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We study the coupled dynamics of the displacement fields in a one dimensional coupled-field
model for drifting crystals, first proposed by R.Lahiri and S.Ramaswamy [Phys. Rev. Lett. 79, 1150
(1997)]. We present some exact results for the steady state and the current in the lattice version of
the model, for a special subspace in the parameter space, within the region where the model displays
kinematic waves. We use these to construct the effective continuum equations corresponding to the
lattice model. These equations decouple at the linear level in terms of the eigenmodes. We examine
the long-time, large-distance properties of the correlation functions of the eigenmodes by using
symmetry arguments, Monte Carlo simulations and self-consistent mode coupling methods. For
most parameter values, the scaling exponents of the Kardar-Parisi-Zhang equation are obtained.
However, for certain symmetry-determined values of the coupling constants the two eigenmodes,
although nonlinearly coupled, are characterized by two distinct dynamic exponents. We discuss the
possible application of the dynamic renormalization group in this context.

I. INTRODUCTION

A. Background

Spatial and temporal correlations in spatially extended systems with a conservation law or a continuous invariance
are widely observed to satisfy a scaling or homogeneity property. For instance, if the system is described by a single
scalar field φ(x, t), the correlation function C(x, t) ≡ 〈φ(0, 0)φ(x, t)〉 satisfies

C(x, t) ≈ b2χC(bx, bzt). (1)

under rescaling of space by a factor b. Here z is the dynamic exponent while χ describes the spatial scaling of the
field. Equation (1) holds in the rest frame of the φ-fluctuations, so that if the system has wavelike excitations, e.g.,
kinematic waves [1] of moving φ-fluctuations, it is necessary to perform a Galilean shift to co-move with the wave.
The exponent z then describes the dissipation of the fluctuation wave, with a fluctuation of spatial extent ∆x having
a lifetime proportional to (∆x)z .

Now consider the scaling properties of systems with several coupled fields, say {φα, α = 1 toN}, whose dynamical
evolution involves inter-field couplings both at the linear and nonlinear levels which result in propagating kinematic
waves. At the linear level, the problem requires diagonalizing the matrix of couplings. The eigenvectors ψµ involve
linear combinations of the φα and represent modes that propagate as independent kinematic waves. The real and
imaginary parts of the eigenvalues cµ encode respectively the speeds and dampings of the corresponding kinematic
waves, and in general, differ from one wave to another. By performing a Galilean shift with speed cµ, one may move
to the rest frame of mode µ; kinematic waves corresponding to other modes are not stationary in this frame, however,
and these moving modes also contribute to the dissipation of mode µ as they are coupled nonlinearly to it. The
correlation function Cµ(x, t) ≡ 〈ψµ(0, 0)ψµ(x, t)〉 is expected to satisfy

Cµ(x, t) ≈ b2χµC(bx, bzµt). (2)

where χµ characterizes the spatial scaling of mode µ and zµ is the corresponding dynamic exponent.
The question arises: Is there a single common value z which characterizes the decay of all the modes µ? When the

answer is yes, as in fact it generally is, we say that the system obeys strong dynamic scaling. Considerable interest
therefore attaches to exceptions to this general rule. Accordingly, one would like to characterize the conditions for
the occurrence of weak dynamic scaling, when at least one zµ is different from the rest. A priori, there are two sets
of circumstances when weak dynamic scaling may be expected:
(i) If the transformation from φα to ψµ, which is designed to decouple modes at the linear level, actually succeeeds
in decoupling them for the full nonlinear problem, then evidently each mode evolves autonomously and independent
zµ’s may arise. In fact, a complete decoupling at the nonlinear level does occur in the context of a reduced model
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of magnetohydrodynamic turbulence [2], and may well arise in other problems as well. In the MHD case, however,
it turns out that both modes obey evolution equations with similar (autonomous) nonlinearites, so that a common
value of z ensues. But this need not be the case for other problems.
(ii) Consider a situation in which the evolution of a subset of the fields, say {uβ}, does not involve the others {uα}
, while the evolution of the set {uα} does involve {uβ}. In this case, zβ and zα may take on distinct values. Indeed,
this is borne out by numerical studies of two-field dynamics [3] which show that weak scaling occurs if the evolution
is autonomuous in one of the two fields, or very nearly so, in which case strong crossover effects may be expected.

One of the principal results of this paper, which we present below, is a third possible scenario for weak dynamical
scaling, where neither field is autonomous.

B. Results

In this paper we examine weak and strong dynamical scaling in a system with two coupled fields, which result in
two coupled kinematic waves characterized by mode coordinates ψ1 and ψ2 respectively. We work both with a lattice
model involving two sets of spins, and with the corresponding continuum equations involving two coupled scalar fields.
The analysis of the lattice model is facilitated by showing that along certain representative loci in parameter space,
the steady state has product measure form. This allows the current to be found, and a continuum expansion to
be made, with coefficients that explicitly involve the parameters and mean occupations of the lattice model. This
enables us to make direct comparisons between the results of numerical simulations of the lattice model and analytical
self-consistent calculations for the continuum equations.

Our most interesting result is the identification of a third set of circumstances, beyond (i) and (ii) mentioned in
Section I A, in which weak dynamic scaling results, despite each mode being nonlinearly coupled to the other. This
involves symmetry properties of the kinematic waves: we find weak dynamic scaling if we choose model parameters
so that the evolution equations are invariant under inversion of the second mode coordinate (ψ2 → −ψ2) but not
under ψ1 → −ψ1. In that case our numerical simulations show that z1 = 3/2, while z2 = 2 with multiplicative
logarithmic corrections. We also study the problem within a self-consistent mode coupling calculation which shows
that the different dynamic exponents arise in a rather interesting way: the linearized version of the problem has z = 2
for both fields. The scattering of ψ1 by fluctuations in ψ2 and vice versa gives rise to singular corrections to the
diffusivity for ψ1, leading to z1 = 3/2. The fluctuations, however, cause no singular correction to the relaxation of
ψ2, leaving z2 = 2. For most other parameter values, however, we find the more common strong dynamic scaling with
z1 = z2 = 3/2.

The remainder of this paper is organized as follows. In Section II, we review briefly the continuum stochastic
dynamical equations of Ref. [4]. In section II we present the lattice model, and show how the condition of pairwise
balance can be used to find the exact steady state if the transition rates satisfy a certain relation. We characterize
changes of the symmetry of the evolution equations as overall densities are varied, and report the results of extensive
numerical simulations which show that the values of the dynamic exponents depend strongly on these symmetries. In
particular, we present evidence for weak dynamic scaling when the two kinematic waves have different symmetries. In
section V we describe analytical methods, primarily a one-loop self-consistent treatment of the continuum stochastic
PDEs, for calculating the exponents in the weak dynamic scaling regime. We also outline a dynamic renormalization
group procedure for this regime, discuss the difficulties that arise therein, and remind the reader how strong dynamic
scaling is restored for generic values of the parameters in the model. We close in Section VI with a summary.

