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Abstract

A critical review is presented of recent experimental and theoretical work on
the steady sedimentation of particulate suspensions in viscous ¯ uids. The point of
view is that of a practitioner of non-equilibrium statistical physics rather than
classical ¯ uid mechanics.
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1. Introduction

1.1. Equilibrium and non-equilibrium suspensions

Suspension science and statistical physics have a long and distinguished common

history, beginning with the classic theoretical [1± 4] and experimental [5] studies of

Brownian motion. These early works dealt primarily with suspensions at or near

thermal equilibrium, which meant that the source of ¯ uctuations in the systems
considered is a thermal bath characterized by a temperature, and that correlation

and response functions of physical observables are tightly linked by ¯ uctuation±

dissipation relations. The interest of physicists in the statistical mechanics and

dynamics of suspensions [6, 7] has continued to the present day, with the focus

shifting progressively to problems of systems far from equilibrium. The eŒect of
shear ¯ ow on the structure and crystallization of suspensions has received a great

deal of attention [8]; the conceptually simpler state of sedimentation [9± 11], where

there is on average no relative motion of the particles, is the subject of this article. I

shall not say anything about the many practical situations in which sedimentation is

important; some references to this can be found in reference [10], for instance.

1.1.1. Driven suspensions and hydrodynami c dispersion

I shall discuss recent progress, puzzles and controversies in steadily sedimenting
suspensions. Such systems are in a non-equilibrium steady state and therefore have

properties qualitatively diŒerent, in two important ways, from those of the thermal

equilibrium suspensions mentioned above. First, they are driven, i.e. the particles in

the suspension are denser than the ¯ uid and, hence, have on the average a downward

speed relative to it, as a result of the balance between gravity and viscous dissipation.

Secondly, driven suspensions, whether sedimenting or sheared, display random
particle motion even when the particles are so large that thermal Brownian motion

is negligible: the ¯ ow produced by each particle in¯ uences the others in such a way

that the dynamics is highly sensitive to initial conditions. The resulting chaos [12, 13]

implies that the time-evolution of coarse-grained quantities must be described using

diŒusion coe� cients and noise sources even though the microscopic dynamics in
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the absence of thermal Brownian motion is entirely deterministic. This phenomenon

of diŒusive behaviour induced, in the absence of a thermal noise, by the ¯ ows

generated by the collection of objects driven through a ¯ uid is called hydrodynamic

diVusion or hydrodynamic dispersion. This places all questions about the large-scale
structure and long-time dynamics of sedimenting or sheared suspensions squarely in

the domain of non-equilibrium statistical physics rather than traditional ¯ uid

dynamics.

In general, the particles of a suspension are acted upon by Brownian and other

forces. If Dth is the thermal, Brownian diŒusivity of a solute particle of radius a, in a
¯ ow with typical velocity gradient _®® around the particle, the PeÂ clet number

Pe ˆ _®®a2

Dth

…1†

is a dimensionless measure of the relative importance of ¯ ow and thermal diŒusion
in the suspension. For a particle moving (for example, sedimenting) at speed v

through an unbounded ¯ uid, _®® ¹ v=a, so that

Pe ˆ va

Dth
: …2†

For a Brownian sphere of radius a and buoyant weight (i.e. weight minus the weight

of solvent displaced) W ² mRg, where g is the acceleration due to gravity, settling
through a viscous ¯ uid at temperature kBT in energy units, the settling speed

v ˆ mRg=G, where G is the coe� cient of viscous drag on the ¯ uid and the Einstein

relation tells us that the diŒusivity Dth ˆ kBT=G. Thus Pe ˆ mRga=kBT irrespective

of the detailed relation between G and the ¯ uid viscosity. In this form the PeÂ clet

number is seen to be simply the eŒective gravitational potential energy diŒerence
across a height equal to the particle size, scaled by the temperature; curiously, it is

independent of the kinetic coe� cients of the system.

We shall call a suspension in which Pe is exceedingly large, say 102 or more, a

non-Brownian suspension. In such suspensions the physics is dominated by the

interplay of the driving force (gravity in the case of sedimentation) and hydro-

dynamics, with thermal ¯ uctuations playing a negligible role. As in ¯ owing powders,
and in marked contrast to textbook [14] non-equilibrium steady states such as the

¯ ow of electrical or thermal currents, the scales of the ¯ uctuations and hydro-

dynamic diŒusivities in driven non-Brownian suspensions, and the very nature of

their linear response about the driven state, are determined by the driving force.

They have nothing to do with the thermodynamic temperature of the system and are
hence not constrained by ¯ uctuation± dissipation relations. Even in suspensions with

Pe ¹ 1, there will be substantial non-equilibrium contributions to diŒusion, ¯ uctua-

tions and linear response. These ideas will be seen to have profoundly important

consequences for the nature of the dynamics and correlations in sedimenting

suspensions.

1.2. Crystalline and ¯ uid-like suspensions
As is well known [6], charge-stabilized as well as hard-sphere suspensions can

crystallize at high enough particle volume fraction and low ionic strength of the

solvent. I shall call such ordered systems crystalline suspensions, and those with a

disordered microstructure with freely moving particles ¯ uid-like suspensions. The

latter are sometimes called disordered suspensions, but such a name is confusing
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because it could equally be applied to amorphous but rigid aggregates. My choice of

names is non-standard but clearer.

1.3. Steady sedimentation and the ¯ uidized bed geometry

This article is not directly concerned with the most familiar aspect of sedimenta-

tion, namely, the separation (see ® gure 1), of a suspension into sediment and

supernatant, with a free-settling layer in between [9], but exclusively with steady
sedimentation. This state can in principle be realized by studying the free-settling

region alone, while feeding particles in from the top to compensate for those that go

into the sediment. A particularly elegant way of achieving this ideal, spatially

homogeneous, perpetually settling state is to comove with the settling particles, in

the `̄ uidized bed’ geometry (see, for example, reference [15]) as follows. Subject the
suspension to an upward ¯ ow of speed v0 from below (® gure 2). The system will

choose a constant, spatially uniform number density n0 compatible with this ¯ ow

rate. For samples whose linear dimensions are large in all directions, the behaviour,

apart from a change of reference frame, should then be identical in the bulk to that

of a collection of particles with number density n0 settling with speed v0 in the

laboratory frame in an unbounded ¯ uid. Although not all experiments attempting to
probe the statistical properties of steady-state sedimentation are performed in the

¯ uidized-bed geometry, it is the ideal setting for such studies. All the experiments I

shall discuss in this article, even those performed in conventional batch sedimenta-

tion, are carried out under the implicit assumption that the underlying state is

statistically stationary. Throughout this article I shall be concerned only with the
nature of such a steadily sedimenting state and ¯ uctuations about this state.

1.4. Low Reynolds number ¯ ow
The Reynolds number Re ² UL»=· measures the ratio of inertial to viscous

forces in the ¯ ow of a ¯ uid with shear viscosity · and mass density », with typical

scales U and L of velocity and length respectively. For the suspensions with

which this article is concerned, Re ranges from 10 6 if L is a particle size up to

10 4 if we take L to be the interparticle distance. Except for a very brief diversion at
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the end of section 4, I shall therefore work in the Stokesian limit Re ˆ 0 throughout

this article.

Several important features of Stokesian ¯ ow in the presence of particles [9] are

summarized here. (i) The equations of ¯ uid ¯ ow in this limit are linear. (ii) An

isolated single particle of buoyant weight W settling under gravity in an unbounded
container gives rise to a velocity ® eld decaying as W=r with distance r from the

particle. (iii) A localized density ¯ uctuation about a background of uniform

concentration of settling particles likewise produces a 1=r velocity ¯ uctuation.

(iv) The relative velocity of an isolated pair of settling particles in an unbounded

¯ uid is zero: they neither approach nor recede from nor rotate about each other. If

they start out at the same height, they fall together (® gure 3 (a)), at a speed greater

than that of an isolated single particle subjected to the same force. If they are initially
separated both vertically and horizontally, their centre of mass falls not vertically but

obliquely, the velocity pointing in a direction between the vertical and the vector

joining the higher particle to the lower (® gure 3 (b)). (v) The dynamics of three or

more particles is complex and chaotic [13].

The remainder of this article is organized as follows. Section 2 gives a synoptic

view of the problems of interest here and the progress that has been made. Section 3
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is a reminder of the essentials of ¯ uid dynamics as applied to slow sedimentation.

Section 4 treats the problem of velocity ¯ uctuations in monodisperse hard-sphere

sedimentation. In section 5 I discuss crystalline ¯ uidized beds. Section 6 summarizes

our understanding of the statistical physics of bidisperse sedimentation, and the

review closes with section 7.

2. Scope of this article

The physics problems posed by sedimentation are not familiar even to many

workers in soft-matter science or statistical mechanics. This section therefore is a
short synopsis to acquaint the reader with the major questions with which this article

is concerned. It should also serve as a precis, for the reader who does not want the

detail of the sections that follow.

This article focuses on three classes of ¯ uctuation phenomena in sedimentation,

with reference to experiments on model, size-controlled suspensions of synthetic

particles. These are: (i) the nature of velocity ¯ uctuations in viscous ¯ uidized beds of
monodisperse hard spheres; (ii) the instability of steadily sedimenting lattices; and

(iii) the competition between depletion and hydrodynamic forces in bidisperse

sedimentation. Questions about the mean settling speed of various ordered or

disordered con® gurations of particles, which form a large part of the sedimentation

literature, are not the main concern of this review, although I shall discuss them
brie¯ y to highlight the long-ranged nature of the hydrodynamic interaction. In

addition, this article is on the collective statistical properties of sedimenting

suspensions, not the derivation of their stochastic behaviour from N-body Stokesian

dynamics. My discussion (section 3.4) of the microscopic origin of hydrodynamic

dispersion (see section 1.1.1) will therefore be very brief.
Apart from highlighting recent advances in the ® eld and presenting open

problems, this survey aims to convince theoreticians and experimenters alike that

the old subject of suspension dynamics poses exciting problems at the frontiers of

non-equilibrium statistical physics. It will become clear, in particular, that tech-

niques originally developed to understand the dynamics of critical point and related

phenomena at thermal equilibrium are an essential tool in building systematic
theories of these driven systems.

Important progress has been made on each of the three problems mentioned

above, in both experiment and theory. At the same time, several puzzles remain, as

do diverging views on basic issues. Let me de® ne each problem ® rst and outline the

progress made.
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2.1. Velocity ¯ uctuations in hard-sphere sedimentation

2.1.1. Ca¯ isch and Luke’ s puzzle

A major surprise in the statistical physics of sedimentation was pointed out by

Ca¯ isch and Luke (hereafter CL) [16]. Let me restate it very brie¯ y here, following

SegreÁ et al. [17] and Hinch [18]. Consider a steadily sedimenting ¯ uid-like suspension

(see section 1.3) of hard spheres. A concentration ¯ uctuation near, say, the origin in

this suspension is a pointlike force density and should, as mentioned in section 1.4,

give rise in three space dimensions to a velocity ¯ uctuation decaying as 1=r with

distance r from the origin. The linearity of Stokes ¯ ow implies that the velocity ® eld

resulting from many, spatially distributed concentration ¯ uctuations is simply the

sum
P

i vi of the individual contributions. If these ¯ uctuations take place in a

random, spatially uncorrelated manner throughout the suspension, the resulting

variance ¼2
v in the velocity at any point in the suspension would clearly be the sum of

the squares of the individual contributions. This sum
P

v2
i has N ¹ L3 terms if there

are N solute particles in a container of linear dimension L in all directions. The 1=r

form mentioned above for the velocity ¯ uctuation produced by a localized

concentration ¯ uctuation means that each term hv2
i i ¹ L 2, so that ¼2

v ¹ L. Such a

diverging variance in the in® nite-L limit poses serious problems for calculations [19]

of the mean settling speed in an unbounded suspension.

Most experiments{ ® nd no size dependence of the sort predicted by Ca¯ isch and

Luke, but there are serious questions [21] that can be asked about the interpretation

of the measurements. It is fair to say that experiments have neither con® rmed the CL

predictions nor de® nitely ruled them out. It should of course be noted that CL’s

`prediction’ said only that if the concentration ¯ uctuations were statistically

independent from one point to another in space then the velocity variance must

diverge. Su� ciently strong anticorrelations in the particle concentration ® eld at large

length scales will suppress the CL divergence (see section 4.2). Clearly what is needed

is a theory that tackles concentration and velocity ¯ uctuations on the same footing,

instead of postulating the one and inferring the other. Let me summarize the

theoretical approaches to this problem after a very short description of the

experiments.

2.1.2. Experiments and simulations in brief

Experiments on the velocity-¯ uctuations problem use a wide range of techniques

including tracking the velocity ® eld by particle imaging [17], direct counting of the

particles in an illuminated region [20, 22], diŒusing-wave spectroscopy [15], tracking

the motion of individual t̀agged’ particles in a suspension of otherwise index-

matched spheres [20, 23± 25] and single, as well as multiple, sound-scattering [26].

It has generally been claimed [17, 25], with one signi® cant exception [20], that the

¯ uctuations saturate to a size-independent value, but this interpretation has been

criticized [21]. Numerical simulations [27] saw clear evidence for the size-dependence

over the range of L explored, although it is argued [17] that this was because these

studies were probing scales smaller than a (large) screening length. We shall return to

a more detailed consideration of these issues in section 4.3.
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There is also a class of experiments [28] which separates the problem of

hydrodynamic diŒusion and non-equilibrium statistical behaviour in ¯ uidized beds

from the question of whether the velocity variance diverges. This it accomplishes by

working with a suspension in an eŒectively two-dimensional geometry, i.e. with
length L and width W much larger than the thickness ¯, and ¯ only slightly larger

than the particle size. This yields a system whose local hydrodynamics is three-

dimensional, so that hydrodynamic dispersion does take place, but with long-range

eŒects including any possible Ca¯ isch± Luke divergence screened out on lateral scales

¾ ¯. The measurements of the probability distribution of velocity ¯ uctuations and
hyperdiŒusive particle in these experiments still lack a theory. The work of Xue et al.

