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Anomalous Viscous Loss in Emulsions
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We propose a model for concentrated emulsions based on the speculation that a macroscopic shear
strain does not produce an affine deformation in the randomly close-packed droplet structure. The
model yields an anomalous contribution to the complex dynamic shear modulus that varies as the
square root of frequency. We test this prediction using a novel light scattering technique to measure
the dynamic shear modulus, and directly observe the predicted behavior over six decades of frequency
and a wide range of volume fractions.

PACS numbers: 82.70.Kj, 61.43.–j, 62.20.Dc, 83.50.Fc
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An emulsion is a dispersion of liquid droplets suspend
in a second, immiscible liquid that contains a surfact
to stabilize the interfaces. Because they are deforma
droplets can be packed to very high volume fractions wh
still retaining integrity. These concentrated emulsions
remarkable because they are highly elastic, even tho
they are made up entirely of liquids [1,2]. They also po
sess viscous properties; this makes them viscoelastic. S
materials are often characterized by their complex dyna
shear modulus,Gpsvd ­ G0svd 1 iG00svd, whereG0svd
is the elastic or storage modulus andG00svd is the vis-
cous or loss modulus. These moduli reflect the in-ph
and out-of-phase responses to a small oscillatory she
frequencyv. For concentrated emulsions,G0svd is large
compared toG00svd at low frequencies, reflecting the
elastic nature. However,G0svd is anomalously low com-
pared to any reasonable expectation based on the dr
deformations [2]. By contrast,G00svd is anomalously large
compared to any reasonable expectation based on the
viscosities [3]. While most work to date has focused on
storage modulus [1,2,4–7], the behavior of the loss mo
lus is equally important and interesting, and many dissi
tive mechanisms have recently been considered [3].

Here we suggest an alternate mechanism that m
describe the origin of the puzzling behavior of the lo
modulus. We speculate that a macroscopically app
shear strain does not produce an affine deforma
because the droplets are randomly packed. Inst
some regions slip instead of deforming. This increa
the viscous dissipation and decreases the elasticity.
this Letter, we focus on those regions that slip, a
present a simple model to account for the anomal
behavior of the loss modulus. We show that, if t
directions of the local planes of easy slip are random
oriented, there is a contribution that varies asv1y2. This
contribution can dominate the usual viscous contribut
proportional tov (which controls the very high frequenc
behavior) as well as the constant elastic contribut
0031-9007y96y76(16)y3017(4)$10.00
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(which controls the very low frequency behavior). W
test this prediction by exploiting a new light scatterin
technique [8] that enables us to measure the mod
of concentrated emulsions over the required extend
frequency range. We directly observe the predictedv1y2

contribution over several decades of frequency for a w
range of volume fractions.

The central assumption of our model is that slip c
occur in a local region, but only parallel to a certa
plane. One physical realization of this weak plane
two well-aligned layers of droplets that can slip relativ
to each other. However, more complex realizatio
are also possible because the droplets can shift t
positions. The essential requirement is that there
no linear restoring force, and therefore no local sta
shear modulus, for strains of the entire region where
displacement gradient is normal to the local weak pla
Because the droplet packing is disordered, the orientati
of these weak planes vary randomly throughout t
sample. Thus the material has randomly anisotropic sh
moduli. This randomness leads to a broad range of str
relaxation rates, which yields the predicted power-la
behavior of the macroscopic dynamic shear modulus.

To calculate the dynamic shear modulus, we constr
the elastic free energy of a local region with a we
plane. We assume that the system is incompressible.
define a local Cartesian coordinate systemhabcj and take
the local weak plane to be normal to thec axis. We
assume that the region is isotropic in thea-b plane and
has c ! 2c reflection symmetry; however, this degre
of symmetry is not crucial. The elastic free energy of
region centered at$r can then be written as [9]

F ­
1
2 l1s$rdu2

cc 1 l2s$rd fsuaa 2 ubbd2 1 4u2
abg

2 l3s$rduaaubb 1 l4s$rd su2
ac 1 u2

bcd , (1)