II. CONTINUUM STOCHASTIC PDES FOR DRIFTING CRYSTALS

We review very briefly here the construction of our model equations of motion; details may be found in [4,5]. The
physical system which inspired the initial work on the model was a lattice drifting through a dissipative medium.
There are at least two examples of this: (i) steadily sedimenting colloidal crystals and (ii) a flux lattice driven, by the
action of the Lorentz force of an imposed supercurrent, through a type II superconductor. If inertia is ignored, the
equation of motion of the displacement field u(r, t) is of the form velocity = mobility × force, i.e.,

u̇ = M(∇u)(D∇∇u + F) + ζ, (3)

where the mobility tensor M is allowed to depend on the lattice distortion ∇u, the tensor D represents elastic forces, F
is the driving force, and ζ a suitable noise source. Our results are for a highly simplified model with the same physics
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as in (3). This model, constructed and studied in [4,5], describes the coupled dynamics of two fields ux and uz (the
displacements transverse to and along the drift direction respectively), as a function of one coordinate x transverse

to the drift direction ẑ. The equations of motion are

u̇x = λ12∂xuz + γ1∂xux∂xuz +D1∂x
2ux + fx, (4)

u̇z = λ21∂xux + γ2(∂xux)2 + γ3(∂xuz)
2 +D2∂x

2uz + fz, (5)

where fx and fz are zero-mean, Gaussian, spatiotemporally white noise sources. The equations are invariant under
the joint operations x → −x, ux → −ux. For λ12 = λ21 = 0, (4) and (5) reduce to the Ertaş-Kardar [3] equations
for drifting polymers with the larger symmetry x → −x (with or without ux → −ux). The system can distinguish
between up and down: there is no invariance under inversion of uz. The terms in (4) and (5) involving first spatial
derivatives have the following interpretation: a tilt (∂xuz) produces a lateral drift (at a rate which depends on the
density perturbations ∂xux), while the vertical speed depends both on compressions or dilations (∂xux), as well as
tilts (∂xuz). In this paper we shall consider only the case λ12λ21 > 0 in which case the dispersion relation

ω = ±
√

λ12λ21q − iDq2. (6)

holds for the linearized version of (4) and (5) and predicts travelling waves at small wavenumber q. The linearly
unstable case λ12λ21 < 0 has been discussed extensively elsewhere [5]. The mode coordinates corresponding to (6)
are given by

ψ1,2 ≡ √
cux ±

√
buz (7)

As discussed in [5], the long-time, large-lengthscale behaviour of the PDEs (4) and (5) are expected to be the same
as those of a particular two-species Ising-Kawasaki model in which the jump rate of each species depends on the local
density of the other. We turn next to this discrete model and its dynamics.

III. THE LATTICE MODEL

The lattice model is defined in terms of two sets of variables {σi} and {τi− 1
2
} which reside on two interpenetrating

sublattices with periodic boundary conditions; the former set occupies the integer sites and the latter the half-integer
mid-bond locations of a one-dimensional lattice with L sites. Each σi and τi− 1

2
is an Ising variable taking on values

±1. They represent discrete versions of the density and tilt fields in the sedimentation problem: If σi is 1, there is a
particle (+) at site i, and if σi = −1, there is no particle (−). The variable τi− 1

2
= 1 and −1, implies two values /

and \ of the local tilt respectively. A typical configuration of the full system is thus +\ − /− /+ \ − /+ /+ /+ \−.
Both sets of variables are conserved, i.e.

∑

σi and
∑

τi− 1
2

and the associated densities ρo
1 =

∑

(1 + σi)/2L and

ρo
2 =

∑

(1 + τi− 1
2
)/2L are constant. We consider a τ -dependent local field which guides the σ-current and vice versa.

Thus, for instance, the Kawasaki exchange dynamics of the adjacent spins σi and σi+1 occurs at a rate which depends
on τi+ 1

2
. The moves and the corresponding rates are depicted below:

(1) + \ − −→ − \ + r1

(2) − \ + −→ + \ − r2

(3) − /+ −→ + /− r1

(4) + /− −→ − /+ r2

(5) /− \ −→ \ − / p2

(6) \ − / −→ /− \ p1

(7) \ + / −→ /+ \ p2

(8) /+ \ −→ \ + / p1 (8)

The macroscopic behaviour of the model is determined by the relative values of the rates; a brief review of the
phases and their characteristics appears in [6]. There are two distinct regimes separated by a nonequilibrium phase
boundary as depicted in Fig. 1. The regime p1 > p2, marked SPS in Fig. 1 was explored in detail in [5]. In this
phase, the system undergoes spontaneous phase separation of a particularly strong sort. Along the boundary p1 = p2,
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marked FDPO in Fig. 1, the system undergoes fluctuation-dominated phase ordering of a delicate sort, as discussed
in [7]. Finally, in the phase of the model with p1 < p2, marked KW in Fig. 1, there is no phase separation, and
fluctuations are transported by kinematic waves. This is the regime of interest in this paper.
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FIG. 1. The phase diagram of the Lahiri-Ramaswamy model. The strongly phase separated phase (SPS) is separated from
the kinematic wave phase (KW) of interest in this paper by the threshold line p1 = p2 along which there is fluctuation-dominated
phase ordering. The steady state can be found exactly along the line p2/p1 = r1/r2, by using the condition of pairwise balance.

A. Exact results for the steady state

The steady state can be found exactly provided that r1 = p2 and r2 = p1 (along the line marked Pairwise Balance
in Fig. 1). To this end, let us choose new symbols to denote the values of the variables σ and τ : use 1 if a site or bond
is occupied by a + or /, and use 0 for − or \. Then the moves (1)-(8) listed above reduce to moves (a), (b), (ā), (b̄) as
follows:

(1), (5) ⇒ (a) : 100 −→ 001 p2 (9)

(3), (7) ⇒ (b) : 011 −→ 110 p2 (10)

(2), (6) ⇒ (ā) : 001 −→ 100 p1 (11)

(4), (8) ⇒ (b̄) : 110 −→ 011 p1 (12)

The use of the new symbols 1 and 0 explicitly brings out the fact that the dynamical moves on the two sublattices
are alike for the choice of these special relations between the rates. This is crucial for further analysis.

In this new representation, a configuration C is specified by the occupations of all sites. The time evolution of the
probability P (C) of the occurrence of C is given by the master equation

dP (C)

dt
=

∑

C′

W (C′ −→ C)P (C′) −W (C −→ C′)P (C) (13)

where the transition rates W (C −→ C′) are given by p2 and p1 for changes of configurations involving moves (a) or
(b), and (ā) or (b̄) respectively.

The dynamics preserves the sublattice densities ρo
1 and ρo

2. Within the subspace labelled by (ρo
1, ρ

o
2), one can see

that the system is ergodic by noting that the dynamics induces a leftward drift of a pairs 00 and 11 with rate p2, and
a rightward drift of such pairs with rate p1. By successive application of moves (a), (b) in Eqs. (9), (10) and their
reverses, any configuration C in the subspace can be taken to a ‘standard configuration’ Co in which all 1’s and all
0’s are clustered together. Since the lattice is periodic, the 11 and 00 pairs can be shifted to any other configuration
C′ from Co. Thus any configuration C can be taken to any configuration C′ via Co.

In steady state the right hand side of (13) must vanish. A sufficient condition for this is that fluxes balance in
pairs, i.e. for every flux out of a configuration C to a configuration C

′

, there should be an incoming flux from another
uniquely determined configuration C

′′

into C. This is the condition of pairwise balance [8]:
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W (C
′′ −→ C)P (C

′′

) = W (C −→ C
′

)P (C) (14)

which is a generalization of the well known condition of detailed balance [9].
For our problem, C

′′

may be constructed as follows. Let us denote the configuration C symbolically as
1m10m21m30m41m5 · · · 0mk , where there is a cluster of 1’s of sizem1, followed by 0’s of lengthm2, and so on, with a total
of k such clusters. Consider a transition to a configurationC

′ ≡ 1m10m2−11201m3−20m41m5 · · · 0mk (a pair of 11’s jump
to the left, i.e. move (b)). One can always find a unique configuration e.g. C

′′ ≡ 1m10m21m3−20120m4−11m5 · · · 0mk

which gives rise to C (via move (b)). If the outgoing transition involves a rearrangement at the left edge of a cluster,
the incoming transition involves a rearrangement at the right edge of the same cluster. Such an identification is
possible also for transitions involving moves (a), (ā) and (b̄), and ensures that W (C

′′ −→ C) = W (C −→ C
′

). Thus
Eq.(14) is satisfied provided the steady state probabilities obey

P (C) = P (C
′′

) = constant. (15)

This means that in steady state, every allowed configuration is equally likely. The constant appearing in Eq. (15) can
be found on using the normalization condition

∑

P (C) = 1. If N1 ≡ ρo
1L and N2 ≡ ρo

2L are the number of particles
on the two sublattices, the total number of configurations in sector (ρo

1, ρ
o
2) is N = (LCN1

)(LCN2
), where NCM is the

number of ways of choosing M out of a total of N objects, and hence P (C) = 1/N .
In the thermodynamic limit L, N1, and N2 −→ ∞, with ρo

1, ρ
o
2 held constant, P (C) approaches the product measure

form

∏

i

p(σi)p(τi+ 1
2
) = ρo

1
N1(1 − ρo

1)
L−N1ρo

2
N2(1 − ρo

2)
L−N2 (16)

This form of the steady state holds also for a higher-dimensional generalization of the model involving rules (a) and
(b) and their reverses along the sites and bonds in the d directions of a simple cubic lattice.

