constant, reflecting the low frequency elastic-
This Gaussian integral yield§(k = 0,7) ~ r~'/2, and ity, and a term proportional te, reflecting the high fre-
hence our main resuli*(w) ~ (iw/w.)"/?. quency viscous loss. The sum of these terms, adjusted to
To test this prediction, we must measure the dynamienatch the asymptotic limits of the data, is shown by the
shear modulus over a wide frequency range, extendindashed line in Fig. 1(a) . The resulting differende (s),
to frequencies higher than those accessible to traditionas shown as the solid symbols in Fig. 1(a). Its frequency
mechanical rheometers. We use a recently developediependence is'/2, as shown by the solid line through
light scattering technique [8] that relies on the fluctuation-the data. This reflects a contribution to the modulus be-
dissipation theorem, much in the spirit of our calculation.yond the purely elastic and purely viscous components.
We measure the motion of a particle due to thermal fluctuSimilar s'/2 contributions are observed for higher volume
ations, as parametrized by the mean square displacemefrgctions [see Fig. 1(b)]. The'/? contribution results in
(Ar2(1)). In a viscoelastic material, this motion reflects an(iw)'/2 contribution toG*(w), providing direct experi-
both viscous loss and energy storage in the medium. Thmental support for our proposed model.
modulus is obtained by generalizing the Stokes-Einstein To quantify the dependence of th&? contribution on
relation to finite frequencies, volume fraction, we fit the data by

fZ—Q ) (7) G(s) = Gy + A(¢)s"> + mas, (8)

Here, it is most convenient to work with the Laplace
frequency,s, with bars representing Laplace-transformed
quantities. The modulu§(s) is related toG*(w) through

the analytic continuation = iw [8]. This relation pro-
vides physical intuition about the meaning @f(s):
Nearly frequency-independent behavior reflects a large
elastic contribution sinc&’(w) dominates; linear behav-
ior in s reflects a large viscous contribution sinGé(w)
dominates. An intermediate frequency dependence re-
flects contributions to both components.

G(s) = s7(s) =

—
(=]
=)

(@)

—
(=}
&

G(s), AG(s)(dynes/cm?)
2

We use monodisperse emulsions [14] so that the droplets g (b)
themselves can be used as the probes [8]. Our emulsion is > 10%
comprised oft um diameter silicone oil droplets in water, §
stabilized by sodium dodecylsulphate at a concentration 208l 0.82 .
of 1I0mM. The emulsion is concentrated by centrifuga- lg, 073 .02
tion, and the volume fraction is determined by weighing, 2l L
before and after evaporating, the continuous water phase. 10° 10' 10* 10® 10* 10° 10° 107
We measureAr%(t)) with diffusing-wave spectroscopy s (sech)

DWS) in the transmission geometry [15,16]. The in-
( ) g y [15,16] G. 1. (a) The upper set of symbols shows the light scat-

terpretation assumes that the scattered intensity can lfring measurements of the dynamic shear modidiis) as
determined from the product of a form factor and struc-; t,nction of the Laplace frequency for an emulsion with

ture factor. Independent scattering measurements [17] = 0.5 um and ¢ = 0.67. The dashed line represents the
of monodisperse emulsions, whose continuous phase hasymptotic contributions of an elastic component at low fre-
been adjusted by adding glycerol to index-match the oifluéncies and a viscous component at high frequencies. The

; Ao ; ._difference,AG(s), shown by the lower set of solid points, rep-
phase, show that this factorization is valid even at the hlglﬁiesents the additional contribution to the modulus, and exhibits

volume fractions studied here. _ _ans'/2 frequency dependence, as shown by the solid line. (b)
To determine the modulus of the emulsion, we numeri-the !/2 contribution, AG(s), for the same emulsion at several

cally calculate the Laplace transform@fr2(r)) from our  volume fractions.
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where 7. is the high frequency viscosity antl(¢) the While our experiments focus on the high-frequency
magnitude of the!/2 term. As shown in Fig. 24(¢) in-  response, the dynamic modulus measured by our light
creases by a factor of 4 to 5 @sincreases above 0.64, scattering techniqgue matches that measured by mechanical
the close-packing density. This trend can be understootéchniques at lower frequencies [2]. Since the light
in terms of the¢ dependence of the characteristic stresscattering measurements rely on thermal fluctuations, the
relaxation frequencw,. = o/na. Comparing Eq. (8) to measured moduli are definitely in the linear regime,
our prediction following Eq. (6), we find(¢) ~ 1/,/w;,  even though motion along the weak planes can lead to
orA(¢) ~ \/n(p)a/o, wheren(s) is an effective viscos- changes in the droplet configurations. This is a direct
ity arising from dissipation in the liquid films. It should consequence of disorder in the droplet packing. The
depend inversely on the film thickness [3], which decreasesuccess of the model in predicting an/? contribution
by a factor of 4 over this range @f [2]. Thus our model to the dynamic shear modulus is especially remarkable
predicts a factor of 2 increase i(¢) over the measured since the loss modulus is sensitive to many different
range, in reasonable agreement with the experimental réaicroscopic mechanisms of dissipation, including flow in
sults. In addition, our model predicts a high frequency cutthe liquid films and flow in the surfactant films [3], which
off to the s'/2 behavior ofw, = o/na = 10’ Hz. This Wwe have neglected. This suggests that our results may be
is in excellent agreement with the cutoff observed experiapplicable to other randomly close-packed materials, such
mentally, as shown in Fig. 1 (the vertical scale in Fig. 1 isas foams, dense colloidal suspensions, and non-Brownian
logarithmic). Thus the experimental results are in accorgarticle suspensions.
with the predicted power law, the high-frequency cutoff We thank M. E. Cates, D.J. Durian, G. H. Fredrickson,
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strong support for the model. for communicating unpublished results. We gratefully ac-
A similar s!'/2 term in G(s) is also observed for knowledge support from NASA, the Petroleum Research
emulsions with¢ < 0.64, where packing constraints do Fund, and NSF Grant PHY 94-07194.
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