[15] using diŒusing-wave spectroscopy and the particle-imaging velocimetry of

SegreÁ et al. [29] also fall broadly into this category. Since these interesting and

important experiments do not speci® cally concern themselves with the question

of the divergent velocity variance, I shall not discuss them here. The con® ned

experimental geometry, however, is of particular relevance to the content of section 5,
and the notion [29] of an eŒective temperature is central to the stochastic PDE

approach of reference [30].

2.1.3. Theoretical approaches: a summary

Apart from ideas involving particle or ¯ uid inertia{, which experiments [26] seem
to have ruled out pretty conclusively, there are precisely four theoretical attempts to

go beyond what Ca¯ isch and Luke (CL) did. Koch and Shaqfeh (KS) [31] were the

® rst to argue that a mechanism analogous to screening of the Coulomb interaction in

electrolytes might be at work in sedimenting suspensions. They start from a

microscopic statistical description of the interaction of sedimenting, hydrodynami-
cally interacting particles and show that considerations involving three-particle

encounters could lead to a screening of the CL divergence. They do not, however,

suggest independent measurements which could predict whether a given suspension

will be screened. Brenner [21] assumes the CL mechanism but questions the claimed

evidence in favour of screening, arguing that the interpretation of the experiments

[17] which attempted to test it are greatly complicated by the proximate walls of the
container. The coarse-grained approach of Levine et al. [30] consists of writing down

stochastic equations of motion for the concentration and velocity ® elds of a

sedimenting suspension, retaining only those terms which dominate at large length

scales, and assuming no relations amongst the phenomenological parameters other

than those forced on one by the symmetries of the problem. The spirit is identical to
that underlying theories of dynamical critical phenomena [32], the hydrodynamics of

ordered phases [33], or indeed the ¯ uctuating Navier± Stokes equations [34]. The

important diŒerence is that sedimentation is a non-equilibrium steady state, so that

the stationary con® guration probabilities are not given by a Boltzmann± Gibbs

distribution with respect to an energy function, but must be obtained by solving
the equations of motion. This approach actually yields a phase diagram for steady

sedimentation, containing an `unscreened’ phase in which the velocity variance ¼2
v

diverges as L, as in CL, and a s̀creened’ phase in which ¼2
v saturates for L greater

than a screening length ¹. Lastly, Tong and Ackerson [35] make the intriguing

observation that the model equations for sedimentation at large Pe number and

S. Ramaswamy304

{ Brenner [21] suggests a role for inertia in producing one kind of screening in sedimentation.



small Reynolds number are identical to those for thermal convection at large

Prandtl and Rayleigh numbers, with the concentration in the sedimentation problem

standing in for the temperature ® eld in the convection problem. They then transcribe

results from Kraichnan’s mixing-length theory for Rayleigh± BeÂ nard turbulence
to argue for screening and, hence, for a ® nite velocity variance in steady, low

Reynolds-number sedimentation. The analogy is tantalizingly close and, although

their paper presents no detailed calculations, I suspect it contains a great deal of the

essential physics. An important diŒerence between reference [35] and the experiments

is that the latter are done with a uniform concentration whereas convection is driven
by an imposed temperature gradient. Tong and Ackerson’s work and that of Levine

et al. [30] are, I believe, equivalent, although the former is a set of highly plausible

physical arguments while the latter is a detailed calculation within a phenomen-

ological theory. My review will discuss all of the above theoretical approaches in

some detail.

2.2. Sedimenting crystalline suspensions

If the mass densities of solute particles and solvent are matched, there is no
sedimentation. Such a neutrally buoyant suspension of monodisperse spheres is a

scale model for a classical liquid at thermal equilibrium insofar as its static structural

properties are concerned [6]. As the particle volume fraction ¿ and, in the case of

charge-stabilized suspensions, the Debye screening length ¹D ² µ 1 are increased,

the spatial correlations in the positions of the suspended particles change from gas-
like, through liquid-like, ® nally to crystalline. The lattice spacing in the crystalline

phase is generally of the order of microns or larger for the cases of interest. The term

colloidal crystals is often applied to crystalline suspensions, even when the particle

size is large. The phase diagrams of these systems are generally studied by changing

not the temperature but the ionic impurity strength ni. A large ni means a short ¹D

and hence a weaker interaction. Temperature itself is not a convenient parameter to
vary: the dielectric constant of water makes the combination (interaction energy/

temperature) rather weakly dependent on temperature. These suspensions have a

phase diagram which is well understood at thermal equilibrium [6], using methods

taken from the theory of freezing of classical liquids [36].

Recall, however, that the materials favoured in the making of synthetic
colloidsÐ polystyrene, speci® c gravity 1.05, and silica, speci® c gravity 2Ð are heavier

than water. Left to itself, a crystalline aqueous suspension made of such particles will

settle slowly, resulting in a slightly inhomogeneous, bottom-heavy crystal with unit

cells shorter at the lower end of the container than at the top. For very small polymer

particles (say polystyrene spheres, speci® c gravity 1.05, 0.1 mm in diameter) the eŒect
is negligible except on enormous time scales. For larger, denser particles (e.g. 0.3 mm

diameter silica spheres, speci® c gravity 2.5) the eŒect begins to be appreciable (Pe

’ 0:2), and for spheres several microns in size it dominates. From the point of view

of this review, this density mismatch oŒers the opportunity to study the structure

and dynamics of a deformable lattice being driven uniformly through a viscous

medium. A ¯ uidized-bed experiment on a colloidal crystal [37, 38] will therefore
allow us to examine in detail the steady-state properties of this process. A non-

equilibrium steady state of this type also arises when a depinned ¯ ux lattice drifts

under the action of the Lorentz force of an imposed supercurrent through a type-II

superconductor and our interest in the subject of drifting crystalline arrays arose

from eŒorts to understand ¯ ux-lattice motion. Whereas the structure and motion of
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¯ owing ¯ ux-lattices has been very widely studied [39], with particular emphasis on

the eŒect of static obstacles (impurities or voids), the corresponding problem in the

context of suspensions, where such `quenched disorder’ does not arise, has received

relatively little attention. The mean sedimentation speed of ordered, rigid arrays of
particles is well understood [19] but references [37, 38, 40± 43] are to my knowledge

the only papers on the statistical mechanics and the dynamics of perturbations of

such lattices.

References [40, 41] regard the perfect crystal, drifting steadily through a dissi-

pative medium, as a non-equilibrium ordered phase, and use symmetry arguments to
construct its linear response, i.e. the dispersion relation between the frequency

and the wavenumber of a small-amplitude, long-wavelength disturbance. For a

crystal at thermal equilibrium, e.g. for a neutrally buoyant colloidal crystal or a ¯ ux

lattice at rest, this response is of course determined completely by elastic theory

[44] and its extension to time-dependent phenomena [33]. The analysis of references

[40, 41] showed that the dominant linear response of the drifting crystal at
su� ciently long wavelengths was determined not by the elastic constants of the

lattice but by the dependence of its local mobility on the local state of distortion. The

scale of the terms in the terms in the equations of motion that led to such a response

was shown to be controlled by the driving force on the lattice.

Even more strikingly, it was found [40] that this linear response could be either
restoring or destabilizing: a crystal drifting through a viscous medium could, if

disturbed, display either propagating waves with a speed that had nothing to do with

its elastic constants or exponentially growing distortions leading to a clumped and

buckled state. Which of these happens cannot be determined by symmetry

arguments, but requires a detailed consideration of the interactions in the system.

Thus, the stability or otherwise of a steadily sedimenting colloidal crystal could be
established only by starting with a collection of particles interacting, say electro-

statically, so as to form a crystal when neutrally buoyant, then switching on

sedimentation and introducing a weak, long-wavelength sinusoidal perturbation in

the particle positions. The perturbation will result in disturbances in the hydro-

dynamic ¯ ow which will in turn further alter the particle positions. The question then
is whether this results in a growing or a decaying perturbation. A ® rst step towards

answering that question was taken a long time ago by Crowley [43] who considered

the dynamical stability of collections of hard spheres prepared in perfectly ordered

one- or two-dimensional arrays sedimenting normal to the ordering direction(s) in a

viscous ¯ uid. He found, experimentally and theoretically, that these arrays were

always unstable. His arrays, however, were simply prepared in an initially ordered

con® guration, and had no interactions that could stabilize such order in the absence
of sedimentation. In addition, his analysis was linear, and did not take into account

the possible eŒects of thermal or hydrodynamic noise. In references [40, 41], all of

these shortcomings were overcome, albeit in a simpli® ed one-dimensional model,

and it was concluded that steadily sedimenting crystalline suspensions were always

linearly unstable to long-wavelength clumping and buckling. The analogous calcula-
tion [45] for drifting ¯ ux lattices showed that the latter were linearly stable and

carried wavelike excitations.

These studies gave rise to new models in the general class known as driven

diVusive lattice gases [46], with important consequences for non-equilibrium

statistical mechanics. They showed spontaneous phase separation and breaking of

translation invariance in a one-dimensional system with local, bounded interactions,
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and ultraslow coarseningÐ domain size growing as the logarithm of time. This latter

is to be contrasted with the power-law growth almost universally [47] found for

coarsening in systems without quenched disorder.

The vast literature on sedimentation and related phenomena has little to say

about the admittedly academic subject of crystalline ¯ uidized beds. The only

detailed experimental study on the subject [37, 38], although not a test of the

predictions of references [40, 41], suggests that crystalline ¯ uidized beds are indeed

unstable, at least when their elasticity is weak. Further experiments, designed

speci® cally to test the ideas of references [40, 41] are needed before one can claim

to have understood the statistical mechanics of steadily sedimenting crystalline

suspensions.

2.3. Bidisperse sedimentation

2.3.1. Bidispersity and the depletion force

Suspensions in nature and industry generally contain mixtures of particles of

diŒerent types, shapes and sizes [48]. The simplest example of such polydispersity is

found in a bidisperse suspension of chemically identical hard spheres of two diŒerent

radii a1 and a2 < a1. The equilibrium statistical physics of Brownian, neutrally

buoyant , bidisperse hard-sphere mixtures is fairly well understood [49, 50]. Asakura

and Oosawa [49] made the crucial observation that a pair of large hard spheres in a

bath of smaller spheres would attract each other if they got close enough such that

there was no room for a small sphere to ® t between them (® gure 4). This depletion

interaction can be seen as arising from the unbalanced pressure because the small-

sphere gas does not have access to part of the large-sphere surfaces, or equivalently

by noting that moving the large spheres together increases the available volume for,

and hence the entropy of, the small spheres.
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In the approximation where the small particles are treated as an ideal gas, the

attractive well in the eŒective interaction between the large particles has a depth [49]

¹ kBT¿2a1=a2, where kBT is Boltzmann’s constant times temperature and ¿2 the

small-sphere volume fraction. Averaging over the small spheres, the large particles

can be thought of as a gas of particles with a short-ranged attractive interaction, and

should hence condense [51] when ¿2a1=a2 is of order unity and ¿1 is large enough.

Whether this `entropic phase separation’ results in a gas± liquid or ¯ uid± solid

transition for the large spheres depends [9] on the radius ratio. If a1=a2 0 3 the

phase diagram includes gas± liquid coexistence and a critical point, and it is this case

which concerns us here.

Studies (e.g. references [52, 53]) of the eŒects of the depletion force, theoretical

and experimental, have focused on thermal equilibrium phase behaviour, whereas

most practical settings where this force arises involve sedimentation. Here are some

examples. In waste-water treatment, small amounts of polymeric additive (the small

particles) are used [54] to aggregate and precipitate out suspended impurities (the

large particles). Depletion forces arising from small micelles have been used crucially

in a fractionation process to produce highly monodisperse oil± water emulsions [55].

In this case the segregated large droplets ¯ oat up, which is the inverse of

sedimentation. The erythrocyte sedimentation rate (ESR) (see, e.g. reference [56])

test used in clinical diagnoses relies on the enhanced rate of settling of red blood cells

in the blood of a patient suŒering from a serious infection. It is broadly agreed [57]

that this enhancement is induced by the increase in the numbers of small proteins in

the blood of a very sick patient, although there are debates as to the detailed nature

of the mechanism. A depletion-based explanation seems the most likely, especially

given the non-speci® c nature of the enhancement. In addition to the practical issues

just mentioned, the large concentration ¯ uctuations near the critical point in the

thermal equilibrium phase diagram of bidisperse suspensions presents the possibility

of enormous hydrodynamic eŒects if sedimentation is turned on. The interplay of

depletion-induced (or any other) attraction and the hydrodynamics of sedimentation

thus presents intriguing new problems in the non-equilibrium statistical mechanics of

suspensions.

In section 6 I shall summarize experimental and theoretical work on bidisperse

sedimentation. Experiments have been done on Brownian and non-Brownian

suspensions. In the former, the emphasis is on the subtle eŒects of depletion

forces on the sedimentation rate [54], whereas in the latter [58] the primary

interest is in the types of hydrodynamic instabilities seen in these systems. I shall

discuss brie¯ y the problems posed by these studies. Theoretical work on the

interplay of sedimentation and phase separation is limited. There are some studies

[46] of the eŒect of a uniform drift ® eld on the critical point behaviour, but all in

the absence of the hydrodynamic interaction. I shall concentrate on very recent

work on an extension [59] of the Ca¯ isch± Luke [16] and Levine et al. [30] approach

to include phase separation. Reference [59] observes that phase separation and

screening represent opposing tendencies: the former enhances concentration

¯ uctuations, and the latter suppresses them for small wavenumber normal to gravity.