The product measure weight in the steady state implies that correlation functions on different sites decouple. This
then allows the current of σ particles

J1 = (p2 − p1)〈
(1 + σi)

2

(1 − σi+1)

2

(1 − τi+ 1
2
)

2
〉 + (p2 − p1)〈

(1 + σi+1)

2

(1 − σi)

2

(1 + τi+ 1
2
)

2
〉 (17)

to be found explicitly,

J1 = (p2 − p1)ρ1(1 − ρ1)(1 − 2ρ2) (18)

The first term in Eq. (17) comes from a particle hopping between sites i and i+ 1 in the absence of a particle at site
i+ 1

2 while the second is for hopping in the presence of a particle on the site in between. A similar expression holds
for the τ -current J2,

J2 = (p2 − p1)ρ2(1 − ρ2)(1 − 2ρ1). (19)

The product measure form also allows us to find the roughness exponent of an associated height model, where
the height fields associated with {σi} and {τi} are respectively h1i =

∑i
k=1(σk − 〈σk〉) and h2i =

∑i
k=1(τk − 〈τk〉).

Fluctuations of the height field are characterized by the root-mean-square height difference G1(r) =
√

〈(h1i+r − h1i)2〉,
with G2(r) defined similarly in terms of {h2i}. Using the fact that 〈σ0σk〉 = 〈σ0〉〈σk〉 for k 6= 0 and 1 for k = 0, we
find G1(r) = G2(r) ∼ r1/2. Thus the roughness exponent χ defined by the growth of the root-mean-squared height
fluctuations is

χ = 1/2 (20)

for both height fields. Evidently, this value will also characterize fluctuations of linear combinations of the height
fields h1 and h2, which arise when we deal with mode coordinate fields in the next section.
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FIG. 2. The decay of correlation functions away from the line of pairwise balance is shown for C11 (filled circle), C22 (filled

diamond) and C12 (filled triangle). When pairwise balance does hold, the correlation function vanishes (empty triangles).

We close this section with numerical results for correlation functions away from the pairwise balance (PB) locus.
We set r2 = p1 = 0, and investigate what happens if we move away from the PB locus r1 = p2. We studied the spatial
correlation function C(r) = 〈σiσi+r〉−〈σi〉〈σi+r〉 by Monte-Carlo simulation, and show our results for different values
of r1 and p2 in Fig. 2. As expected, for the PB case r1 = p2 = 1 (empty triangles in Fig. 2), the correlation length
is zero. Away from PB, with r1 = 1/3 and p2 = 1, the three curves for C11, C22 and C12 representing respectively
the intra-sublattice correlation functions for sublattices 1 and 2 and the inter-sublattice correlation function all decay
differently, but with a finite correlation length. (Fig. 2). This shows that although product measure does not hold
away from the pairwise balance locus r1 = p2, correlations are short-ranged so that the behaviour on large length and
time scales is expected to be similar to that in the pairwise balance case.

B. Continuum equations and kinematic waves

The expressions (18) and (19) for the current help us to construct approximate continuum equations for the evolution
of the density fluctuation fields. The starting point is the pair of continuity equations

∂ρm

∂t
= − ∂

∂x
Jm(ρ1, ρ2) m = 1, 2 (21)

where ρ1(x, t) and ρ2(x, t) are coarse-grained densities at a mesoscopic scale and J1(x, t) and J2(x, t) are the corre-
sponding currents. Each of these currents is written as the sum of three parts,

Jm = Jsystematic
m + Jdiffusive

m + ηm. (22)

The systematic contributions Jsystematic
m at the mesoscopic scale are assumed to be given by the expressions (18) and

(19) for the currents in an infinite system. The diffusive part Jdiffusive
m arises from local density inhomogeneities and

is taken to be −Dm
∂ρm

∂x . Finally ηm is a noise term added to mimic stochasticity at the mesoscopic level; we consider
uncorrelated white noise with 〈ηm〉 = 0 and 〈ηm(x, t)ηm(x′, t′)〉 = Γδ(x − x′)δ(t − t′). These continuum equations
have the same symmetries as the lattice model and hence would be expected to exhibit the same behaviour on large
length and time scales.

Writing ρ1 = ρo
1 + ρ̃1, and ρ2 = ρo

2 + ρ̃2 (where ρo’s are fixed average densities and ρ̃’s are fluctuations) and using
Eqs. (17), (19), 21 and 22, one can write down coupled equations governing the evolution of ρ̃’s. We write these
in terms of the height functions h1 =

∫ x
ρ̃1(x

′

, t)dx
′

and h2 =
∫ x

ρ̃2(x
′

, t)dx
′

, the continuum analogs of the discrete
functions h1i and h2i defined in the previous section. We find
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∂h1

∂t
= −r′(1 − 2ρo

1)(1 − 2ρo
2)
∂h1

∂x
+ 2r

′

ρo
1(1 − ρo

1)
∂h2

∂x
+D1

∂2h1

∂x2

+ 2r
′

(1 − 2ρo
1)
∂h1

∂x

∂h2

∂x
+ r

′

(1 − 2ρo
2)(

∂h1

∂x
)2 − 2r

′

(
∂h1

∂x
)2(

∂h2

∂x
) + η1(x, t) (23)

and

∂h2

∂t
= −r′(1 − 2ρo

1)(1 − 2ρo
2)
∂h2

∂x
+ 2r

′

ρo
2(1 − ρo

2)
∂h1

∂x
+D2

∂2h2

∂x2

+ 2r
′

(1 − 2ρo
2)
∂h1

∂x

∂h2

∂x
+ r

′

(1 − 2ρo
1)(

∂h2

∂x
)2 − 2r

′

(
∂h2

∂x
)2(

∂h1

∂x
) + η2(x, t) (24)

where r′ = (r1 − r2).
Let us define a = r

′

(1−2ρo
1)(1−2ρo

2), b = r
′

ρo
1(1−ρo

1), c = r
′

ρo
2(1−ρo

2), κ1 = r
′

(1−2ρo
1), and κ2 = r

′

(1−2ρo
2). It is

apparent that by taking linear combinations one can construct eigenmode fields h± =
√
ch1±

√
bh2 which decouple at

the linear level. These fields describe wave-like modes [1] travelling with speeds c± = −a±2
√
bc. The time evolutions

of these fields h± are governed by

∂h+

∂t
= c+

∂h+

∂x
+D

∂2h+

∂x2
+

3

2
(
κ2√
c

+
κ1√
b
)(
∂h+

∂x
)2 + (

κ2√
c
− κ1√

b
)
∂h+

∂x

∂h−
∂x

− 1

2
(
κ2√
c

+
κ1√
b
)(
∂h−
∂x

)2 − 1

2
√
bc

(
∂h+

∂x
)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η+(x, t);

∂h−
∂t

= c−
∂h−
∂x

+D
∂2h−
∂x2

+
3

2
(
κ2√
c
− κ1√

b
)(
∂h−
∂x

)2 + (
κ2√
c

+
κ1√
b
)
∂h+

∂x

∂h−
∂x

− 1

2
(
κ2√
c
− κ1√

b
)(
∂h+

∂x
)2 − 1

2
√
bc

(
∂h−
∂x

)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η−(x, t). (25)

The new noise terms η± =
√
cη1 ±

√
bη2, are also delta-correlated. We have assumed D1 = D2 = D, though this may

not be preserved in the effective long wavelength equations. The fields h+ and h− are coupled at the nonlinear level,
so that each wave influences the dissipation of fluctuations of the other. We consider the dissipation properties of the
waves in the next section for different sublattice filling fractions ρo

1 and ρo
2 of the sublattices.