where uij is the symmetric strain tensor [9]. The firs
term represents the energy cost of uniaxial compressi
© 1996 The American Physical Society 3017
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and must always be positive. The second and th
terms represent costs of deformations within thea-b
plane. Since thea-b plane is the weak plane, there
no energy cost for a shear gradient in thec direction,
and the coefficientl4s$rd must vanish. To calculate th
macroscopic mechanical response, we must average
the orientational variation in space of thehabcj coordinate
system with respect to the Cartesian coordinates in
lab frame, hxyzj. This is analogous to the problem o
randomly oriented smectics, for which the free ene
is given by Eq. (1) with l2s$rd ­ l3s$rd ­ l4s$rd ­ 0,
and with ĉ varying randomly in space [10,11]. Mode
(1) with l4s$rd ­ 0 has also been used to descri
anisotropic glasses [12] and “decoupled” lamellar pha
of tethered membranes [13]. Note that it is ill behav
when l4s$rd ­ 0; in the lamellar case, there are high
order gradient terms in the elastic free energy, nam
bending elastic terms, that stabilize the free energy.
the case of emulsions, however, it is unclear whether
appropriate stabilizing term is of the form of a bendi
energy. Fortunately, the bending modulus does not af
the dynamic shear modulus at frequencies above a
frequency cutoff,vmin [10]. We may therefore neglec
the bending modulus for frequencies abovevmin, which
is found experimentally to be about 10 Hz for emulsion

To obtain the macroscopic dynamic shear modu
we must average the stress-stress correlation func
Ss$r , td ­ ksxys$r, tdsxys0, 0dl over all $r. Thus Gpsvd
depends on the spatial Fourier transform of the stress-s
correlation function at zero wave vector,

S̃sk ­ 0, td ; ks̃xysk ­ 0, tds̃xysk ­ 0, 0dl . (2)

Here, tildes refer to spatial Fourier transforms, a
sxys$r , td is the xy component of the stress at position$r
and timet. The brackets correspond to both thermal a
disorder averages [10]. We use the fluctuation-dissipa
theorem to obtain the dynamic shear modulus,

Gpsvd ­ ivhsvd ­
iv

kBT

Z `

0
dt e2ivt S̃sk ­ 0, td .

(2)

The stress is the derivative of the free energy with resp
to the strain, calculated in the laboratory coordinateshxyzj:

sxys$r, td ­ axs$rdays$rd
dF

duaas$r , td
1 bxs$rdbys$rd

dF
dubbs$r, td

1 cxs$rdcys$rd
dF

duccs$r , td

1
1
2

faxs$rdbys$rd 1 ays$rdbxs$rdg
dF

duabs$r , td
,

(4)

whereais$rd, bis$rd, andcis$rd are the components of the lo
cal Cartesian coordinateshabcj. Using Eq. (4) in Eq. (2),
we can express the stress-stress correlation functionSs$r , td
in terms of a sum over products of disorder averages
the form kaxs$rdays$rdaxs0days0dl and strain-strain correla
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tion functions of the formkuaas$r, tduaas0, 0dl [10]. The
essential approximation in this step is the breaking of a
erages over the coordinate axeshabcj and strain variables
uij . The strain-strain correlation functions are difficu
to compute becausêa, b̂, and ĉ also vary withr. We
avoid this difficulty by assuming that the dominant con
tribution comes from regions over which the coordina
systemhabcj is highly correlated [10]. Therefore the re
sponse of a given correlated region to shear is calcula
as if the region were infinite in extent, and individual re
gions are assumed to be uncorrelated from each other. T
approximation is clarified by an alternate approach whi
considers the zero-temperature response of the system
an externally applied strain [11]. The desired quanti
S̃sk ­ 0, td can therefore be expressed as a sum of integr
over wave vector$q of products of disorder averages of th
form kãxs $qdãys $qdãxs2 $qdãys2 $qdl and strain-strain correla-
tion functions of the formkũaas $q, tdũaas2 $q, 0dl [10]. To
evaluate the disorder averages, we assume that the c
dinate axeshabcj are correlated only over a characterist
distancej, the size of the local region of slip:

kãxs $qdãys $qdãxs2 $qdãys2 $qdl ­ fsq2j2d . (5)

Since the local axes are uncorrelated with each other, c
relation functions of the formkãxs $qdãys $qdb̃xs2 $qdb̃ys2 $qdl
vanish. Finally, the strain is a derivative of the displac
ment, so the strain-strain correlation functions can
written in terms of displacement correlation function
kũaas $q, td ũaas2 $q, 0dl ­ q2

akũas $q, td ũas2 $q, 0dl, where
qa ­ $q ? â. The displacement correlations are calculat
from the Langevin equation for̃us $q, td, which includes
contributions from both elastic and viscous forces [10
The Langevin equation yields overdamped modes for f
quencies low compared tov0 ­ hyrs2pyjd2 ø 106 Hz,
wherer ø 1 gycm3 is the mass density,h ø 1 cp is the
film viscosity, andj ø 3 mm, several droplet diameters
is the estimated size of a local slip region. There are on
two modes due to incompressibility. Thus