This could lead, for parameter values close to the equilibrium critical point, to

microphase separation and ordered columnar structures. No experiments have tested

this idea so far.
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3. Stokesian hydrodynamic s

3.1. From Navier± Stokes to Stokes

Recall that the velocity and pressure ® elds v and p of a ¯ uid of density » and

shear viscosity · obey the Navier± Stokes equation

»
@v

@t
‡ v ¢ rv

³ ´
ˆ ·r2v rp ‡ f ; …3†

with
r ¢ v ˆ 0 …4†

in the incompressible limit. The body force density f in (3) accounts for gravitational
or other forces not subsumed in the pressure. The Reynolds number Re ˆ UL»=· is

an estimate of the ratio of the inertial (»v ¢ rv) and viscous (·r2v) terms in (3) for a

¯ ow with characteristic speed U and length scale L. For the suspensions in which we

are interested, taking · to be the viscosity of water (1 cP), Re ranges from 10 6 if L is
the particle size to 10 4 if we take L to be the interparticle distance. The

approximation Re ˆ 0, in which the inertial term »v ¢ rv is neglected, is thus a very

good one for these systems. In addition, on the scale of a typical particle radius of a

micron or so, the viscous damping time for the ¯ ow of water is ¹ 1 ms, so if we are

concerned with particle motions on time scales larger than a microsecond, the

temporal acceleration term @v=@t can also be ignored. In this (singular) limit (3) is

thus replaced [9, 60] by the balance of forces known as the Stokes equation:

·r2v ˆ rp ‡ f …5†

with r ¢ v ˆ 0. Note that (5) is linear, which means that solutions to it can be

superposed, subject to boundary conditions. Let

Pij…k† ² ¯ij

kikj

k2
…6†

be the projector transverse to the wavevector k in Fourier space. Then, using

incompressibility (4) to eliminate the pressure ® eld from (5) yields

·r2v ˆ Äff; …7†
where in Fourier space

~ffi…k† ˆ Pij…k†fj…k†: …8†

A remarkable property of the Stokes equation (5) is its reversibility. Recall ® rst

that the Navier± Stokes equations (3) lack time-reversal invariance (i.e. invariance
under inversion of time, velocity and forces), because of the viscous term. The

nominal zero-viscosity limit of (3), namely the Euler equations, of course possess this

invariance. What is surprising and counterintuitive is that the large-viscosity limit,

i.e. the Stokes equation, is also time-reversal invariant, as can be seen by inspection

of (5). This has important physical consequences which we will point out brie¯ y in
section 3.3. Let us now look at some simple solutions to the Stokes equation.

3.2. One sedimenting particle
About a century and a half ago, Stokes [61] solved the problem of a single, non-

Brownian, spherical particle of radius a and mass density »p settling steadily and

slowly, so that equation (5) applies, in a gravitational ® eld of strength g through an

unbounded viscous ¯ uid of mass density »f ˆ »p ¢» and shear viscosity ·. He

found that the sphere settled at a speed vStokes ² 2
9
a2¢»g=·. Equivalently, the force
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on the particle for a given settling speed v0 is 6p·av0. This is of course easy to see

qualitatively: the viscous force is the viscous shear stress (¹ ·rv ¹ ·v=a) times the

area of the particle (¹ a2). More important, de® ning the buoyant weight

W ˆ …4p=3†¢»ga3, his solution shows that the ¯ uid velocity ® eld

v…r† ˆ
W

8p·a
…I ‡ r̂r̂rr† ¢ ẑz

a

r
‡ O

a

r

± ²3
µ ¶

…9†

decays very slowly as a function of distance r from the centre of the sphere. This is to

be expected since a single settling particle is a delta-function force in (5).

3.3. Two sedimenting particles

Now imagine two particles sedimenting. From (7), each is like a point charge,

producing a (velocity) ® eld decaying as the inverse ® rst power of the distance from it,
and the velocity due to each advects the other. By naive analogy to electrostatics one

might ask whether these `charges’ attract or repel. Two spheres, settling in an

unbounded ¯ uid in the Stokesian limit [62], do neither: they do not change their

relative position. This is an immediate consequence of the invariance, mentioned

above, of the Stokes equation under reversal of velocities and forces. If they were to
move, say, towards each other when gravity pointed `down’ , they would have to

move apart when gravity was `up’, whereas these two cases represent the same

physical situation, so that the relative motion has to be the same in both cases. In

short, since reversing the body force should lead to a reversal of the velocities, the

only consistent relative velocity for two identical spheres sedimenting in an

unbounded volume is zero. This is one of the most striking diŒerences between
Stokesian hydrodynamics and the more familiar inertia-dominated case, where

Bernoulli’ s theorem is invoked to explain why ¯ uid ¯ owing between two objects

pulls them together.

The joint mobility of a pair of particles as a function of the magnitude and

direction of their separation is a crucial input into the theory of sedimenting
crystalline suspensions. In ® gure 3, an external (e.g. buoyancy-correcte d gravita-

tional) force F ˆ F ẑz acts on two spheres of radius a located at r1; r2, with relative and

centre-of-mass coordinates r and R ˆ …X ; Z† (in the plane de® ned by F and r, where

X and Z are the horizontal and vertical components) respectively, causing them to

sediment through a ¯ uid of large shear viscosity ·. The ¯ uid velocity is assumed to
obey `no slip’ at the particle surfaces. For our purposes it is enough to work in the

dilute limit, i.e. to leading order in a=r. De® ning ³ to be the angle made by r with the

horizontal, with ³ > 0 if particle 2 is at a greater height than particle 1, it is

straightforward to show starting from (5) [9] that the horizontal and vertical

centre-of-mass velocities, in units of the isolated-particle Stokes speed and to leading

order in a=r, are
dX

dt
ˆ

3

4

a

r
sin ³ cos ³;

dZ

dt
ˆ 1 ‡ 3

4

a

r
‡ 3

4

a

r
sin2 ³:

…10†

Physically, this means that the centre-of-mass velocity of a pair of sedimenting

particles is diŒerent from that of a single sedimenting particle. This diŒerence is

larger the closer they are to each other. There are three important aspects to this

diŒerence. First, if their separation vector is neither horizontal nor vertical, the
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velocity is not directed straight downwards but has a horizontal component as well.

This component points towards the horizontal location of the lower particle, as if the

particle pair is trying to move `downhill’ . Secondly, a tilted pair settles faster

vertically as well, in a manner even in the tilt. Lastly, both horizontal and vertical
drift speeds increase if the particles are brought closer together for a given tilt. These

considerations led Crowley [43] to his results on the instability of sedimenting

lattices, and are a microscopic justi® cation for the phenomenological equations of

motion for drifting crystalline arrays [40, 41]. We shall see this in more detail in

section 5.

3.4. More than two sedimenting particles

Although it is generally understood that hydrodynamic dispersion [12] (see
section 1.1.1) is a result of chaos in the trajectories of the suspended particles, the

underlying microphysics was not elucidated until the elegant work of JaÂ nosi et al.

[13], who showed that the dynamics of three Stokesian particles under a constant

external force ® eld was governed by a chaotic saddle. The typical evolution of the

three-particle system results in two particles pairing oŒand moving ahead (since a
pair as we noted above moves faster than a single particle), the third being left

trailing. The time the three particles spend together before one of them peels oŒand

escapes is found to be highly sensitive to initial conditions, and a positive Lyapounov

exponent is found for the dynamics. Presumably the apparently random nature of

particle motions in many-particle sedimentation is a result of the processes

elucidated in reference [13] for three particles, although I do not know of any
attempt to relate the measured hydrodynamic diŒusivities to the Lyapounov

spectrum.

The above analysis of the three-particle sedimentation problem teaches us that

any attempt at an analytical study of the many-particle problem must take into

account the chaotic nature of the motion. Whether one studies this N-body problem

in terms of particle coordinates [31, 63] or concentration ® elds [30] is a matter of
taste. The point is that it is a problem in statistical physics.

4. Velocity ¯ uctuations in steady Stokesian sedimentation:

a puzzle and its resolution?

4.1. Long-ranged eVects in sedimentation

The form of the Stokes equation (5) or (7), in particular the appearance of the

Laplacian of the velocity ® eld, is a result of momentum conservation. It is therefore
to be expected that a local disturbance would have long-ranged consequences, since

the perturbation in the momentum can only be transferred from one region of the

¯ uid to an adjacent region. There are several ìnfrared problems’ which arise from

this long-ranged character of the hydrodynamic interaction. As a simple example,

consider a single particle sedimenting along the z direction, and ask how much ¯ uid

it drags with it. This is obtained by integrating the z component of the velocity over a
plane passing through the particle, with the normal along ẑz. Since, as we saw in

section 3.2, the velocity ¹ 1=r with distance r from the particle, the integral diverges

linearly with the size of the system. Clearly the presence of walls is of overwhelming

importance: in a real system, this large amount of ¯ uid is recycled by a back¯ ow at

the walls.
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Batchelor’s calculation of the mean settling speed of a dilute suspension presents

and solves a related infrared di� culty. Consider a suspension of N particles (heavier

than the solvent, hence sedimenting in the ẑz direction) at positions fx¬g. Let c…r† be

the number density ® eld at point r, with mean c0. If the buoyant weight of a particle
is W , then the Stokes equation reads

·r2v…r† ˆ rp ẑzWc…r†; …11†

with r ¢ v ˆ 0. For point particles, this implies that the mean settling speed of a

particle at a point r0 is

Us…r0† ˆ ẑzU0 W

…
d3r 0G…r0 r 0† ¢ ẑzc…rjr0†; …12†

where n…rjr0† is the number density at r given that there is a particle at r0, i.e. it is the

pair correlation function between r and r0, and the kernel G is the Oseen tensor,

whose Fourier transform is

Gij…k† ˆ
Pij…k†
·k2

: …13†

The trouble is that (12) contains an integral which diverges as L2 for a system of
linear dimension L, since c…rjr0† approaches the constant mean number density c0 for

r r0 ! 1. This is the di� culty that Batchelor [19] resolved, by noting that for any

® nite container the mean ¯ uid velocity in the suspension is zero: the bottom induces

a back¯ ow through the suspension that, on average and in the steady state, cancels

the induced velocities. This can be thought of as an order-of-limits problem. In
experiments and hence in calculations, one takes a ® nite system, lets it settle down to

a stationary state and and measures its properties, and then studies systems of

various sizes in the same manner. Thus, one must take the in® nite-time limit ® rst,

and then the in® nite-size limit. The former limit assures zero mean ¯ uid velocity.

This means that the pair correlation function in (12) should be replaced by

c…rjr0† c0. The resulting expression for the settling speed is then ® nite provided

c…rj0† c0 approaches zero faster than r 2. His treatment is equivalent [64] to noting
that the mean number density on the right-hand side of reference (11) can be

absorbed into a rede® nition of the pressure pR ˆ p n0Wz. Physically, this extra

pressure gradient is generated by the bottom of the container. Let us now move to

the main subject of this section, the divergent variance [16] of velocity ¯ uctuations in
hard-sphere sedimentation.

4.2. The Ca¯ isch± Luke puzzle revisited

Ca¯ isch and Luke’ s result [16], and its relation to the small-wavenumber

behaviour of concentration ¯ uctuations, can be seen easily from the considerations

in section 4.1. Fourier-transforming (11), we see that the ¯ uctuations ¯v…k† and ¯c…k†
in the suspension velocity and concentration at wavevector k in our suspension of
particles with buoyant weight W , sedimenting steadily in the z direction, are

related by

¯vi…k† ˆ W
Piz…k†
·k2

¯c…k† …14†

so that the suspension-velocity variance at any point in space, in d dimensions,

should be
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hj¯vj2i ˆ c0W

·

³ 2́ …
ddk

…2p†d

jPiz…k†j2

k4
S…k†; …15†

where the transverse projector Pij was de® ned in (6), c0 is the mean concentration,

and

S…k† ² c 1
0

…
ddrh¯c…0†¯c…r†i exp … ik ¢ r† …16†

is the (static) structure factor of the concentration ¯ uctuations. The infrared

convergence of the integral in (15) clearly depends crucially on the behaviour of

the structure factor at small waveumber. Ca¯ isch and Luke’s result, extended to a

general space dimension d, and a general structure factor, can be restated thus: if the

suspension has no signi® cant anticorrelations at small wavenumber, so that

S…k ! 0† > 0, then (15) says that the velocity variance hj¯vj2i, for d µ 4, diverges
at least as strongly as L4 d with the linear dimension L of the container. If on the

other hand S…k ! 0† ! 0 faster than k4 d (faster than k in 3 dimensions), then

hj¯vj2i is ® nite. In more detail, de® ning

¢v ² hj¯vj2i1=2; …17†

(15) tells us for d ˆ 3 and a structureless S…k† that

¢v

vsed

¹ ¿
L

a

³ ´1=2

; …18†

where ¿ ¹ c0a
3 is the volume fraction, a the particle radius and L the linear

dimension of the container. CL do not tell us the form of S…k†: as with the

renormalized settling-speed calculation of Batchelor, the CL result too assumes a

particle distribution and looks at its consequence for the velocity. This is true for

Hinch’ s version [18] of the derivation of the CL result as well. Note that for a

collection of N particles

S…k ! 0† ˆ hN2i hNi2

hNi
² ¼2

N

hNi ; …19†

where h:i denotes an average over the ¯ uctuations. If the number ¯ uctuations were

perfectly random, as in an ideal gas, one would expect the number variance ¼2
N ˆ N ,

i.e. S…k ! 0† ˆ 1; if they had a weak tendency to cluster (anticluster) then ¼2
N / N

with a constant of proportionality greater than (less than) unity. A vanishing

S…k ! 0† implies that the number ¯ uctuations are qualitatively smaller than those

resulting from purely random variation, i.e. that ¼2
N ˆ hN2i hNi2 grows more

slowly than constant£N for large N .

We shall return to these points shortly when we discuss recent theoretical
developments. Let us ® rst survey the experiments in some detail.