IV. DISSIPATION OF THE WAVES AND DYNAMICAL EXPONENTS

If it happens that some of the coefficients of (25) vanish for certain choices of densities ρo
1 and ρo

2, the evolution
equations have special symmetries and this can have important implications for the long-time dynamics. As discussed
below, there are three different symmetries which arise in the coupled field problem, each corresponding to a different
set of dynamical exponents. The dynamical exponents associated with the wave modes, may differ. We have considered
three special pairs of densities (ρo

1, ρ
o
2) corresponding to three different symmetries.

A. Symmetries of the equations:

To facilitate subsequent discussions let us first consider the case of a single field h, and list four different symmetries
[10] for its evolution.

(a) RI symmetry: Invariance under up-down Reflection (R) symmetry h → −h and under Inversion (I) of space
x→ −x.

(b) RĪ symmetry: Invariance under h→ −h and not under x→ −x.
(c) R̄I symmetry: Invariance under x→ −x and not under h→ −h.
(d) R̄Ī symmetry: Invariance neither under x→ −x, nor under h→ −h.
Since ∂h

∂t is odd an equation of motion which contains only terms odd in h will be said to have R inversion symmetry,

any term that is even in h will be said to break R symmtery. Accordingly: A term like ∂2h
∂x2 obeys RI symmetry.

Terms like (∂h
∂x) and (∂h

∂x )3 obey RĪ symmetry. The R̄I symmetry is respected by the term (∂h
∂x )2, while a term like

(∂h
∂x ) added to it breaks that and gives rise to R̄Ī symmetry.
To illustrate the occurrence of different types of symmetries in our coupled-field problem, we consider three special

pairs of densities (ρo
1,ρ

o
2).

(I) For ρo
1 = ρo

2 = 1
2 , (25) reduces to a pair of coupled equations, with linear and first and second derivative terms

and cubic gradient nonlinearities:
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∂h+

∂t
= 2

√
bc
∂h+

∂x
+ ν

∂2h+

∂x2
− 1

2
√
bc

(
∂h+

∂x
)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η+(x, t);

∂h−
∂t

= −2
√
bc
∂h−
∂x

+ ν
∂2h−
∂x2

− 1

2
√
bc

(
∂h−
∂x

)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η−(x, t). (26)

These equations describe two kinematic waves moving with speed c+ = r
′

/2 and c− = −r′/2. The nonlinear couplings
imply that each wave influences the evolution of the other. In order to study the dissipation of say the +mode, it is
essential to move to the frame which co-moves with it. This is accomplished by a Galilean shift x → x + c+t, and
t→ t. In this frame, the evolution equations become:

∂h+

∂t
= ν

∂2h+

∂x2
− 1

2
√
bc

(
∂h+

∂x
)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η+(x, t);

∂h−
∂t

= −4
√
bc
∂h−
∂x

+ ν
∂2h−
∂x2

− 1

2
√
bc

(
∂h−
∂x

)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η−(x, t). (27)

Evidently, in this frame, the −mode has a speed c− − c+ = −4
√
bc. The pair of Eqs. (27) are invariant under

h+ → −h+, h− → −h− but not x → −x, because of the linear ∂h−

∂x and cubic nonlinear terms. The RĪ symmetry
holds in the rest frame of h+ mode.

Similarly the dissipation of the −mode can be studied by going to a frame which co-moves with the −mode. It is
easily seen that RĪ symmetry holds in this frame as well.

Let us recall what happens when RĪ symmetry holds in the case of a single field h. In the Edwards-Wilkinson (EW)
equation [11], the presence of an additional cubic term like (∂h

∂x )3 reduces the RI symmetry to RĪ symmetry. About

the linear fixed point (with χ = 1/2), the cubic term has the same näive scaling dimension as (∂2h
∂x2 ) — both scale as

b−3/2 when x→ bx and h→ bχh. Such a marginal cubic term is known [12–15] to introduce logarithmic factors in the
behaviour of the height-height correlation functions. Using mode-coupling [12] and dynamical renormalization group
[13] calculations, it was found that the correlation function F (t) =

√

〈[h(x, t) − h(x, 0)]2〉 grows as t1/4(log(t))1/8.
Recalling that F (t) ∼ tβ with β = χ/z, we see that despite the lack of I symmetry, the critical exponents β and z do
not change from their EW values 1/4 and 2, respectively.

In our case with two coupled fields, the cubic gradient terms again have the same näive scaling dimension as the
linear second order term, but they are more complicated than just (∂h

∂x )3. We might guess nevertheless due to the
symmetry that each of the + and −modes have z = 2. We will present numerical evidence in section 5.2, which
confirms this and shows that there are similar multiplicative logarithmic factors.

(II) For ρo
1 = 1/2 and ρo

2 6= 1/2, the equations for the mode fields reduce to:

∂h+

∂t
= 2

√
bc
∂h+

∂x
+ ν

∂2h+

∂x2
+

3

2

κ2√
c
(
∂h+

∂x
)2 +

κ2√
c

∂h+

∂x

∂h−
∂x

− 1

2

κ2√
c
(
∂h−
∂x

)2 − 1

2
√
bc

(
∂h+

∂x
)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η+(x, t);

∂h−
∂t

= −2
√
bc
∂h−
∂x

+ ν
∂2h−
∂x2

+
3

2

κ2√
c
(
∂h−
∂x

)2 +
κ2√
c

∂h+

∂x

∂h−
∂x

− 1

2

κ2√
c
(
∂h+

∂x
)2 − 1

2
√
bc

(
∂h−
∂x

)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η−(x, t). (28)

Going to either of the frames in which the +mode or the − mode are at rest, we see that with the cubic nonlinearities
the R̄Ī symmetry applies for each of the fields; R symmetry is broken by by quadratic nonlinear terms, and I is
broken because of linear first order and cubic terms. The most relevant terms at the linear fixed point are the
quadratic nonlinear terms. Thus we would expect that these terms would govern the dissipation and give rise to the
Kardar-Parisi-Zhang (KPZ) value z = 3/2 [16] for both the modes.

(III) For ρo
1 = ρo

2 6= 1/2, we have κ1 = κ2 and c = b, and the following pair of equations hold:

∂h+

∂t
= c+

∂h+

∂x
+D

∂2h+

∂x2
+ 3

κ2√
c
(
∂h+

∂x
)2

− κ2√
c
(
∂h−
∂x

)2 − 1

2
√
bc

(
∂h+

∂x
)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η+(x, t);
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∂h−
∂t

= c−
∂h−
∂x

+D
∂2h−
∂x2

+ 2
κ2√
c

∂h+

∂x

∂h−
∂x

− 1

2
√
bc

(
∂h−
∂x

)

[

(
∂h+

∂x
)2 − (

∂h−
∂x

)2
]

+ η−(x, t). (29)

Here, an interesting situation arises. In the co-moving frame of the −mode, the pair of equations are invariant under
h− → −h− and h+ → h+ but not under x → −x. Thus the h− field has RĪ symmetry, while the moving h+ field
has R̄Ī symmetry. The equations are invariant under h− → −h− in any frame. The invariance under x → −x is

broken (a) by the linear ∂h±

∂x and (b) by the trilinear terms. The effect of (a) can be shifted away by comoving; the
(b) terms are expected to provide logarithmic multiplicative corrections. The same symmetries hold in the rest frame
of the + wave. Based on these observations, we expect z = 2 for the −mode (perhaps with multiplicative logarithmic
corrections), and z = 3/2 for the +mode. This is precisely the weak dynamical scaling discussed in the Introduction.

The quadratic nonlinear terms in Eq. (29) are exactly like those obtained in [3,17]. Similarly the nonlinearities
in (28) are of the form obtained in [18]. The crucial difference is that we have additional linear gradient couplings,
which bring in the possibility of observing weak dynamical scaling in our coupled-field system. We now turn to the
next step of checking numerically and analytically our symmetry-based expectations.