S̃sk ­ 0, td ­
Z

dwd cossud

3 f f1su, wd e2G1su,wdt 1 f2su, wd e2G2su,wdtg ,

(6)

whereGisu, wd are the relaxation rates for the two mode
with wave vectorq oriented at Eulerian anglesu and
w relative to the local coordinateshabcj. The functions
fisu, wd depend on integrals over the magnitudeq ­ j $qj

of fsq2j2d defined in Eq. (5). Since the low frequenc
behavior ofGpsvd is controlled by the long time behavio
of S̃sk ­ 0, td, we need only consider the long time limi
of Eq. (6). By low frequencies, we meanv ø vc ;
syha, where the high frequency cutoffvc ø 107 Hz is
a characteristic relaxation frequency, given by the ratio
an elastic constant to the viscosity. For an emulsion,
elastic constants are of ordersya, wheres is the surface
tension anda is the droplet radius. Because there is
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(b)
l

weak plane, one of the relaxation rates,G1, vanishes for
u ­ py2, while the other always remains of ordervc.
Therefore values ofu nearpy2 dominate the integral in
Eq. (6) at long times, and we may neglect the second t
in the integrand. Physically, the regions with weak plan
nearly parallel to the direction̂q ­ $qyq of the shear
gradient exhibit the most solidlike response and theref
have the slowest stress relaxation ratesG1. We find
that G1 depends on the projection̂qc ­ q̂ ? ĉ ; cosu ø
py2 2 u. By symmetry,G1 cannot depend on the sig
of q̂c. Thus we find that at long times the integral is
the formS̃sk ­ 0, td ,

R
dx e2x2t, wherex ­ py2 2 u.

This Gaussian integral yields̃Ssk ­ 0, td , t21y2, and
hence our main resultGpsvd , sivyvcd1y2.

To test this prediction, we must measure the dyna
shear modulus over a wide frequency range, extend
to frequencies higher than those accessible to traditio
mechanical rheometers. We use a recently develo
light scattering technique [8] that relies on the fluctuatio
dissipation theorem, much in the spirit of our calculatio
We measure the motion of a particle due to thermal fluc
ations, as parametrized by the mean square displacem
kDr2stdl. In a viscoelastic material, this motion reflec
both viscous loss and energy storage in the medium.
modulus is obtained by generalizing the Stokes-Eins
relation to finite frequencies,

Gssd ­ shssd ­
kBT

paskDr2ssdl
. (7)

Here, it is most convenient to work with the Laplac
frequency,s, with bars representing Laplace-transform
quantities. The modulusGssd is related toGpsvd through
the analytic continuations ­ iv [8]. This relation pro-
vides physical intuition about the meaning ofGssd:
Nearly frequency-independent behavior reflects a la
elastic contribution sinceG0svd dominates; linear behav
ior in s reflects a large viscous contribution sinceG00svd
dominates. An intermediate frequency dependence
flects contributions to both components.

We use monodisperse emulsions [14] so that the drop
themselves can be used as the probes [8]. Our emulsi
comprised of1 mm diameter silicone oil droplets in wate
stabilized by sodium dodecylsulphate at a concentra
of 10mM. The emulsion is concentrated by centrifug
tion, and the volume fraction is determined by weighin
before and after evaporating, the continuous water ph
We measurekDr2stdl with diffusing-wave spectroscop
(DWS) in the transmission geometry [15,16]. The i
terpretation assumes that the scattered intensity can
determined from the product of a form factor and stru
ture factor. Independent scattering measurements
of monodisperse emulsions, whose continuous phase
been adjusted by adding glycerol to index-match the
phase, show that this factorization is valid even at the h
volume fractions studied here.