4.3. Experiments on velocity ¯ uctuations in steady sedimentation

As summarized in section 2.1.2, a wide range of techniques has been used to

probe the spatiotemporal structure of velocity and concentration correlations in

sedimentation. I summarize their ® ndings here.
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4.3.1. Tagged-sphere measurements

Koglin [23] and Tory et al. [20] marked, radioactively or otherwise, a few

submillimetre-sized spheres in a sedimenting suspension at volume fractions ranging

from 10 3 to 10 2 and measured traversal times for a ® xed vertical distance, typically
of the order of a metre, or the vertical distance covered in a ® xed time of the order of

a minute. From the scatter in these measurements they inferred the variance in the

sphere velocities. On the assumption that the CL [16] divergence should be cut oŒby

® nite-size eŒects on a scale equal to the distance to the nearest boundary, they argue

that the velocity variance should peak when the particle is halfway between the free
surface and the bottom. The scatter in the data for settling times is indeed consistent

with this rough picture. However, their ® ndings cannot rule out a ® nite screening

length of order, say, half the vertical height of the ¯ uid column in the container.

More important, all their measurements are for the initial variance; this means that

the suspension quite possibly retains a memory of the initial randomly stirred state,

which presumably has no correlations or anticorrelations in the particle positions.
The anticorrelations which could be present in the structure factor of the true steady

state in, say, the ¯ uidized bed geometry, would be arti ® cially suppressed and,

consequently, the velocity variance would diverge with system size.

Ham and Homsy [24] and Nicolai and Guazzelli [25] followed large (hundreds of

mm diameter) glass beads, silvered but hydrodynamicall y identical to the index-
matched particles forming the bulk of the suspension, again in batch settling, in a

standard organic ¯ uid about a thousand times as viscous as water, and measured

their hydrodynamic diŒusivities. In reference [25] these are studied directly as

functions of system size ranging (smallest dimension) from 2 to 8 cm, whereas in

reference [24] the approach is similar to that of reference [20] in that the dependence
on settling distance is monitored. In reference [25] the probability distribution of the

velocities and the velocity autocorrelation function were measured. A very signi® cant

anisotropy in the diŒusivities is noted, but neither reference [25] nor reference [24]

® nds any size dependence.

4.3.2. Swirls from particle imaging velocimetry

The experiments of SegreÁ et al. [17] measure the suspension velocity ® eld, coarse-

grained on the scale of a couple of particle sizes, by particle imaging velocimetry [65]
on a suspension of monodisperse, eŒectively hard-sphere particles of polystyrene,

of radius of about 8 mm. The sealed glass sample cells used were rectangu-

lar parallelepipeds with dimensions from 3 mm £ 0:3 mm £ 50 mm to

30 mm £ 10 mm £ 200 mm, and a cylinder of height 30 mm and radius 0:5 mm. In

all the cells, the line of sight was in the direction which was rather narrower than the
rest. Volume fractions from 0:01 to 5% were studied. The illuminated area was

about 0:4 £ 0:5 mm2, the plane of focus was the midplane of the cell, and the depth

of focus was about 0:5 mm. These studies were not done in the ¯ uidized bed state,

but in batch sedimentation, where a dispersion of particles was shaken vigorously

and allowed to settle partly. Measurements were taken well away from both the

settling front at the top of the suspension and the sedimenting layer at the bottom,
on the assumption that this middle region, statistically speaking, was relatively

homogeneous and stationary. Their main ® nding is that the velocity standard

deviation ¢V , scaled by the mean Vsed grows with the width W of the sample for

a range of W but then saturates for L greater than a correlation length ¹ / a¿ 1=3,

where a is the particle radius and ¿ is the particle volume fraction. A plot of
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¢V=Vsed¿1=3 versus W=a¿ 1=3 yields an impressive data collapse, reinforcing the

signi® cance of the mean interparticle spacing a¿ 1=3 as a characteristic length scale

for sedimenting suspensions. They also estimate ¹ from the spatial correlation

function of the velocity ® eld, and ® nd consistent results. An important qualitative
observation of this work is that the velocity ¯ uctuations are in the form of swirls

whose size is of the order of ¹. The only di� culty with this work, as Brenner [21]

points out, is that it studies the dependence on the width, which is not the smallest

dimension of the cell. There is some data for the dependence on the depth, which is

indeed the smallest dimension, and it is consistent with screening on a scale ¹, but
there is not enough of it for a ® rm conclusion. It is not known, moreover, whether

the velocity-¯ uctuation data collapse is independent of the thickness (the smallest

dimension of the cell), a question raised in Brenner’ s critique [21] (see section 4.5.2).

None the less, it is the most detailed study to date of the spatial correlations of

sedimenting velocity ® elds.

4.3.3. Sound-scattering studies

In the experiments of Cowan et al., a ¯ uidized bed of 0:4 mm glass beads in a

glycerol± water mixture was studied in a cell with length £ width £ thickness ˆ
20 cm £ 12 cm £ 0:776 or 1:22 cm [26]. The Peclet number was about 1011. The probe

used for these studies was sound scattering spectroscopy. In this technique,
analogous to dynamic light scattering (for single scattering) [66] or diŒusing wave

spectroscopy [67] when the probe beam is highly multiply scattered, a plane wave

pulse is incident on the sample and the near-® eld speckle of the scattered beam is

autocorrelated. The theory for interpreting these measurements is, as in references

[66] or [67], dependent on the scattering regime. The measurements give information
about the time evolution of the displacements of the scatterers, here the suspended

particles. The importance of this work lies in the Reynolds number (Re) range

studied. Re was varied from 0:007 to 0:3 by changing the fraction of glycerol. This

appreciable variation in Re was found to have no perceptible eŒect on the nature of

velocity correlations. The velocity variance was found to be ® nite as in reference [17],

with a screening length that showed no dependence on the smallest dimension of the
cell. This work thus suggests (a) there is an intrinsic screening mechanism at work

and (b) that inertia has no role to play in it, ruling out one suggested mechanism for

screening [21], since varying the viscosity by a factor of 400 changed nothing.

4.3.4. Light-sheet measurements of number ¯ uctuations
Lei et al. [22]{ have recently carried out the only direct test to date of particle

number ¯ uctuations in sedimentation. Working at Peclet number > 106 and

Reynolds number ¹ 10 7, they studied the evolution of the number ¯ uctuations

starting from an initially highly stirred and hence structureless suspension. They used

polystyrene spheres about 40 mm in diameter, at volume fractions of about 0:004, in a
rectangular cell measuring 1 £ 1 £ 4 cm3 (so that their measurements were not

aŒected by the proximity of walls) and imaged the positions of the particles by

means of a 0:35 mm thick light-sheet slicing vertically through the sample. A patch of

the slice, measuring a few mm2, was imaged through a microscope/CCD attachment.
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They found that the statistics of number ¯ uctuations went from Poissonian at early

times when, presumably, the particles are distributed randomly because of the initial

stirring, to strikingly sub-Poissonian at later times as the long-range hydrodynamic

eŒects of sedimentation set in. In other words (see section 4.2) ¼2
N=N decreases with

N for large N, which means S…k ! 0† ! 0. Quantitative comparisons of these

measurements with theories [30, 31, 35] of the small-wavenumber structure factor in

sedimentation are as yet unavailable. The qualitative trend in favour of a strong

suppression of number ¯ uctuations (i.e. of an anticorrelation of concentration

¯ uctuations at large length scales, and hence of a possible escape from the
Ca¯ isch± Luke divergence) is however clear, although I am concerned that the

estimated screening lengths are larger than the beam thickness.

4.3.5. Velocity ¯ uctuations: a summary

In brief, then, experiments on the velocity-¯ uctuations problem have not reached

a consensus. There is evidence for and against the Ca¯ isch± Luke scenario of a
divergent velocity variance. Part of the di� culty lies in the fact that rather diŒerent

geometries have been used in the various experiments, leaving open the possibility

that nearby walls could suppress long-range hydrodynamic eŒects. Almost all of the

measurements are in the batch-settling mode rather than in the ¯ uidized-bed

geometry; the sample is initially shaken, and measurements are taken after some
time (say, after the sedimentation front has settled some modest fraction of the cell

height, but before settling is complete, or some such rule of thumb). There is thus

some question whether true steady-state properties are being measured. From the

point of view of testing theories of sedimentation, it is highly desirable that

experiments work in geometries where stationarity is assured and side walls do

not obscure the true long-range eŒects of the hydrodynamic interaction. Further
experiments are thus required to settle unambiguously the question of the nature of

steady-state sedimentation. Theoretical studies of the problem, meanwhile, will

inevitably focus primarily on trying to understanding the phase diagram of steadily

sedimenting particles in unbounded containers. We turn next to a summary of

numerical simulation studies of steady sedimentation, followed by a survey of
theoretical approaches to the problem.

4.4. Simulations of sedimentation

Brenner’s [21] simulations represent the particles sedimenting while con® ned

between two in® nite walls as point forces suitably augmented by images. The velocity

® eld due to each point force is cut oŒat small length scales as a way of putting in an

eŒective particle size and avoiding unphysical singularities. Since this simulation was
used mainly to test theoretical ideas about the eŒect of walls, I shall not spend much

time on it here; a summary of Brenner’ s analytical work is in section 4.5.2. The

simulations of Ladd [27] are the most extensive numerical search for screening or its

absence. Fluid ¯ ow in Ladd’ s simulations is implemented using a lattice Boltzmann

approach: an occupation probability is assigned to directed bonds from each site of a

three-dimensional cubic lattice to nearest and next-nearest neighbours. The surfaces
of the suspended particles are internal `boundary nodes’ at which, in eŒect, no-slip

boundary conditions are imposed, and the particles are moved by the ¯ uid ¯ ow. This

approach is known [69] to reproduce the equations of suspension hydrodynamics.

Ladd studies up to 32 768 particles, i.e. 32 particles on a side in a cubic box, with

periodic boundary conditions, and measures velocity variances and particle pair
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distribution functions. Over the range of sizes studied, the velocity variance grows

linearly with the smallest dimension of the system, and the structure factor for the

particle concentration does not appear to go to zero at small wavenumbers. For box

sizes up to 70 particle radii and volume fractions from 0.01 to 0.1, there is no
screening. The dependence of relaxation times ½ on length scale W , moreover, is

½ ¹ W 1=2, in agreement with reference [70] and behaviour predicted for the

unscreened phase in reference [30] (see section 4.5.4 below).

It is none the less important that the large-distance behaviour of the pair

distribution function shows distinct deviations from that expected for a purely
random suspension. If we de® ne the pair correlation function

g…r† ² N 1
X

i 6ˆj

h¯…r Rij†i; …20†

where Rij is the separation vector between the ith and jth particles in a collection of

N particles at volume V , then it is straightforward to show that the condition

S…k ! 0† ˆ 0 on the structure factor, as the wavenumber k goes to zero, is

equivalent to the requirement that

n…r† ² N

V

…
d3r 0‰g…r 0† 1Š …21†

approach 1 as r grows; this has to be done for various ® nite and increasing N and

V , keeping r small compared to V 1=3. Ladd [27] ® nds n…r† to be distinctly smaller

than that for a truly smaller suspension, although well above 1. Thus, in Ladd’s
simulations, there appears to be some tendency to suppress small-wavenumber

concentration ¯ uctuations, but not enough to produce screening.

It is of course conceivable that there is a screening length much larger than 70

particle radii (10 to 20 interparticle spacings at these volume fractions), or that there

is a screened phase outside the range of volume fractions explored.
We turn next to analytical, theoretical approaches to the velocity-variance

problem. These include proposals for how screening could come about, as well as

one study [21] which takes the Ca¯ isch± Luke argument for granted but analyses its

consequences when the no-slip boundary condition at nearby walls is included.

4.5. Theories of the velocity variance in steady sedimentation

4.5.1. Con® ned ¯ uid ¯ ow

We noted above that many experiments, e.g. those of reference [17], are

performed in containers with one dimension (the y dimension, i.e. the thickness,
normal to the xz plane of view) much smaller than the other two. This is a serious

shortcoming, as pointed out by Brenner [21], who remarks that Segre et al. [17] ® nd

growth and saturation of the velocity variance as a function of the largest rather than

the smallest dimension of the container. Before presenting his arguments, we digress

brie¯ y to study the nature of ¯ uid ¯ ow in a con® ned quasi-two-dimensional

geometry [71, 72]. Purely as a result of the incompressibility constraint, this ¯ ow
still has a long-ranged aspect although the hydrodynamic interaction is screened by

the walls. This can be seen as follows. The ¯ uid velocity ® eld v satis® es the Stokes

equation (7) in the interior of the container; if the thickness is D, then no-slip

boundary conditions at the walls mean that the longest allowed wavelength in the y

direction is ¹ D. Thus, the Stokes equation in the presence of a body force f…r† can
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be averaged over the y direction to give an eŒective equation relating the eŒective

(y-averaged) two-dimensional velocity and force ® elds U and F:

…® ·r2
xz†U ˆ ÄFF; …22†

where ® ¹ ·D 2 is a Darcy-like friction coe� cient resulting from the con® nement

between the walls and, in two-dimensional Fourier space with coordinates K,

~FFi…K† ˆ Pij…K†Fj…K†; …23†

is the two-dimensional transverse projection of F. At large length scales in the xz

plane, the gradients on the right-hand side of (22) can be ignored relative to ®;

equations (22) and (23) then imply a 1=r2 decay with distance r in the xz plane from a

localized force density, simply as a result of transverse projection, and not because of

any long-ranged hydrodynamic interaction, the latter having been killed by the walls.

The 1=r2 has, naively speaking, the same dimension as a two-dimensional delta-
function, but is in fact long-ranged Ð although not enough to make a serious

diŒerence, as we shall now see. Repeating the arguments of section 2.1.1 for this

case implies that the velocity variance due to a collection of random localized

concentration ¯ uctuations now comes from summing r 4 over a two-dimensional

array of points labelled by r. The dominant contribution to this comes from small r,
and is thus determined by the short-distance cut-oŒ(¹ the particle size). The large r

contribution goes as r2=r4 ¹ r 2 and hence converges.