B. Growth exponents from Monte-Carlo simulation:

For numerical simulation, we used a definition of height h̃i(t) which differs slightly from hi(t) discussed so far.
Instead of defining heights as density integrated over space with respect to a fixed site, we define h̃1i and h̃2i as
integrated densities but with respect to the first particle, which is itself moving. Such a definition was used earlier in
[19], and was found to markedly reduce the fluctuation in the height-height correlation function. If the particles on a
particular sublattice are labelled 1, · · · , NP , then the height h̃i(t) = ni(t)−〈ni(t)〉 where ni(t) is the tag number of the
particle at site i and the subtracted part has a linear time dependence. If the site i is empty, h̃i is determined from the
tags of the closest particles on either side by a lever rule. If io(t) (whose average value = vt with v = particle speed,

is the location of the particle 1) one has h̃i(t) =
∑i

k=io(t) ρ̃k − ρoio(t), using the fact that ni(t) =
∑i

k=io(t)(ρ̃k + ρo).

In our problem, the height-height correlation 〈h̃iA(t) − h̃iA(0)〉 grows as −vAρ
o
1t, where vA = (1 − ρo

1)(1 − 2ρo
2). The

corresponding continuum equation for h̃1(x, t) has two more additional terms compared to (23), i.e. a constant −vAρ
o
1

which can be removed by an appropriate shift, and a noise term ζ = vAtρ̃1(x, t). The scaling dimension of ζ is lower
(ζ → b−zζ) than the noise η1 (η1 → b−z/2−1/2η1), and hence is less relevant.

We are interested in knowing the dissipation property of the ± wave modes, so we numerically compute the height-
height correlation function of the variable h̃± in the co-moving frame of the relevant mode, i.e. by a Galilean shift
with speed c±. The new fields h̃± are the counterparts of h± defined earlier. We monitor the correlation functions

S2
±(t) = 〈

[

h̃±(x− c±t, t) − h̃±(x, 0) + Jo
±t+ ρo

±c±t
]2

〉 (30)

where the average 〈· · ·〉 is both over space and the ensemble of configurations in the steady state, while Jo
± =√

cvAρ
o
1 ±

√
bvBρ

o
2 and ρo

± =
√
cρo

1 ±
√
bρo

2. We expect S2
±(t) to grow as tβ with β = χ/z.

We used lattice sizes L = 54000, while the number of history averages for each case is mentioned in the figure
captions. There are two curves in each of the figures 3, 5, and 6 below: for example in Fig. 3(b) the lower one
represents S2

+, and the upper one represents the height-height correlation function of the moving −mode in the rest

frame of the +wave, namely Ŝ2
− = 〈

[

h̃−(x− c+t, t) − h̃−(x, 0) + Jo
−t+ ρo

−c+t
]2

〉. Similarly Ŝ2
+ in Fig. 3(a) is defined

in the rest frame of the −mode. The correlation functions Ŝ2’s increase linearly with time as they sense the effect
of a moving kinematic wave. In a discrete lattice simulation, x in Eq. (30) gets replaced by discrete integers i. The
kinematic wave speeds are nevertheless real fractions, so height-height correlation functions S2 and Ŝ2 have oscillations
of the period 1/c±; these oscillations are noticeable for low t, but their relative contribution dies down for larger t.

(I) We first discuss the height-height correlations for ρo
1 = 0.5 and ρo

2 = 0.5 (Fig. 3) corresponding to RĪ symmetry.

9



0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000

t(a)

S+
^ 2

S_2

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000

t(b)

S_^ 2

S 2
+

FIG. 3. Height correlation functions for ρo
1 = ρo

2 = 0.5 (RĪ symmetry) averaged over 6 histories. (a) In the rest frame of the
− mode, S2

− grows as ∼ t1/2 implying β = 1/4, while Ŝ2
+ ∼ t. (b) In the rest frame of the + mode, S2

+ grows as ∼ t1/2, while
Ŝ2
− ∼ t.

The kinematic waves go around the whole system with a time period to = |L/c±|. With L = 54000 and c± =
±r′/2 = ±1/4 we have to = 216000 as r′ = 1/2 in our simulations. The curve for the mode which is moving in the
rest frame of the other should dip to a minimum at time to, and that is why it shows a flattening at times around
t = to/2 = 108000 when the moving wave has travelled halfway around.

Figure 3 gives strong evidence for β = 1/4 for both modes in their respective rest frames, when ρo
1 = ρo

2 = 1/2.
Thus z = χ/β is equal to 2 for both modes. More careful examination of the data reveals that there are actually
multiplicative logarithmic corrections to the leading power law behaviour. The data is consistent with a growth
S(t) ∼ t1/4(log(t))1/8, as may arise from cubic nonlinearities as discussed above. Evidence of this is seen in

0.1

1 10 100 1000 10000 100000

S_
 / 

R
(t

)
2

t(a)

1 10 100 1000 10000 100000

S 
  /

 R
(t

)
2 +

t(b)

FIG. 4. Effect of scaling the rest-frame height correlation functions of Fig. 3 by a factor R(t) = t1/2 (upper curves) and
R(t) = t1/2(log(t))1/4 (lower curves). The flattening of the latter confirms the presence of the multiplicative logarithms in both
S2
− and S2

+.

Figs. 4(a),(b) which indicate that the data of Figs. 3(a),(b) have factors (log(t))1/4 multiplying t1/2. As discussed
in section 5.1, the latter are probably due to cubic nonlinearities.

(II) For ρo
1 = 0.5 and ρo

2 = 1/3, the system has RĪ symmetry. Figure 5 shows that both S2
+ and S2

− grow as ∼ t2/3

implying that β = 1/3 and z = 3/2. Thus the dissipations of both the waves are KPZ-like.
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FIG. 5. Height correlation functions for ρo
1 = 1/2, ρo

2 = 1/3 (RĪ symmetry) averaged over 4 histories. (a) S2
− grows as ∼ t2/3

implying β = 1/3, while Ŝ2
+ ∼ t. (b) S2

+ too grows as ∼ t2/3 and Ŝ2
− ∼ t.

(III) Finally Fig. 6 shows the height-height correlation functions for ρo
1 = 1/3 and ρo

2 = 1/3 (RĪ symmetry for one
mode, R̄Ī symmetry for the other).
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FIG. 6. Height correlation function for ρo
1 = ρo

2 = 1/3 (RĪ symmetry for one mode, R̄Ī symmetry for the other) averaged
over 12 histories. (a) S2

− grows as ∼ t1/2 and Ŝ2
+ ∼ t. (b) S2

+ grows as ∼ t2/3 and Ŝ2
− ∼ t.

We see that S2
− grows as ∼ t1/2 with an indication of multiplicative logarithmic corrections, indicating β = 1/4

while S2
+ grows as ∼ t2/3 implying β = 1/3. Recalling that χ = 1/2 for both modes, we have z = 2 for the − mode

and z = 3/2 for the + mode. There is a logarithmic factor (log(t))1/4, multiplying t1/2 for the −wave as is apparent
from the flattening of the curve on dividing S2

− by t1/2(log(t))1/4 (Fig. 7).

1 10 100 1000 10000 100000

S_
 / 

R
(t

)
2

t

FIG. 7. Effect of rescaling S2
− in Fig. 6 by R(t) = t1/2 (upper curve) and R(t) = t1/2(log(t))1/4 (lower curve). The flattening

of the latter confirms the presence of the logarithmic factor in S2
−.