To determine the modulus of the emulsion, we nume
cally calculate the Laplace transform ofkDr2stdl from our
m
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DWS measurements, and use Eq. (7). Typical results
shown by the open symbols in Fig. 1(a) for an emulsi
with f ­ 0.67. The data extend over seven decades
very high frequencies, illustrating the utility of this tech
nique. They also exhibit the expected behavior; at lo
frequencies, they are nearly independent ofs, reflecting
the dominant elastic behavior of a compressed emuls
at high frequencies, they approach a linear dependenc
s, reflecting the dominant viscous behavior of a syste
comprised solely of fluids. To determine the frequen
dependence in the intermediate regime, we subtract fr
the data a constant, reflecting the low frequency elas
ity, and a term proportional tos, reflecting the high fre-
quency viscous loss. The sum of these terms, adjuste
match the asymptotic limits of the data, is shown by t
dashed line in Fig. 1(a) . The resulting difference,DGssd,
is shown as the solid symbols in Fig. 1(a). Its frequen
dependence iss1y2, as shown by the solid line through
the data. This reflects a contribution to the modulus b
yond the purely elastic and purely viscous componen
Similar s1y2 contributions are observed for higher volum
fractions [see Fig. 1(b)]. Thes1y2 contribution results in
an sivd1y2 contribution toGpsvd, providing direct experi-
mental support for our proposed model.

To quantify the dependence of thes1y2 contribution on
volume fraction, we fit the data by

Gssd ­ Gp 1 Asfds1y2 1 h`s , (8)

FIG. 1. (a) The upper set of symbols shows the light sc
tering measurements of the dynamic shear modulusGssd as
a function of the Laplace frequencys for an emulsion with
a ­ 0.5 mm and f ø 0.67. The dashed line represents th
asymptotic contributions of an elastic component at low fr
quencies and a viscous component at high frequencies.
difference,DGssd, shown by the lower set of solid points, rep
resents the additional contribution to the modulus, and exhib
an s1y2 frequency dependence, as shown by the solid line.
The s1y2 contribution,DGssd, for the same emulsion at severa
volume fractions.
3019
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where h` is the high frequency viscosity andAsfd the
magnitude of thes1y2 term. As shown in Fig. 2,Asfd in-
creases by a factor of 4 to 5 asf increases above 0.64
the close-packing density. This trend can be underst
in terms of thef dependence of the characteristic stre
relaxation frequencyvc ­ syha. Comparing Eq. (8) to
our prediction following Eq. (6), we findAsfd , 1yp

vc,
or Asfd ,

p
hsfdays, wherehsfd is an effective viscos-

ity arising from dissipation in the liquid films. It should
depend inversely on the film thickness [3], which decrea
by a factor of 4 over this range off [2]. Thus our model
predicts a factor of 2 increase inAsfd over the measured
range, in reasonable agreement with the experimenta
sults. In addition, our model predicts a high frequency c
off to the s1y2 behavior ofvc ­ syha ø 107 Hz. This
is in excellent agreement with the cutoff observed expe
mentally, as shown in Fig. 1 (the vertical scale in Fig. 1
logarithmic). Thus the experimental results are in acc
with the predicted power law, the high-frequency cuto
on the power-law behavior, and the volume-fraction d
pendence of the amplitude of the power law. This offe
strong support for the model.

A similar s1y2 term in Gssd is also observed for
emulsions withf , 0.64, where packing constraints d
not prevent the droplets from diffusing locally, as we
as for colloidal suspensions below close packing [1
In those cases, it is believed to result from the hig
frequency contribution of Brownian motion [19]. W
emphasize, however, that this physical mechanism can
give rise to thes1y2 term described here for concentrate
emulsions withf . 0.64, as the droplets cannot freel
diffuse, even locally.

The experimental observation of the predicted behav
of the dynamic modulus strongly supports our speculat
that slip regions exist. Since such regions do not c
tribute to the elastic modulus in the low-frequency lim
the existence of these regions may also reduce thestorage
modulusG0svd. Recent experiments [2] show thatG0svd
is much smaller than one would expect based on perio
packings of droplets, especially at volume fractions ju
above the onset of elastic behavior. Thus our picture m
also provide the key to understanding the anomalous s
age modulus of emulsions.

FIG. 2. The magnitudeAsfd of the s1y2 contribution to the
modulus, as a function of the volume fractionf.
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While our experiments focus on the high-frequen
response, the dynamic modulus measured by our l
scattering technique matches that measured by mecha
techniques at lower frequencies [2]. Since the lig
scattering measurements rely on thermal fluctuations,
measured moduli are definitely in the linear regim
even though motion along the weak planes can lead
changes in the droplet configurations. This is a dir
consequence of disorder in the droplet packing. T
success of the model in predicting anv1y2 contribution
to the dynamic shear modulus is especially remarka
since the loss modulus is sensitive to many differe
microscopic mechanisms of dissipation, including flow
the liquid films and flow in the surfactant films [3], whic
we have neglected. This suggests that our results ma
applicable to other randomly close-packed materials, s
as foams, dense colloidal suspensions, and non-Brow
particle suspensions.
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