4.5.2. Brenner’ s critique
Brenner [21] argues that the hydrodynamic eŒects of a particle’s force density are

screened once the particle reaches the wall. For a container with thickness ½ the

other dimensions, this eŒect could be very signi® cant. If a particle starts from the

centre of the container, it has a vertical velocity vsed and a transverse ¯ uctuation

velocity ¢u. Its lateral wandering as it settles will take it to the nearest wall, a
distance D (the thickness) away in a time ½ ¹ D=¢u, by which time it will have fallen

a distance ` ˆ constant £ vsedD=¢u ˆ constant £ D…a=`¿†1=2, where the second

equality is based on (18) evaluated on a length scale `. This self-consistently

determines

` ¹ a1=3D2=3¿ 1=3 …24†
and

¢u

vsed

¹ D

a

³ ´1=3

¿1=3; …25†

as in reference [17]. Note that (24) and (25) show a cube-root dependence on the

particle size a and an explicit dependence on the smallest dimension D; this can be

used as a crucial test of Brenner’s ideas. Preliminary indications from experiments{
are in favour of a linear dependence on a, contrary to (24). Brenner’s simulations,
however, appear to be consistent with his theoretical arguments. One statement by

Brenner is misleading: early in the paper, he says that the observation of extended

spatial correlations in reference [17] contradicts the assumption of pair interactions.

It should be clear that local, pairwise interactions are perfectly capable of leading to
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long-ranged correlations or anticorrelations: neither screening nor the absence of it is

evidence against two-body interactions, contrary to Brenner’ s assertion.

That, then, was Brenner’s conservative explanation of the observations of

reference [17]: no true screening, just the eŒect of walls, but in a form more subtle
than a naive application of the Ca¯ isch± Luke result to a con® ned system would

yield. It could well be the correct explanation of the SegreÁ et al. screening, but it is

unclear how it accounts for the Ham± Homsy [24] and Nicolai± Guazzelli [25]

observations, which are performed in containers which are quite wide in all

directions. The size dependence, moreover, is monitored in reference [25] by varying
the smallest dimension of the cell, and in reference [24] by looking at the diŒusivity

as a function of how far a particle has settled. One possible worry about these

experiments as well, as noted by Brenner, is that since they sample particles at all

locations in the cell, and the hydrodynamic diŒusvities are smaller near the walls, the

samples would be biased in favour of particles near the walls. If this bias yielded a

disproportionate number of particles within a ® xed distance of the wall, independent
of container size, the result could be an apparently size-independent variance. The

only sure test, therefore, is one which samples particles exclusively in the bulk. The

work of Lei et al. [22] mentioned above is a likely candidate. In any event, it should

not be long before unambiguous experimental evidence for or against screening are

available.

4.5.3. Koch and Shaqfeh’ s screening theory
The ® rst theoretical approach to the possibility of screening in steady sedimenta-

tion came from Koch and Shaqfeh (KS) [31]. They argued that a structure factor

S…k† that vanished su� ciently fast as the wavenumber k ! 0 would render the

velocity variance ® nite. They noted further that this required the introduction of a

length scale Rs such that S…k† ½ 1 for kRs ½ 1, so that the Ca¯ isch± Luke result (18)

for the velocity variance would then be replaced by

¢u

vsed
¹ ¿

Rs

a

³ ´1=2

: …26†

Before explaining how such a screening length could arise as an intrinsic conse-
quence of the hydrodynamics of the suspension, they drew an important analogy

with electrolytes: number-density ¯ uctuations in sedimentation are very much like

charge-density ¯ uctuations in electrolytes. A local number-density ¯ uctuation in a

sedimenting suspension gives rise to a long-range velocity ® eld, just as the charge

density in an electrolyte produces a long-ranged electrostatic potential. The
suspension velocity ® eld moves the particles just as the electric ® eld moves the

charges. The long-ranged electrostatic interaction in an electrolyte solution results in

a charge-density structure factor that vanishes at zero wavenumber [73]. Might one

not expect the number-density structure factor likewise to vanish at zero wavenum-

ber in a sedimenting suspension?

Inspired by this analogy KS [31] carried out a calculation of pair correlations in
steady sedimentation, as follows. Consider a sedimenting suspension with mean

concentration n, and let n3m…x; r† be the joint probability of ® nding a pair of

particles with separation r with magnitude of order the particle size a, i.e. a `close

pair’ , and a third particle at relative position x with x ¾ a. Note that by de® nition

m…x; r ! 1† ˆ 1 since the probability density for ® nding three well separated and
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hence independent particles is simply n3. Let n2O…r† be the probability of ® nding two

particles with separation r with r ˆ O…a†. Then the probability of ® nding the third

particle at x so large that the close pair is unaŒected by it is clearly n3O…r†. KS then

calculate the pair distribution function and velocity correlations for a sedimenting

suspension using O…r† as input. This they do by calculating the behaviour of triplets

of particles, focusing on the eŒect of the remote third particle on the ¯ ow around the

close pair. They argue that the extensional component of this induced ¯ ow is such as

to favour horizontally separated close pairs at locations above the third particle and

vertically separated close pairs below it. The former pairs settle [9] more slowly than

the latter. This gives rise to a nett de® cit of pairs near any given t̀hird’ particle,

assuming the close pair probability, which is the input to the calculation, is uniform,

i.e. O…r† ˆ 1. This turns out, in their calculation, to yield the necessary long-range

particle de® cit (see equation (21)) and consequently a ® nite variance for the velocity.

It is not clear, however, that the simple pictorial explanation they oŒer (® gure 5) is

really at work; their mechanism is a ¯ uctuation eŒect.

In more detail, their calculation expresses the N-particle probability in terms of

contributions from m and O as de® ned above, and neglects 4-body and higher

correlations. A conservation law for m…x; r† is constructed, taking into account

movements of the three particles, along with Stokesian hydrodynamic expressions

for the relative velocity of the the close pair and the distant third particle. The

resulting expression for the structure factor shows screening. The consequent ® nite

variance ¼2
v of the velocity is calculated and found to be about 4 times the square of

the Stokes speed Us. An approximate expression for the particle diŒusivity D in

terms of the Fourier-transformed spatial correlation function of the velocity ® eld is

obtained, and shown to yield D ¹ Usa¿ 1, where a and ¿ are respectively the particle

radius and volume fraction. Equivalently, the screening length is shown to go as a¿ 1

which does not, however, agree with the experiments of reference [17].

There are some features of the KS calculation which are hard to reconcile with

more standard approaches to statistical Stokesian hydrodynamics. For example,
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sedimenting particle: the extensional part of the ¯ ow produced by the particle
promotes horizontal pairs above and vertical pairs below.



their general expression for the relation between the structure factor S…k† and the

velocity variance ¼2
v (notation of this review, not KS’s paper) can be written as

¼2
v ˆ

c0

·2

…
d3k

…2p†4

jPiz…k†j2

k4
‰2 S…k†ŠS…k†S… k†: …27†

Equation (27), as Ladd [75] remarks, is rather diŒerent in detail from the

straightforward relation (15). This diŒerence is probably a consequence of the way

in which KS develop their expansion for the induced velocity in terms of conditional

probabilities. The validity of this expansion seems somewhat uncertain, and this

diŒerence may be responsible for some of the disagreement between their theory and

those of references [30] and [35].
None the less, the KS theory thus shows howÐ within a certain approximate

calculational schemeÐ to relate the bare or short length-scale correlation function

O…r† of a sedimenting suspension to the observed macroscopic structure factor.

It is not a completely predictive theory, in that it cannot in addition calculate O…r†
for a suspension of a given volume fraction at Pe ˆ 1, Re ˆ 0. This is not a

drawback in itself. The problem is that it only shows that a particular form of O
leads to screening. This is hard to test in simulations or experiments: what is needed

is a categorization of all suspensions into those that screen and those that do not,

based on some easily calculated property of O. This could then be turned into a

predictive if phenomenological phase diagram of steady sedimentation. The
approach of Levine et al. [30] achieves this, in a continuum stochastic PDE

framework.

4.5.4. Fluctuating hydrodynamics of steady sedimentation

Levine et al. [30] argue that it is su� cient to treat the forces in the Stokes

equation at a monopole level, but that the concentration should obey a stochastic
advection± diŒusion equation. The eŒects of higher multipoles are irrelevant in the

mean but are argued to result, along with close encounters of three or more particles,

in a noise source as well as hydrodynamic diŒusivities in the equation for the

concentration. I present below the arguments leading to their equations of motion.

The description is phenomenological , but only to the same extent as a continuum
Ginzburg± Landau model or its time-dependent analogue for an equilibrium phase

transition problem such as phase separation in a binary ¯ uid.

The following general principles are crucial to the construction of these equations

of motion. (i) Since the aim is to write down a description valid at asymptotically

large length and time scales, only the most slowly-varying ® elds need to be included.
Away from a critical point, these would in general be [33] (a) the `conserved modes’ ,

i.e. the local densities of independently conserved quantities and (b) `broken-

symmetry’ variables corresponding to motions which at zero wavenumber become

continuous symmetry transformations . (ii) Since the suspension has not undergone a

phase transition into a state where a continuous invariance (e.g. translation,

rotation) is spontaneously broken, there are no broken-symmetry modes. This leaves
only the conserved modes which, for an incompressible suspension, are the local

concentration of suspended particles and the total (solute ‡ solvent) momentum

density. (iii) As already noted in section 1, the microscopic Stokesian dynamics of a

sedimenting suspension is spatiotemporally chaotic. Anything short of a complete

speci® cation of initial conditions will lead, therefore, to indeterminacy in the
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dynamics. In such a situation, one cannot in general hope to obtain analytical

expressions for the statistical properties of the system starting from the exact

microscopic dynamical equations. The coarse-grained eŒective description for the

long-wavelength degrees of freedom will contain stochastic terms (a direct eŒect of
the eliminated fast degrees of freedom) as well as diŒusive terms (an indirect eŒect),

both involving phenomenological parameters. This step is no more controversial

than starting with an isolated system of many interacting particles governed by the

laws of non-dissipative, Hamiltonian classical mechanics, and replacing the fast

degrees of freedom by noise [76] to obtain the generalized Langevin equations that
are the standard description of time-dependent ¯ uctuations at thermal equilibrium.

The only diŒerence is that the noise in sedimentation is not constrained by

requirements such as a ¯ uctuation± dissipation theorem, because sedimenting

systems are driven, held in a state far from thermal equilibrium. The general idea

that driven non-Brownian suspensions are stochastic is enunciated by Leighton and

Acrivos [77] and particularly emphatically by Tory et al. [20]; the latter even propose
stochastic equations of motion, but diŒerent in spirit from and less general than

those proposed here. Indeed, any treatment of the statistical properties of suspen-

sions can be recast in terms of noise-driven equations of motion. The noise, as will

shortly be seen, is simply a convenient calculation tool. Since only a limited range of

modes (say, with wavenumbers larger than a cut-oŒscale L, of order an inverse
interparticle spacing) have been eliminated, the resulting noise can have correlations

only on scales smaller than L 1 ² `. The noise in the eŒective equations can be

thought of as containing velocity ¯ uctuations beyond the point-force approximation

and hydrodynamic re¯ ections involving groups of particles with separation less than

the coarse-graining scale `. The resulting noise source must perforce consist of
random particle currents with no correlations over space and time scales larger than

` and a corresponding time ½`. As far as a description on scales ¾ ` and a

corresponding time scale ½` is concerned, the noise can be treated as spatially and

temporally uncorrelated. The magnitudes of the noise variance and the correspond-

ing hydrodynamic diŒusivities [12] at the scale ` in a strictly non-Brownian system

must, on dimensional grounds, be of order vsed`, where vsed is the Stokesian settling
speed. In laboratory experiments, there will in principle be additional Brownian

contributions to noise and diŒusion. While knowledge of the detailed properties of

the noise would require a direct numerical solution of the problem{, its general

features, such as the form of its covariance, should once again be governed by the

symmetry principles enunciated above. (iv) To get the long wavelength physics right,
it is useful to work at leading order in a gradient expansion. (v) At this leading order

in gradients, it is essential to keep all terms not explicitly forbidden on grounds of

symmetry, and impose no relations amongst the phenomenological parameters other

than those mandated by the symmetries of the problem. In particular, as remarked

above, no ¯ uctuation± dissipation relation can be assumed to hold in general between
the noise and diŒusivities. Note that the model makes only an innocuous assumption

about the short-time, local eŒects of an elimination of the fast variables. The large-

scale, long-time behaviour is calculated from the coarse-grained equations of motion

given below. This approach lends itself easily to the many well-controlled analytical
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techniques developed in the study of continuum models of critical dynamics and

allied phenomena [79, 80].

Once accepted these premises lead inevitably, for a suspension sedimenting

steadily along the z direction, to a stochastic advection± diŒusion equation

@¯c

@t
‡ ¯v ¢ r¯c ˆ …D0?r2

? ‡ D0zr2
z†¯c ‡ r ¢ f…r; t† …28†

for the concentration ¯ uctuation ¯c at space point r at time t, and the Stokes

equation (see equation (7))

·r2¯vi…r; t† ˆ mRgPiz¯c…r; t† …29†

for the suspension velocity ¯ uctuation ¯v, with incompressibility imposed by means

of the transverse projector Pij. Equation (28) contains the advection of the

concentration by the velocity and, as argued at the beginning of this subsection,

an anisotropic `bare’ hydrodynamic diŒusivity …D0?; D0z† and a spatiotemporally
white noise or random particle current f…r; t†. The latter is taken, reasonably, to have

Gaussian statistics with mean zero and covariance

h fi…r; t†fj…r 0; t 0†i ˆ c0…N0?¯?
ij ‡ N0z¯

z
ij†¯…r r 0†¯…t t 0†; …30†

where c0 is the mean concentration, and ¯z
ij and ¯?

ij are respectively the projectors

along and normal to the z axis. In a perfectly non-Brownian system with settling

speed vsed, particle size a one expects N0?, N0z, D0?, D0z ¹ vseda, as argued earlier

in this section. However, no further relation between the noise and the diŒusivities

may be assumed, since this is a non-equilibrium system. In particular, and this

is crucial, the `̄ uctuation± dissipation ratio’

Rfd ² N0?D0z

D0?N0z

…31†

may not in general be set to unity. Since at equilibrium the ratio of noise strength to

kinetic coe� cient is a temperature, the departure of Rfd from unity measures the

anisotropy of the non-equilibrium analogue of a t̀emperature’ for this driven system.
The idea of a temperature for non-Brownian sedimentation is to be found in

reference [29] as well.