It is remarkable that although the waves are coupled to each other, two different dynamical exponents arise in the
same system, in conformity with our expectations on symmetry grounds. This is the first instance we know of in
which such a property arises in a fully coupled system in which neither field evolves autonomously.
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V. ANALYTICAL DEMONSTRATION OF WEAK DYNAMIC SCALING

We argued in Sec. II in the context of the model equations 29, and showed by using Monte Carlo simulations, that
there are two different dynamical exponents 3/2 and 2 respectively, for the two eigenmodes h+ and h− in the model.
In this section we use self-consistent mode-coupling and renormalization group methods to study the large-distance,
long-time properties of the correlation functions: We calculate the roughness exponents χ1,2 and the dynamical
exponents z1,2 of the fields h+,−. Our analytical results agree with the previous numerical results. For appropriately
chosen values for the densities of the particles in the lattice model [see above eqn. (29)], the continuum equations in
the center-of-mass frame take the form

ḣ+ − Bo

2
∂xh+ +

λ1

2
(∂xh+)2 +

λ2

2
(∂xh−)2 = ν+∂xxh+ + f+,

ḣ− +
Bo

2
∂xh− + λ3(∂xh+)(∂xh−) = ν−∂xxh− + f−, (31)

where Bo/2 = c+ = −c−, λ1/2 = 3κ2/
√
c, λ2/2 = −κ2/2, λ3 = 2κ2/

√
c. We denote the dissipation coefficients by ν1

and ν2 (we use two separate symbols in anticipation of weak dynamic scaling). We also ignore the cubic nonlinearities
for simplicity. The waves can be removed from either Eqs.(31) separately by comoving with the left and right going
waves through the Galilean shifts: x→ x+ Bo

2 t, h+ → h+ and x→ x− Bo

2 t, h− → h− respectively. In the comoving
frame of h+ Eqs. (31) become

ḣ+ +
λ1

2
(∂xh+)2 +

λ2

2
(∂xh−)2 = ν+∂xxh+ + f+,

ḣ− +Bo∂xh− + λ3(∂xh+)(∂xh−) = ν−∂xxh− + f−, (32)

whereas in the frame of h− Eqs.(31) reduce to

ḣ+ −Bo∂xhh +
λ1

2
(∂xh+)2 +

λ2

2
(∂xh−)2 = ν+∂xxh+ + f+,

ḣ− + λ3(∂xh+)(∂xh−) = ν−∂xxh− + f−, (33)

The bare response functions of the two fields h+ and h− are given by

G+
o (k, ω) =

1

iω + ν+k2
; G−

o (k, ω) =
1

iω − iBok + ν−k2
(34)

in the right moving frame and

G+
o (k, ω) =

1

iω + iBok + ν+k2
; G−

o (k, ω) =
1

iω + ν−k2
(35)

in the left moving frame. The noise correlations in both the frames are given by

〈f+,−(0, 0)f+,−(x, t)〉 = 2D+,−δ(x)δ(t). (36)

Note that there is no frame in which the drift terms in both equations vanish. Noise correlations however do not
change with change in reference frames as they are delta-correlated in time.

In this section we analytically calculate the dynamic and roughness exponents χi, zi, i = +,− for the fields hi, i =
+,− respectively, defined by 〈[hi(x, t) − hi(0, 0)]2〉 = xχig(xzi/t). There are two limits in which their behaviour
is well-understood analytically. First, in the absence of the kinematic wave (Bo) terms, Eqs. (31) reduce to the
EK [3] equations. Although the complete phase diagram of the latter is not known, they do have a locally stable
renormalization-group fixed point belonging to the universality class of the KPZ equation [16], with χ+ = χ− = 1/2
and z+ = z− = 3/2. Secondly, in the absence of the nonlinear terms coupling h+ and h−, the kinematic wave terms can
be removed separately in each equation by opposite Galilean transformations, yielding scaling properties independent
of the wavespeed. In the previous section our Monte Carlo results show that even when there is a nonlinear coupling,
for particular densities, there is weak dynamic scaling: z+ = 3/2, z− = 2. Below, we offer an understanding of weak
dynamic scaling in an analytical framework.

The possible occurence of weak dynamical scaling in this problem, makes a renormalization-group treatment difficult:
one cannot rescale time in two different ways for the two fields. We therefore adopt a self-consistent integral-equation
approach, for which such weak scaling presents no difficulties. We then discuss how to circumvent the problems in
applying an RG treatment.
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A. Self-consistent mode coupling calculation

1. KPZ equation in a moving frame

Before embarking on a calculation for our model, it is instructive to look at the simpler case of a growing KPZ
surface in a moving frame. The KPZ equation will be supplemented by a linear first order gradient term:

∂h

∂t
+ c

∂h

∂x
+ λ(

∂h

∂x
)2 = ν∇2h+ η, (37)

with 〈η(x, t)η(0, 0)〉 = 2Dδ(x)δ(t). We ask: Does the wave affect the exponents? We know χ = 1/2 for the KPZ
equation in 1 dimension. Since χ gives the static probability distribution, it is independent of reference frames. Due
to the exponent identity χ+z = 2 [10], it follows that z = 3/2. Thus in this particular case exponents are not affected
by waves. The question is, can we see this in a self-consistent or renormalization-group calculation? Recall that the
dynamic exponent is given by the width of the peak of the dynamic structure factor. The location of the peak, as a
result of the wave induced by our transformation to a frame moving with speed c, is at ω = ck. The response and the
correlation functions in that frame are thus given by Go(k, ω) = 1

iω−ick+νk2 and Co(k, ω) = 2D
(ω−ck)2+ν2k4 respectively.

The one-loop integral that produces a singular correction to ν is

I ∼ −
∫

dqdΩ
2Dq(k − q)kq

[(Ω − ck)2 + ν2q4][i(ω − Ω) − ic(k − q) + ν(k − q)2]

∣

∣

∣

ω=ck
∼ −

∫

dq
2Dq(k − q)kq

νq2[νq2 + ν(k − q)2]
, (38)

which is same as that one obtains in a standard calculation for the KPZ equation in the rest frame. A similar
expression holds for the correction to the correlation function. In both these integrals, the wave can be shifted away
trivially. Thus we obtain z = 3/2 and χ = 1/2, in agreement with our expectations. With this background we now
present the calculations for the exponents for our model. Interestingly, we will find that the effects of the waves cannot
be trivially shifted away as they could in the simple example discussed above.

B. Self-consistent calculation for the coupled model

The mode coupling approach to solving equations such as (31) consists in obtaining diagrammatic perturbation
expansions for the renormalized propagator G and correlation functions C and resumming these in such a way that
all the internal lines are renormalized correlation functions or propagators. This provides an exact solution for
asymptotically small wave number q when the vertex corrections vanish for q → 0 or due to some fundamental
symmetry in the problem. In that case the problem is reduced to solving nonlinear integral equations for G and C
whose order is the same as that of the nonlinearity in the modified Langevin equation.

In a one-loop self-consistent modecoupling theory, one writes down one-loop intergral equations for the response
and correlation functions. The basic assumption is that there are one-loop corrections which diverge in the infrared
limit. In a theory where there is no vertex renormalisation due to some Ward-Takahashi identity (arising from some
continuous symmetry of the equation of motion) these equations are exact, because any higher loop corrections can be
incorporated within one-loop dressed response or correlation functions. However, when there is no such symmetry of
the system to prevent vertex renormalisation the above assertion is not true. In such a situation, one also has to write
down a one-loop self-consistent equation for the vertex, which now is to be solved simultaneously with the one-loop
equations for response and correlation functions. An example of this has been worked out in [20]. Here we work with
Eqs.(31). There are no diagramatic corrections to the λ1 vertex at the one loop level. However, there are no such
conditions on λ2 and λ3. In our particular problem, however we show using bare response and correlation functions,
that one loop vertex corrections for λ2 and λ3 are all infrared finite. Hence we ignore them in our calculations. In
Figs. 8 and 9 we show the one loop diagramatic corrections to λ2 and λ3 respectively. We first work in the comoving
frame of h+: In that frame C+(k, ω) has a peak at ω = Bok and C−(k, ω) is peaked at ω = 0.
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FIG. 8. One-loop diagrammatic corrections to λ2; A line indicates a response function and a line with a small filled circle

refers to a correlation function.
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FIG. 9. One-loop diagrammatic corrections to λ3; A line indicates a response function and a line with a small filled circle

refers to a correlation function.

Let us look at one of the diagrams very carefully (first diagram in Fig.8):

I = ikλ2λ
2
3/2

∫

dΩdqD+q
2q2

[(Ω −Boq)2 + ν2
−q

4][Ω2 + ν+q4]
=

2ikλ2λ
2
3

B2
o

(
1

ν+
+

1

ν−
)

∫

dqD+. (39)

This has no infrared divergence. Similarly, all other diagrams in Figs.(8) and (9) are also finite in the infrared limit.
We ignore all these finite corrections for λ2 and λ3, i.e., we ignore vertex corrections in our self-consistent analysis.
We again justify this a posteriori, by showing that the vertex corrections remain finite in the self-consistent theory.

The time-displaced correlation functions of the fields h+ and h− are

C+(r, t) ≡ 〈h+(0, 0)h+(r, t)〉, C−(r, t) ≡ 〈h−(0, 0)h−(r, t)〉. (40)

The scaling forms for the correlation and response functions as a function of wavenumber k and frequency ω are

C+(k, ω) = k−1−2χ+−z+f+(kz+/ω), C−(k, ω) = k−1−2χ−−z−f−(kz−/ω), (41)

and

G+(k, ω) = k−z+g+(kz+/ω), G−(k, ω) = k−z−g−(kz−/ω). (42)

Here, z+ are z− are the dynamic exponents and χ+ and χ− are the roughness exponents of the fields h+ and h−.
Notice that we have allowed the existence of two different dynamic exponents. Since the fields are decoupled in the
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linearized theory, there is no cross propagator. The following one-loop diagrams contribute to the respective self-
energies Σ+(k, ω) and Σ−(k, ω) (defined by G−1

i = G−1
i0 − Σi, where Gi0 is the bare propagator for hi, i = +,−) of

the fields h+ and h−.

λ λ λ λh h h h
> > > >33 2 3- - --

FIG. 10. One-loop diagrams contributing to Σ−(k, ω). A line refers to a response function and a line with a small filled circle
refers to a correlation function.

Notice that G−1
+0(k, ω = 0) = iBok + ν+k

2, G−1
−0 = ν−k

2. A self-consistent calculation is required if one encounters
infrared divergences in the bare perturbation theory. The following one loop diagrams in Figs.10 and 11 contribute
to Σ−(k, ω) and C−(k, ω) respectively. It is easy to see that none of these diagrams diverge in a bare perturbation
theory. The first diagram in Fig.10 has the form

Σ−(k, ω) ∼ λ2λ3k

∫

dq
D−q

2(k − q)

ν+q2[ν+q2 + ν−(k − q)2 − iBo(k − q)]
∼ λ2λ3k

∫

dq
D−q

2(k − q)[ν+q
2 + ν−(k − q)2]

ν−q2[{ν+q2 + ν−(k − q)2}2 +B2
0(k − q)2]

∼ λ2λ3k

∫

dq
D−(k − q)

ν−B2
0(k − q)2

∼ finite, (43)

since in the long wavelength limit B2
0(k− q)2 dominates over {ν+q2 + ν−(k− q)2}2. We have considered only the real

part of Σ−(k) (only this part will renormalise ν−). However this does not produce any infra-red singular correction
to ν2 and hence we ignore it. Note that it is the presence of the kinematic waves which makes this diagrammatic
contribution infrared finite and thus ignorable. The second diagram in Fig. (10) also has a similar finite form and is
ignored again.

h- h-

FIG. 11. One-loop contribution to C2(k, ω). A line refers to a response function and a line with a small filled circle refers to
a correlation function .

In Fig.11 the diagram has the form

C−(k, ω) ∼ 1

k4

∫

dq q2(k − q)2

q2(k − q)2[ν−q2 + ν+(k − q)2 − iBo(k − q)]
. (44)

It is easy to see that this is not infrared divergent. So we ignore all corrections to C−(k, ω). We immediately obtain
z− = 2, χ− = 1/2. Note that the presence of the wave term B0k in the inverse propagator was again crucial to this
analysis. We see from the foregoing analysis that

G−1
− (k, ω) ∼ iω + k2, C−(k, ω = 0) ∼ 1

ω2 + k4
. (45)

We now calculate the exponents of h+. As stated earlier we ignore corrections to λ2 and λ3 as they are all finite.
There are however, diverging one-loop corrections to both C+ and Σ+ which are shown in Fig.12 and Fig.13.

λ λ λ λ1 1 2 2h h h h+ + + +

(a) (b)
FIG. 12. One-loop contribution to C+(k, ω). A line refers to a response function and a line with a small filled circle refers to

a correlation function.
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λ λ λ λ1 1 2h h h h+ + + +> > > >3

(a) (b)
FIG. 13. One-loop contribution to Σ+(k, ω). A line refers to a response function and a line with a small filled circle refers to

a correlation function.

In both Figs. 12 and 13 diagrams (a) comes from the KPZ nonlinearity. If these diagrams were the only diagrams,
one would have obtained KPZ exponents:z+ = 3/2, χ+ = 1/2. We however notice that the diagrams (b) in Figs.12
and 13 are as strongly infrared (IR) divergent as diagrams (a). Let us examine diagram (b) in Fig.12 in detail. The
integral is given by (using the fact that χ− = 1/2, z− = 2)

I ∼ k

∫

dΩdq
q2(k − q)

(Ω2 + ν2
−q

4)[−iΩ + iBok + ν−(k − q)2]
∼ k

∫

dq
(k − q)[ν−q

2 + ν−(k − q)2]

ν−[B2
ok

2 + {ν−q2 + ν−(k − q)2}2]

∼ k

∫

dq
(k/2 − q)ν−q

2

ν−[B2
ok

2 + 4ν2
−q

4]
∼ k2

ν−

∫

√
k

dq

q2
[1 +O(k2/q4) + ..] ∼ k3/2. (46)

Note that the presence of the kinematic wave was crucial again in this evaluation: The integral in (46) diverges as
∫

dq/q2 if the external wavenumber k is set to zero. At nonzero k, the integral is controlled by the presence of the
wave term B2

0k
2 in the denominator, and scales as k−1/2, not as k−1 as might have naively been expected. Thus

z+ = 3/2 is unaltered by the second diagram. Similarly we consider diagram (b) of Fig.13 (using z+ = 3/2):

I ∼ 1

k3

∫

dΩdq
q4

(Ω2 + ν2
−q

4)[(Ω −Bok)2 + ν2
−q

4]
∼ 1

iν−k3Bok

∫

dqq2[
1

Bok − iν−q2
− 1

Bok − iν−q2
] ∼ k−7/2, (47)

which is as divergent as the diagram (a) in Fig.13. Thus χ+ = 1/2 also remains unaltered. It is easy to see that with
these self-consistent response and correlation functions, one-loop corrections to λ2, λ3 do not diverge. Hence ignoring
λ2, λ3 from our selfconsistent calculation is justified.

So far we have worked in the comoving frame of h−, i.e, with Eqs. (33). Let us now go to the comoving frame of
h+: We work with Eqs. (32). The relevant diagrams are same as given in Figs. 12 and 13. It is easy to carry out
a self-consistent analysis again on Eqs. (32). The only difference is that now C+(k, ω) is peaked at ω = 0 whereas
C−(k, ω) is peaked at ω = −Bok. Here again there is no singular correction to the reponse and the correlation
functions of the field h−. Thus z− = 2 and χ− = 1/2. There are however diverging corrections to ν1 and D1 which
are identical to those obtained in our calculations in the comoving frame of h−. Reassuringly, we find again same

exponents, i.e. z+ = 3/2, χ+ = 1/2, as we should. Thus the effective equations in the left and right going frames are

∂h+(k)

∂t
+ iBokh+ = ν+k

3/2h+(k, t) + ....,

∂h−(k)

∂t
= ν−k

2h−(k, t) + .... (48)

and

∂h+(k)

∂t
= ν+k

3/2h+(k, t) + ....,

∂h−(k)

∂t
− iBokh− = ν−k

2h−(k, t) + .... (49)

The renormalized equations (48) and (49) are thus connected by a Galilean transformation like the bare equations
(33), and (32), and the exponents are frame-independent.