It is easy to see that deviations if any from the CL result of a divergent variance

must come from the advective nonlinearity v ¢ rc: if we ignore this nonlinearity, then

the structure factor (16) can be computed by straightforward Fourier transformation

of (28), giving

S…k† ˆ S0…k† ² N0?k2
? ‡ N0zk

2
z

D0?k2
? ‡ D0zk2

z

: …32†

The form of (32) depends on the direction k of the wavevector, but not on its

magnitude. This means that (32), in the absence of the advective nonlinearity, does

not mitigate the CL [16] divergence (see equation (15)). The form of (32) does imply
real-space correlations decaying in d dimensions as 1=rd with distance r, if Rfd 6ˆ 1,

as has been discussed in the general context of driven diŒusive systems [81]. We shall

discuss below the implications of this for the complete nonlinear theory.

Using (29) to eliminate the velocity ® eld in (28) turns the latter into a stochastic

diŒusion equation for the concentration alone, with a quadratic nonlinearity (cubic
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vertex, from the point of view of diagrammatic perturbation theory, and hence a

three-body coupling, in particle language):

@¯c

@t
‡ ¶r ¢ ¯c…r†

…

r 0
G…r0 r 0† ¢ ẑz¯c…r 0†

µ ¶
ˆ …D?r2

? ‡ Dzr2
z†¯c ‡ r ¢ f…r; t†: …33†

The nonlinearity in (33) couples concentration ¯ uctuations widely separated in

space. This important feature is clearly related to the types of three-body coupling

discussed by KS [31] (see section 4.5.3), and was shown [30] to lead to screening

under certain conditions. To see how to include the eŒects of this nonlinear vertex,

note ® rst that the expression (32) for the structure factor in the linearized theory is of
the form

Noise strength

Relaxation rate
: …34†

When the nonlinear coupling in (33) is included, the structure factor can still be

written in the form (32) or (34), provided the `bare’ quantities (with subscript `0’ in

(32)) are replaced by suitably renormalized noise strengths N?…k†; Nz…k† and a

renormalized relaxation rate R…k†:

S…k† ˆ
N?…k†k2

? ‡ Nz…k†k2
z

R…k† ; …35†

where the form of the relaxation rate has deliberately not been written merely in

terms of renormalized diŒusivities, for a reason which will become clear shortly.

Before we see how to carry out this renormalization, a comparison with the

dynamics of screening in electrolytes (the statics of which is discussed in detail in
reference [73]) is useful. For simplicity we treat the charges as moving in a passive

frictional medium, so that solvent hydrodynamics is ignored. Let » be the relative

concentration of ‡ and charges in the electrolyte (analogous to high and low

concentration ¯ uctuations in a sedimenting suspension). Suppose ® rst that the ‡ and

were just labels rather than charges. Then there is only an interdiŒusion current
and a corresponding noise:

@»

@t
Dr2» ˆ r ¢ f ; …36†

where the relative diŒusivity D and the spatiotemporally white noise f, with
covariance N , obey a ¯ uctuation± dissipation relation. The static structure factor

for the `charge’ density is then N=D, a non-zero constant at zero wavenumber. When

the Coulomb interaction and Ohm’s law are included, of course, (36) is modi® ed to

@»

@t
Dr2» r ¢ jE ‡ r ¢ f ; …37†

where the conductivity ¼ gives an Ohmic current jE ˆ ¼E due to the electric ® eld

E ² rF, and the electric potential F obeys

r2F ˆ »: …38†

Equations (37) and (38) are the analogues of (28) and (29), with an important

diŒerence: the eŒect of the electric ® eld enters linearly in the electrolyte problem,

while in (28), as a result of incompressibility, the velocity enters only at bilinear

order. It is easy to see that (37) and (38) imply a structure factor
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S»…k† ˆ Nk2

G»…k† ; …39†

where the r̀enormalized’ relaxation rate

G»…k† ˆ ¼ ‡ Dk2 …40†

for charge density ¯ uctuations at wavenumber k. Thus, charge-density ¯ uctuations

on length scales larger than

¹» ² D

¼

³ ´1=2

…41†

are suppressed strongly, and relax anomalously rapidly, at an essentially wavenum-
ber-independent rate G»…0† [82]. One way of looking at this is that the Coulomb

interaction induces a non-local relaxation of the charge density, while the noise

remains local and conserving. The general expression (34) then tells us that the

structure factor must vanish at zero wavenumber.

Returning to the sedimentation problem, we then see that if the hydrodynamic

interaction gives rise to wavenumber-independent relaxation of the number density,

while leaving the noise unchanged, screening should result. This cannot happen as
simply to concentration ¯ uctuations in sedimenting suspensions because, as stated

above, the long-range advection of the concentration by the velocity (the analogue of

the Ohmic current in the electrolyte problem) enters only at nonlinear order (see

equation (33)). The question therefore is whether the advective nonlinearity leads in
(35) to a renormalized relaxation rate R…k ! 0† 6ˆ 0. This is answered [30] by

calculating N?…k†, Nz…k† and R…k† in a diagrammatic perturbation expansion (see,

e.g. [80]). The expression (35) connects noise, diŒusion and structure factor. It is thus

clear that one could describe the perturbation theory in terms of a renormalized

structure factor and relaxation rate, never mentioning the noise explicitly. This in
eŒect is what approaches like those of reference [31] do. In that sense the intro-

duction of a noise term is not a radical step, but merely a calculational device for

generating the perturbation expansion.

Galilean invariance [30] protects the advective vertex from graphical corrections

at leading order in wavenumber. We need therefore only calculate the self-energies

for the noise and the relaxation rate, i.e. the diŒerence between the renormalized

quantities in (35) and their bare values in (32). These can be expressed [30] in terms of
integrals over products of dynamic correlation functions and propagators of the

concentration ® eld, which themselves contain the self-energies, and must therefore be

evaluated self-consistently.

Consider ® rst some general properties of the correction ¢R…k† ² R…k†
…D0?k2

? ‡ D0zk
2
z†, evaluated at lowest order in (non-self-consistent ) perturbation

theory. Although this object is formally infrared divergent in three dimensions, its

structure is important as the starting point for self-consistent or renormalization

group calculations. It turns out [30] to have two qualitatively distinct pieces:

¢R…k† ˆ D1…k†k2 ‡ ®…k† k2
?

k2
: …42†

In (42), D1 renormalizes the diŒusivities, while the key quantity is the term involving

®, which is (a) not of a type present in the bare equation (32) or (28), (b) non-zero

only if k? 6ˆ 0, (c) not diŒusive and (d) proportional to sgn …Rfd 1† where the
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¯ uctuation± dissipation ratio Rfd was de® ned in (31). We can rationalize the above

proportionality of D1 to sgn …Rfd 1† (setting Dz ˆ D? for simplicity) by looking at

the eŒect of a noise-injected concentration ¯ uctuation (NICF) on an imposed

macroscopic concentration inhomogeneity. If Nz ¾ N? the typical NICF varies
predominantly along z and the induced z velocity alternates in sign mainly along z

thus reinforcing the inhomogeneity. However, if N? ¾ Nz, the NICF and hence the

sign of the resulting z velocity both vary mainly in the xy plane, so that the ¯ ow

breaks up the inhomogeneity and thus enhances eŒective diŒusion. In any case, the ®
term is absent if the bare noise and bare diŒusivities obey a ¯ uctuation± dissipation
relation (Rfd ˆ 1). In reference [30], they ignore the intriguing case Rfd < 1 where a

negative relaxation rate (i.e. a possible instability) could arise, and construct a phase

diagram for the regime Rfd > 1. Conveniently, the renormalization of the noise has a

structure like that of D1, with no ®-like term. Screening can thus arise if a self-

consistent calculation gives ®…k ! 0† > 0.

4.5.4.1. Self-consistent screening. A complete calculation including the renormal-

izations of all the coe� cients in (33) is not yet available. However, [30] seeks a

solution of the form (42) with ®…k ! 0† ² ®0 > 0. This leads to a s̀elf-consistent’
equation for ®0 which has a solution only if the anisotropy parameter K ² Rfd 1

is larger than a calculable critical value Kc. For ®0 large, D1…k ! 0† and the

corresponding noise correction are non-singular and indeed negligibly small, so

that the diŒusivities and noise strengths can be set to their bare values. As K # Kc,

the self-consistent answer for ®0 goes continuously to zero. In this manner, Levine
et al. [30] predict two phases (® gure 6) for steady sedimentation, screened (®0 > 0)

and unscreened (®0 ˆ 0), separated by a continuous non-equilibrium phase

transition at which ®0 ! 0 and hence the screening length

¹sed ²

���������
D0?

®0

s

…43†
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Figure 6. Levine et al.’ s non-equilibrium phase diagram for steady sedimentation: FDT
denotes the line on which a ¯ uctuation± dissipation theorem is obtained, and the
question mark is a region where the calculation breaks down because of singular
negative ¯ uctuation corrections to the relaxation rate.



diverges as …K Kc† 1=3 in their self-consistent approximation, and scales as a¿ 1=3

deep in the screened phase, in agreement with reference [17].

Levine et al. [30] make detailed predictions for the behaviour of concentration

and velocity correlation functions in the screened phase (which appear to be
consistent with the preliminary observations of reference [22]; see section 4.3.4).

More important, although it is unclear how the phenomenological parameters of

their theory are related to microphysics, an independent test of the theory can none-

the-less be made by measuring the bare (i.e. large wavenumber) noise and diŒusivity

parameters, and seeing if the values locate the system in the screened or the
unscreened region of the phase diagram (® gure 6). The bare diŒusivities can be

obtained from self-diŒusion measurements, while the ratios of noise to diŒusion

coe� cients are contained in the structure factor.

4.5.4.2. The unscreened phase. For 0 µ K < Kc, this simple approach in which the

diŒusivities and noise strengths are not renormalized is insuŒucient, since ®0 ! 0
as K # Kc. A more complete calculation has still not been carried out. However, for

K ˆ 0, i.e. Rfd ˆ 1, where a ¯ uctuation± dissipation (FD) relation holds, and hence

a ®…k† (see equation (42)) is never generated, the steady state is known exactly [30].

This leads to a constant, direction-independent zero-wavenumber structure factor,

hence a divergent Ca¯ isch± Luke velocity variance ¼2
v ¹ L, and a highly

superdiŒusive relaxation rate R…k† ¹ k1=2. This behaviour, which is also predicted

by [70] and seen in the simulations of reference [27], is expected to hold throughout
the region 0 < K < Kc, not only at the FD line K ˆ 0. Note that the unscreened

phase has no analogue in electrolytes.

It is clear from reference [30] and indeed from reference [31] (see section 4.5.3)

that screening and its absence are both possibilities in a general phase diagram for
steady sedimentation. It is reasonable to ask how an experimenter could move

around in such a phase diagram. In the absence of a microscopic theory, the most

one can say is that at zero Reynolds number the parameter K can depend only on

Peclet number Pe and particle shape [70]. Decreasing Pe (i.e. increasing the role of

thermal Brownian diŒusion) by reducing the mass-density diŒerence between par-
ticles and solvent is likely to make the eŒective temperature more isotropic, driving

the system into the unscreened phase. Working with particles of various forms

(prolate, oblate, perhaps polymer coated so that another length scale is introduced)

is another possibility, but it is unclear just where in the phase diagram would lead.

One drawback of the approach of reference [30] should be noted. The screening

length ¹ was predicted to scale as a¿ 1=3, which is just the interparticle distance. This

phenomenological theory is unable to make a quantitative prediction for the
coe� cient. Unless ¹ is a large number times a¿ 1=3, the continuum hydrodynamic

description is questionable on scales small compared to ¹. It is therefore reassuring

that SegreÁ et al. [17] ® nd ¹ ’ 17a¿ 1=3, although until the criticisms of Brenner (see

section 4.5.2) of those experiments are answered this cannot be taken as de® nitive.

4.5.5. An analogy to high Prandtl number turbulence
Tong and Ackerson [35] note that the advection± diŒusion (28) and Stokes (29)

equations are identical to those for the Rayleigh± BeÂ nard convection problem in the

Boussinesq approximation [83] if the concentration ® eld in the sedimentation

problem is identi® ed with the temperature ® eld in convection. Denoting character-

istic velocity and length scales by U (say the mean settling speed) and L (the
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container size, ignoring anisotropy), de® ning the kinematic viscosity ¸, and recalling

that non-Brownian suspensions with particle size a ½ L have a purely hydrodynamic

diŒusivity Dh ¹ Ua, we see that for Reynolds number Re ² UL=¸ ! 0, the

suspensions have ¸=Dh ¹ Re 1L=a ! 1. In the convection problem this translates
to an in® nite ratio of ¸ to the thermal diŒusivity, i.e. Prandtl number Pr ! 1. The

analogy to turbulence is not forced: the sedimenting suspension too is in a driven,

spatiotemporally chaotic state, but this is high Peclet (rather than Reynolds) number

turbulence. The authors speculate about the origin of the concentration ¯ uctuations

that give rise to these random velocity ¯ uctuations, suggesting that Crowley’s [43]
(see section 5.1) is involved. The latter is however the instability not of a uniform

concentration ® eld but of a spatially periodic state; the work of JaÂ nosi et al. [13] is

more likely to provide the explanation.