C. Renormalization group analysis

In Section VB we have shown how a self-consistent mode coupling treatment of our model for certain parameter
values leads to weak dynamical scaling, i.e., distinct dynamical exponents for the two fields. In this Section we recast
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these results within a perturbative dynamical renormalization-group (DRG) framework, and show how the difficulties
posed for the DRG by weak dynamical scaling can be overcome.

The diagrams are same as shown in Section VB. We work with Eqs. (32). As usual, the bare diagrams for

ν−, D−, λ2 and λ3 do not diverge. The diagram (a) in Fig.12 diverges as ∼ D+λ2
1

ν3
1

k2
∫ dq

q2 ∼ D+λ2
1

ν3
1

k2 × 1
k , whereas

the diagram (b) in Fig.12 diverges as λ2λ3D−k
2
∫

dq
iBok+2ν−q2 ∼ λ2λ3D−k

2 × 1√
k
. Thus diagram (b) can be ignored

in comparison with (a) in the small k limit. Similarly, diagram (b) in Fig.13 is less divergent than the diagram (a).
Thus all relevant diagrams generating dominant singular corrections to the bare response and correlation functions of
the field h+ are of KPZ type (with identical symmetry factors).

Starting with a cutoff wavenumber Λ, eliminating modes with wavenumbers between Λe−δl and Λ, rescaling so that
the cutoff wavenumber is once more Λ, and passing to the limit δl → 0, we obtain the differential recursion relations

dν+
dl

= ν+[z − 2 +
g

4
],

dD+

dl
= D+[z − 1 − 2χ+ +

g

4
], (50)

and

dν−
dl

= ν−[z − 2],

dD−
dl

= D−[z − 1 − 2χ−], (51)

where ν+, ν−, D+ and D− are now functions of l, and g ≡ D+λ
2
1/ν

3
+ is the dimensionless coupling constant. By using

g = 2 at the stable RG fixed point [10], we obtain

dν+
dl

= ν+[z − 3/2], (52a)

dν−
dl

= ν−[z − 2], (52b)

dD+

dl
= D+[z − 1/2 − 2χ+], (52c)

dD−
dl

= D−[z − 1 − 2χ−]. (52d)

Now given the exponents z, χ+, χ−, the equations of motion (32) are supposed to be invariant under the scale
transformations x → bx, t → bzt, h+ → bχ+h+, h− → bχ−h−. From Eqs. (50) we get z = 3/2, χ+ = 1/2 whereas
Eqs. (51) give z = 2, χ− = 1/2. Which value of z should we choose? The choice of z = 3/2 keeps ν1 fixed under
rescaling, but ν2(l) ∼ e−l/2 as the RG fixed point is approached (remember el is like a length scale). On the other
hand if we choose z = 2 then ν2 is fixed under rescaling but ν1 ∼ el/2 as the fixed point is approached. Moreover,
z = 2 implies χ− = 1/2 giving C−(x, 0) ∼ x in agreement with the previously obtained results, and χ+ = 1/4
suggesting C+(x, 0) ∼ x1/2, which, of course, is wrong. Similarly, the choice z = 3/2 gives correct spatial dependence
for C+(x, 0) ∼ x, but gives an incorrect result for C−(x, 0).

To resolve this difficulty, let us first study the seemingly trivial case of two totally decoupled fields:

∂φ1

∂t
= µ1

∂2φ1

∂x2
+ η1, (53a)

∂φ2

∂t
= −µ2

∂2φ2

∂x4
+ η2, (53b)

with 〈ηi(0, 0)ηj(x, t)〉 = 2γiδijδ(x)δ(0) for i = 1, 2 and no sum on repeated indices. These are linear equations and
hence exponents can be found exactly. In particular we know

〈φ1(x, t)φ1(0, 0)〉 ∼ xf1(x
2/t), (54a)

〈φ2(x, t)φ1(0, 0)〉 ∼ x3f2(x
4/t), (54b)

i.e., we have χ1 = 1/2, χ2 = 3/2, z1 = 2, z2 = 4. There are obviously no diagramatic corrections to any of the
parameters. Here the flow equations are
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dµ1

dl
= µ1[z − 2]; (55a)

dγ1

dl
= γ1[z − 1 − 2χ1]; (55b)

dµ2

dl
= µ2[z − 4]; (55c)

dγ2

dl
= γ2[z − 1 − 2χ2]. (55d)

A choice of z = 2 and χ1 = 1/2 keeps µ1 and γ1 fixed. This immediately tells us that equal-time correlation function of
the field φ1 scales as Ax2χ1 . The coefficient A, a function of γ1 and µ1 is scale independent. However a näive use of this
value of z (i.e.,z = 2) leads to wrong conclusion about the spatial dependence of the equal time correlation function
of the field of φ2: z = 2 gives χ1 = 1/2 suggesting 〈φ2(0, 0)φ2(x, 0)〉 ∼ x which is wrong (the correct dependence
is x3 which is known exactly). The reason is that the choice z = 2 makes the solutions of the flow equations for µ2

scale-dependent: µ2 ∼ e−2l ∼ k2. However, one can still extract the correct behaviour of the correlation function of
φ2 in the above example if one accounts for the scale dependence µ2 explicitly: An explicit construction gives

〈φ2(k, ω)φ2(−k, ω)〉 ≡ D2

µ2k1+2χ1
[

1

iω + µ2kz
+

1

−iω + µ2kz
], (56)

which gives (by using scale dependent µ2) 〈φ1(0, 0)φ2(x, 0)〉 ∼ x3 which is the correct answer! This suggests that to
make sense of out the RG flow equations in presence of different dynamic scalings in a coupled system, one has to take
care of the scale dependent diffusion coefficients while calculating the spatio-temporal behaviour of the correlation
functions correctly. Let us review our RG results obtained from the flow equations (50) and (51) in view of our
previous analysis: We choose z = 2, χ− = 1/2 which gives χ+ = 1/4 and makes ν1 ∼ k−1/2. Using this scale
dependent coefficient we correctly obtain

C+(x, t) = xf−[x3/2/t]. (57)

This suggests that an RG treatment, suitably modified, can be applied successfully to a problem of weak dynamic
scaling provided scale dependent dissipation coefficients are taken into account while constructing the correlation
functions.

D. Strong dynamical scaling

In Section II we have seen that for model equations 28 both the dynamic exponents turn out to be 3/2 (i.e., KPZ-
like). This is easy to understand analytically: In this case both the equations have KPZ-like nonlinearities in addition
to the non-KPZ ones. However, it is easy to see that for both the fields, due to the presence of the waves, in any
frame, non-KPZ diagrams are less singular than the corresponsing KPZ-like diagrams. Thus the dominant singular
corrections to the response and correlation functions for both the fields are KPZ-like, making χ+ = χ− = 1/2 and
z+ = z− = 3/2.

VI. SUMMARY

This paper is a study of the nature of spatiotemporal correlations in a coupled-field driven diffusive model (the
LR model [4,5]), in the phase in which it displays kinematic waves. Our results include a demonstration of pairwise
balance for certain parameter values and, hence, a proof that the steady state has a product measure in that range
of parameters. Most important, we have been able to show that the fields corresponding to the two eigenmodes
of the linearized version of the model were characterized by two different dynamic exponents, although the fields
themselves are (nonlinearly) coupled. This is the first demonstration of such weak dynamical scaling in a model with
two fully coupled fields (as distinct from the model of [3,18,20], where such an effective decoupling was found only in
semi-autonomously coupled systems in which one of the fields evolve independently). We have been able to show this
numerically, through Monte Carlo simulations on a lattice model, and analytically, using self-consistent perturbative
calculations as well as symmetry arguments, in the corresponding continuum stochastic PDEs. Outisde this special
subspace of parameter space, the model exhibits normal, strong dynamic scaling. We also discuss and largely resolve
the technical difficulties in applying the dynamical renormalization group when weak dynamic scaling prevails.
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