Scaling lengths by L and time by L2=Dh, and working in terms of ¯Á, the volume

fraction ¯ uctuation scaled by its mean ¿0, the Stokes equation (29) when non-

dimensionalized becomes r2¯ui ˆ Ra¯ÁPiz, where

Ra ² mRg

·Dh

L

a

³ ´3

¿0 ¹ L

a

³ ´3

¿0 …44†

(since Dh ¹ Ua and U ¹ mRg=·a) is the analogue here of the Rayleigh number in the

convection problem, and the limit of interest is clearly Ra ! 1. Tong and Ackerson

interpret in the context of sedimentation the arguments of Kraichnan [84] and
Priestley [85] for a characteristic length scale in high-Prandtl-number turbulence as

follows. I have recast their reasoning in an easily applicable form: the typical velocity

¯ uctuation ¯u…L†, generated by concentration ¯ uctuations, scales (via Ca¯ isch±

Luke) as U…¿0L=a†1=2. This velocity ¯ uctuation has an associated PeÂ clet number

Pe…L† ˆ ¯u…L†L=Dh. It follows that at a scale L ˆ ¯d ¹ Pe2=3
c a¿

1=3
0 , Pe…L† attains

the value Pec for the transition to PeÂ clet-driven turbulence with Re ½ 1. At length
scales above ¯d , the ¯ ow must enter a diŒerent regime where large-scale advection

prevents concentration variations. The velocity variance is thus cut oŒ, yielding

¯u=U ¹ Pe1=3
c ¿

1=3
0 , consistent with references [17] and [30]. The numerical estimates

of coe� cients in reference [35] are also in quite good agreement with reference [17].

This scenario is not an alternative to references [30, 31], but a qualitative description
of the detailed screened-phase behaviour of reference [30]. In particular, although

reference [35] does not state this explicitly, the suppression of concentration

¯ uctuations by large-scale advection (i.e. a vanishing small-wavenumber structure

factor) is implicit in the ideas of reference [84]. The drawbacks of this approach are

that it ignores the anisotropic nature of sedimentation and that it is a set of persuasive
arguments rather than a detailed calculation. Its success at predicting not only the

scaling properties but their amplitudes as well is none the less impressive.

This concludes our discussion of the velocity ¯ uctuations problem. Much

remains to be done here. Experiments must address themselves to the truly

stationary state of a ¯ uidized bed, in a geometry where the walls are far from the

region of interest; a complete ¯ uctuating hydrodynamic theory, preferably in a
dynamical renormalization-grou p framework, is clearly essential, as is a connection

between the phenomenological parameters in reference [30] and microscopic

quantities such as particle shape, Brownian PeÂ clet number and volume fraction. I

believe this important problem in the statistical mechanics of driven systems can then

be settled in the near future.
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5. Clumping instabilities and anomalous coarsening in crystalline ¯ uidized beds

We noted in section 2.2 that crystalline suspensions are usually made out of

particles heavier than the suspending ¯ uid, and are thus generally in a state of

sedimentation. Such a suspension in, say, a ¯ uidized bed geometry is thus one

realization of an important non-equilibrium steady state, namely an ordered but

deformable lattice drifting through a dissipative medium. We remarked that such a

state also arises in the case of a ¯ ux-point lattice drifting through a slab of clean type

II superconductor. Although this latter problem has been studied intensively [39],

especially with a view to understanding the eŒects of quenched disorder, the

analogous problem for suspensions has received very little attention. This section

will summarize the theoretical papers [40± 43] that speci® cally address the question of

the stability of steadily sedimenting crystalline suspensions. The important literature

on the settling speed of rigid crystalline arrays [19] will not be surveyed, but

experiments [37] which oŒer evidence for the eŒect of ¯ uctuations on the settling

speed, and could be extended to study the instability proposed in references [40, 41,

43] will be discussed. We shall assume that we are working far from the equilibrium

phase transition from the crystalline to a ¯ uid-like suspension [6]. The interplay of

sedimentation and freezing [86, 87] will not be discussed.

5.1. Crowley’s experiments and theory

Crowley [43] considered arrays of hard spheres with radius a, settling in a viscous

¯ uid in the Stokesian approximation. In the simplest model he considered, which is

su� cient for our purposes, the hydrodynamic interaction was truncated at the

nearest neighbour level. He considered perturbations …¹n…t†; ²n…t†† in the positions

of the particles (labelled by the index n) as a function of time t in a one-dimensional

array with spacing d ¾ a parallel to the (horizontal) x axis and drifting (under

gravity, for example) with a mean speed U in the vertical z direction. Scaling lengths

by d and times by d=U , his equations for the perturbations read:

@¹n

@t
ˆ ‡

3

4

a

d
…²n‡1 ²n 1†;

@²n

@t
ˆ

3

4

a

d
…¹n‡1 ¹n 1†:

9
>>=

>>;
…45†

These equations can be obtained from (10) in section 3.3. It is easy to see that (45)

implies that a sinusoidal perturbation with small (non-dimensional) wavenumber K

will grow at a rate ­ ˆ …3=2†…a=d†K .

Ordered arrays settling steadily in a viscous ¯ uid are thus unstable to clumping

and buckling at small wavenumbers (® gure 7). Crowley’s experiments on 1=16 inch

steel balls settling in Venice turpentine (viscosity ¹ 104 P) con® rmed this instability.

However, the arrays in Crowley’s work are not true crystalline suspensions, but are

simply particles prepared in an initially ordered con® guration. His analysis thus does

not include elastic restoring forces, Brownian motion (or the analogous random

motions induced by hydrodynamic dispersion) and nonlinearities, all of which could

in principle resist this instability in a suspension of micron-sized polymer spheres in a

charge-stabilized crystalline state. The work of references [40, 41], to which we turn

next, takes these forces into account.
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5.2. The long-wavelength dynamics of drifting crystals

As we have seen in sections 4 and 3, local variations in the concentration of a

sedimenting suspension are carried to arbitrarily large length scales by the long-

ranged hydrodynamic interaction. A complete analysis of the sedimentation

dynamics of a three-dimensional crystalline suspension thus requires the explicit

inclusion of the hydrodynamic velocity ® eld, as in the preceding section. Crowley’s

analysis got around this by truncating the hydrodynamic interaction. This simpli® ca-

tion can be applied to a physically realizable situation [28], namely a crystalline

suspension with lattice spacing d, sedimenting in the z direction, in a container with

dimensions Lx ¹ Lz ¾ Ly ¹ d (® gure 8).

The local hydrodynamics that leads to the Crowley instability [40, 43] is left

unaŒected by this, but the long-ranged hydrodynamic interaction is screened in the

xz plane on scales ¾ Ly by the no-slip boundary condition at the walls, as we

discussed in section 4.5.1. The model equations (47) in dimension d ˆ 2 apply to

such a system. Hydrodynamic eŒects should be important locally in such a set-up if d

is somewhat larger than a.

As a result of the con® ned geometry, the system reduces to a two-dimensional

crystal lying in the x ± z plane and drifting along ẑz. References [40, 41] treat this
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Figure 7. Crowley’s mechanism: pairs settle faster than isolated particles, and tilted pairs
settle obliquely, leading to a clumping and buckling instability.
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Figure 8. A suspension con® ned between walls to screen out long-ranged hydrodynamic
eŒects, giving a quasi two-dimensional system.



system on scales large compared to d as a continuum and describe local distortions

of the drifting crystal by means of the Eulerian displacement ® eld u ˆ …ux; uz†. We

shall see shortly how Crowley’s instability enters the dynamics. Note ® rst that the

equations of motion for u, ignoring inertia, as is appropriate for the suspensions of
interest, are of the form VELOCITY ˆ MOBILITY £ FORCE, i.e.

@

@t
u ˆ M…ru†…Krru ‡ F ‡ f†: …46†

In reference (46), the ® rst term in parentheses on the right-hand side represents

elastic forces, governed by the elastic tensor K, the second (F) is the applied force
(gravity, in this case) and f is a noise source of thermal and/or hydrodynamic origin.

In the absence of the driving force F the linearized dynamics of the displacement ® eld

in this inertialess system is purely diVusive: @tu ¹ r2u, with the scale of the

diŒusivities set by the product of a mobility and an elastic constant. Note that we

have taken the local mobility tensor M to depend on gradients of u, since such a
dependence is not ruled out by any symmetry. The new physics in these equations

when the driving force is non-zero, in particular Crowley’s instability, will be seen to

arise precisely through this strain dependence of M. For a two-dimensional crystal

drifting along ẑz in the x ± z plane, with x ! x symmetry, expanding M in powers of

ru, (46) becomes

_uux ˆ c1@zux ‡ c2@xuz ‡ O…rru† ‡ O…ruru† ‡ fx; …47 a†

_uzuz ˆ c3@xux ‡ c4@zuz ‡ O…rru† ‡ O…ruru† ‡ fz: …47 b†

Ignoring nonlinearities and diŒusion-like terms for now, (47) says that a tilt (@zux or

c2@xuz) produces a lateral drift, and that local changes in the concentration (@xux or

@zuz) change the settling speed. The coe� cients ci; i ˆ 1 to 4 and those that would

appear in front of the O…ruru† have units of velocity; their magnitude is set by the
mean drift speed times the sensitivity of the mobility to local distortions. These are

truly non-equilibrium terms, which vanish when the driving force is turned oŒ. If the

O…rru†, O…ruru† and noise ( fx and fz) terms are ignored, and all variation along

the z direction neglected, (47) becomes the continuum limit of Crowley’s equation

(45), making the correspondence …¹n; ²n† ! …ux; uz†, with c2 ˆ c3 ˆ 3aU=2d .
Equations (47) are thus the natural generalization of Crowley’s ideas to include

elasticity, nonlinearity and noise, and the instability he found obliges us to study

them in the linearly unstable case c2c3 < 0. An obvious and important consequence

of their form is that the eŒects of elasticity, at least within a linear theory, are

subdominant at small wavenumber to the fcig terms arising from sedimentation.
Thus, ignoring nonlinearities, Crowley’s instability, with a growth rate linear in the

wavenumber k, cannot be suppressed by eŒects associated with the elasticity of the

lattice, which enter at order k2. Thus, in this linearized treatment, a steadily settling

lattice is always unstable to clumping and buckling at small enough wavenumber, no

matter how low the settling speed. Nonlinearities and noise together with the

stabilizing large-wavenumber eŒects of elasticity could conceivably shift the in-
stability to a non-zero speed (like a Tc renormalization in critical phenomena [74]),

but it is exceedingly di� cult to take these into account in the framework of equations

(47): symmetry allows ten independent terms bilinear in ru and six linear second

derivative terms, with as many independent coe� cients. Lahiri et al. [40, 41]

introduced a useful simpli® cation, namely, a one-dimensional model (spatial
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variations only with respect to x) but retaining two dynamical ® elds ux and uz.

Further, they note that the local dynamics of the sedimenting crystal depends

crucially on (a) whether the concentration is larger or smaller than the mean and

(b) whether the local tilt (@xuz) is, say, uphill or downhill to the right. Since (47) is
linearly unstable, the concentration perturbation @xux and the tilt @xuz will grow

exponentially and without bound in a linearized treatment. Physically, since real

colloidal crystals are made of impenetrable particles, and since the elasticity of the

lattice will not tolerate arbitrarily large shear strains, the description implicit in (47)

of small distortions about a perfect lattice must break down in conditions of unstable
growth. It is best, therefore, to work from the outset with naturally bounded

variables for the concentration and tilt. To this end, references [40, 41] use a

description in terms of the concentration ¯ uctuation ® eld

¼…x; t† ˆ @ux

@x
…48†

and the tilt ® eld

½…x; t† ˆ @uz

@x
; …49†

and replace the stochastic PDEs for ¼…x; t† and ½…x; t† implied by the one-

dimensional reduction of (47) by a discrete stochastic dynamical model with two

distinct Ising variables, the concentration ¯ uctuation ¼i with states ‡ and and
the tilt variable ½i with states denoted / and n on the odd and even sublattices of a

one-dimensional lattice. These evolve with s̀pin-exchange’ dynamics simply because

the corresponding continuum variables, being x derivatives of displacements, are

trivially `conserved modes’ . This description was used in reference [41] to show that

the simpli® ed model de® ned by reducing (47) to one dimension is unstable to
clumping and buckling, at any non-zero noise strength, if c2 ˆ c3. Since such

phase separation takes place in this one-dimensional model, it is reasonable to

expect that it would happen a fortiori in a more realistic two- or three-dimensional

model. This suggests that real crystalline ¯ uidized beds are always unstable, a

prediction that should be testable in experiment. We shall return to this question

later in this section. Let us ® rst see how the result was obtained for the one-
dimensional model.

The essential physics described just below equation (47) is encoded in the update

rules for the evolution of f¼ig and f½ig. The probabilities W…:† per unit time for the

various possible exchanges can be represented succinctly [40, 41] by

W…‡n ! n‡† ˆ D ‡ a

W… n‡ ! ‡n † ˆ D a

W… =‡ ! ‡= † ˆ D 0 ‡ a 0

W…‡= ! =‡† ˆ D 0 a 0

W…= ‡ n ! n ‡ =† ˆ E ‡ b

W…n ‡ = ! = ‡ n† ˆ E b

W…n = ! = n† ˆ E 0 ‡ b 0

W…= n ! n =† ˆ E 0 b 0

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

…50†
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where the ® rst line, for example, represents the rate of ‡ going to ‡ in the

presence of a downtilt n, and so on. The quantities D, E, D 0, E 0 (all positive) and

a, b, a 0, b 0 are all in principle independent parameters. A little re¯ ection will show

that the case of physical interest and relevance to the sedimentation problem is
sgn a ˆ sgn a 0, sgn b ˆ sgn b 0; for simplicity, and without losing any of the essential

physics we take E ˆ E 0, b ˆ b 0. The linear instability condition c2c3 < 0 in equation

(47) implies ab > 0. The long-wavelength dynamics implied by these rates can be

argued [40, 41] to be identical to that of the stochastic PDEs (47) reduced to a one-

dimensional form.
It is noteworthy that this change of description has established a link between the

sedimentation problem and the widely studied problem of driven diŒusive lattice

gases [46, 88± 91]{{}. In addition, the one-dimensional coupled nonlinear PDEs of

[40] have been shown to be related to models of magnetohydrodynamic s [92], drifting

polymers [93] and passive scalars on ¯ uctuating surfaces [94].

Working with periodic boundary conditions, and denoting a con® guration of the
f¼ig; f½ig by C, the dynamics (50) can be shown [41], when

P
i ¼i ˆ

P
i ½i ˆ 0 (i.e.

there are equal numbers of pluses and minuses, and the mean macroscopic slope is

zero) to obey detailed balance with respect to the steady-state distribution

·SS…C† ˆ exp ‰ ­ H…C†Š; …51†
with

H ˆ °
XN

kˆ1

hkf½g¼k …52†

provided
b

E
ˆ a

D
: …53†

The `Hamiltonian’ (52) can be interpreted as the energy of particles (the ¼s) moving
in a hill-and-valley landscape provided by the f½ig, if we de® ne the `height’ at site i by

hif½g ˆ
Xi

jˆ1

½j: …54†

With this interpretation the update rules (50) say (® gure 9): a peak tends to sink

and become a valley if there is a ‡ atop it; a at the bottom of a valley tends to lift it

and make it a local peak; a ‡ tends to move downhill and a uphill. It is clear that

this will eventually lead to macroscopic phase separation, a state in which there is
one single valley and hence, with periodic boundary conditions, a single peak,

separated by half the system size. From the bottom of the valley until halfway up is

occupied by `pluses’ , the remainder by `minuses’ (® gure 10). A typical rate-limiting

step through which the stochastic motion of f¼i; ½ig in a ® nite system of size N could

dissolve this macroscopically phase-separated state [40] is for a ‡ to climb up to the
top of a hill, which would take a time of order exp N=4. This quali® es as true phase

separation.
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The form (52), (54) of the hidden eŒective Hamiltonian governing the steady-

state distribution of this non-equilibrium model explains why the system manages to

phase separate in one dimension: H is non-local if expressed in terms of ¼i; ½i, local

but locally unbounded if written in terms of the height variable (54), so that the usual

rules [95] preventing phase separation in one space dimension do not apply. I should

add that although these results have been presented in the special limit where

detailed balance holds, the behaviour predicted can be shown [41] to hold for the

whole range ab > 0 in (50) corresponding to the linearly unstable case c2c3 < 0 of

(47). Moreover, in the in® nite system limit, no process succeeds in opposing this

tendency: the system is phase separated at any ® nite (i.e. less than in® nite) noise

strength. In reference [41] this unusually robust segregation, ® rst reported in

reference [40], is called strong phase separation and has also been seen in related

models [91, 96].

Remarkably, despite this inexorable tendency to phase separate, the kinetics of

coarsening is anomalously slow. Consider a system that had phase separated into

four macroscopic domains, each of size N=4. For this state to achieve complete phase

separation, i.e. to become two domains of size N=2, the two ‡ domains, each at the
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Figure 9. The dynamics of the driven lattice gas for sedimenting crystalline suspensions:
® lled circle ˆ ‡; open circle ; ‡ moves downhill, moves uphill; ‡ makes peaks
sink, makes valleys rise.

Figure 10 The ® nal state of the model of Lahiri and Ramaswamy for sedimenting lattices is
macroscopically phase separated. Oblique arrows show the direction in which the
pluses move; vertical arrows denote the evolution of the height pro® le.



bottom of a valley, must merge. The rate-limiting step can again be taken to be the

movement of a ‡ from the edge of an all ‡ region to the top of a hill, i.e. a distance

N=8. This will of course take a time of order exp …N=8†, by the same argument as in

the previous paragraph, which implies that the characteristic domain size grows
logarithmically in time [41, 89], a remarkable result for a system without quenched

disorder.

5.3. Experiments on crystalline ¯ uidized beds

The experiments reported in references [37, 38] are the only ones I am aware of

that study the steady-state settling of crystalline suspensions. Although they remark

on the possibility of an instability, they focus on testing predictions [19] of the

settling speed of rigid crystalline aggregates as a function of volume fraction. They
® nd in general that the settling is faster than predicted, and that the deviation is

greater, the softer the crystal. This points to a role of ¯ uctuations in the lattice

structure in determining the settling speed.

Let us turn now to how the predictions discussed in this section could be tested in

experiments. Since strong phase separation has been predicted [40, 41] in a one-

dimensional caricature, it should certainly be seen in real two-dimensional steadily

sedimenting crystalline suspensions in, for example, the con® ned ¯ uidized bed
geometry [28] described at the beginning of section 5.2. A good candidate system

is a charge-stabilized crystalline array of polystyrene spheres with radius in the

micron range. The lattice spacing of the crystal should be neither so large that

hydrodynamic eŒects (proportional to the ratio of particle size to interparticle
spacing) are negligible, nor so small as to choke the ¯ ow. Note that the model

equations (47) were formulated to describe the nature of distortions about a single

crystalline domain. In particular, the instability towards clumping takes place only

on large enough length scales where the linear ® rst derivative terms dominate the

diŒusive terms coming from the elasticity. In a polycrystalline sample, if the size of
the crystallites is too small, terms from the elastic energy in (47) could dominate

instead, on scales within each domain. In addition, it is important that the

sedimentation be steady, a requirement best met by working in the ¯ uidized-bed

geometry. Observations in reference [38] suggest that strongly charge-stabilized

crystalline suspensions appear stable whereas suspensions in a ¯ uid state display

the Crowley instability in a visible manner. It is very likely that the instability is

present even in the crystalline suspensions, but is masked either by ® nite crystallite
size or by the logarithmically slow coarsening of domains. A search for this last

feature, using particle imaging or ultrasmall-angle light scattering, although it might

tax the experimenter’s patience, would be the most stringent test of the theory

presented in this section.

6. The statistical physics of bidisperse sedimentation

6.1. Sedimentation and the depletion force

Most suspensions in the real world are mixtures of many types and sizes of
particles. Blood is a prime example, and its sedimentation is of great importance in a

clinical test called the erythrocyte sedimentation rate (ESR) [56]. The ESR is

generally found to be enhanced in the presence of serious conditions such as

septicaemia [97]. The reason for this increase is the enhanced aggregation of the

red blood cells (RBCs) into r̀ouleaux’ (columns) which then settle more rapidly (see

Issues in the statistical mechanics of steady sedimentation 335



section 3.3 and [9]) than individual RBCs. It is now reasonably clear [57] that the

microscopic mechanism for this aggregation is the depletion force [49, 51], also

known as macromolecular crowding [98]. This well-known phenomenon in colloid

science, which I have discussed already in section 2.3, is most simply described for
mixtures of large and small spheres, say, of radii R and r respectively because when

the surfaces of two large spheres are less than a distance r apart, the small spheres

cannot enter the region between the large ones. This loss of entropy can be relieved

by having the large spheres move even closer together. This entropy-induced

attraction has by now been studied in many experiments on model colloids (see,
e.g., references [52, 53]).

In industrial applications, coarse particles, several tens of microns in size,

suspended in water are frequently removed by sedimentation. This separation

process is known to be enhanced by the addition of much ® ner particles with size

in the 10± 100 nm range, which promote the aggregation of the coarser particles. The

systematics of this process have been studied by Chu et al. [54] who show that when
there are appreciable short-ranged spatial correlations between the small particles,

the eŒective interaction between the large particles has a great deal more structure

than the simple attractive well with depth ¹ kBT…R=r†¿small obtained when the small

particles are treated as an ideal gas [49]. The dependence of sedimentation rate on the

volume fraction of added small particles is also shown consequently to be non-
monotone. The theoretical treatment of reference [54] is, however, also carried out

for a system at thermal equilibrium, and sedimentation simply superposed as a

property simply determined by the sizes of the aggregates. The long-ranged

hydrodynamic interaction is ignored as well. Although this is probably acceptable

for the purposes of the analysis in reference [54], the important physics of the
interplay of sedimentation and depletion-induced ¯ occulation is fundamentally non-

equilibrium and dominated by the hydrodynamic interaction, and should be studied

as such. In addition, all discussions of bidisperse sedimentation have concentrated on

the batch-settling mode; the steady-state phase diagram of such systems has received

no attention until the recent theoretical work of reference [59] which I shall describe

in brief below. Before doing so let me summarize work on other aspects of bidisperse
sedimentation.

6.2. Settling speeds in two-component sedimentation

There is a fairly extensive literature on the settling speeds of mixtures [99± 101]

which I review very brie¯ y here for general interest and completeness. The emphasis

in such studies is on the dependence of mean speed on large- and small-particle

volume fractions and radius ratios, not on spatial structure or velocity ¯ uctuations.
These speed measurements are compared to Batchelor and Wen’s theory [102] for

dilute bidispersions, and good agreement is generally found. The respective roles

played by large and small particles in determining the hindered settling function [24]

depend on the regime of concentration studied. For total (small ‡ large) volume

fraction ¿ < 20% , large particles are mainly responsible for the hindrance, whereas

for ¿ > 35% , the large particles are slowed down more, and the small ones less,
compared to the monodisperse case. At large enough concentrations, size segrega-

tion is greatly suppressed and both species settle together, the large dragging the

small [99]. The addition of small particles to a large-particle suspension was argued

[100] to reduce the settling speed, for at least two reasons. (i) Particle-surface

roughness was argued to promote small-particle adsorption to the large-particle
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surfaces, thus increasing their friction and slowing down their sedimentation. (ii) As

argued in reference [102], the small particles also increase the eŒective solvent

viscosity faced by the large particles, which too slows down sedimentation. Davis

and Hassen [103] studied the eŒect of polydispersity on the interface at the top of a
sedimenting suspension. They found that the interface, which is extremely sharp in

monodisperse suspensions, was made more diŒuse by polydispersity. This points to a

possible role of polydispersity in enhancing velocity ¯ uctuations.

6.3. Hydrodynamic instabilities in bidisperse settling

Experiments on the sedimentation of bidisperse mixtures of particles with radii in
the 10 to 100 mm range show intriguing spatial structures including vertical streaming

columns [104]. Batchelor and van Rensburg [58] analysed such systems by writing

down partial diŒerential equations for the local volume fractions ¿1 and ¿2 of the

two species of particles. The crucial and physically very plausible ingredient in their

theory was that the local drift velocity Ui, i ˆ 1; 2 of each species of particle relative
to the centre of mass depended on the local values of both ¿1 and ¿2. A linear

instability with growth rate / k at wavenumber k was found if the matrix

Kij ² k:@…¿iUi†0=@¿j, where the superscript 0 refers to the unperturbed, spatially

uniform suspension, satis® ed …K11 K22†2 ‡ 4K12K21 < 0. Hydrodynamic dispersion

will control this instability at larger wavenumbers, but cannot alter its basic
structure. The instability, since U0

i is vertical, is with respect to modulations along

the sedimentation direction, and cannot thus give rise to columnar structures.

Batchelor and van Rensburg [58] argue that the instability in these dispersions is

fundamentally with respect to perturbations with vertical wavenumbers, that even

when they saw columns they were preceded by blobs, and that the column formation,

when it does happen, is a secondary eŒect. It should be noted that the eŒect of long-
range velocity ¯ uctuations induced by concentration ¯ uctuations (see section 4) are

not taken into account in the analysis of reference [58], although we shall argue

below that they could be very important, especially near an instability towards phase

separation.

6.4. Velocity ¯ uctuations in bidisperse sedimentation
In reference [105] the structure of velocity ¯ uctuations in bidisperse sedimenta-

tion was measured in a batch-settling experiment. The study found four sedimenta-

tion zonesÐ from top to bottom, a clear supernatant, a stratum of small particles, a

mixed layer containing small (radius 200 mm) and large (400 mm) particles, and the

sediment. Their ® ndings could be rationalized by assigning two screening lengths (see

section 4) for the two species. The motion of large particles through the small-
particle zone seemed to aŒect the ¯ uctuations in the velocity of the latter. These

preliminary experiments clearly call for a detailed theory of the statistical mechanics

of bidisperse suspensions. From the point of view presented in this review, it would

be best if these experiments were performed in the ¯ uidized bed geometry so that the

statistical physics of the steady state could be sorted out before going on to the more
complicated non-stationary problem of batch settling.

6.5. Depletion, screening, and microphase separation in sedimentation?

One limit in which the problem of two-component sedimentation might prove

more tractable is that in which one of the particles is very small and Brownian. In

that case it is reasonable to treat the small particles as providing an attractive
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depletion interaction between the large ones. This could conceivably lead, in the

absence of sedimentation, to a critical point [9], or at least to a situation where large-

particle concentration ¯ uctuations are greatly enhanced. When sedimentation, i.e.

the local force± density ¯ uctuations implied by the concentration ¯ uctuations, is
taken into account, the consequences for the velocity ¯ uctuations are alarming. To

take an extreme case, suppose the large particles were actually at a critical point of a

gas± liquid condensation. In a mean-® eld description, their structure factor would be

S…k† ˆ 1=…ka†2, where a is a length of order of the large-particle radius. The resulting

velocity standard deviation ¼U…L† at length scale L in a system with mean settling
speed U would then scale, extending the Ca¯ isch± Luke [16] idea (see section 4), as

U¿1=2…L=a†3=2. Worse, in a Stokesian approximation, the characteristic time scale

would be L=¼U…L† ¹ …a=U†…a=L¿†1=2, suggesting that ¯ uctations relax faster on

longer length scales. I can think of only two ways out. Either the neglect of inertia is

simply wrong beyond length scales where Re…L† ² ¼U…L†L=¸, the ¯ uctuation

Reynolds number in a system with kinematic viscosity ¸, becomes large, or a
screening analogous to that in reference [30] intervenes at a scale shorter than such

a crossover scale. It is likely, as in the monodisperse case (see section 4.5.4), that both

screened and unscreened phases can arise; the physics in at least the unscreened

phase is likely to involve inertia in a signi® cant way. Preliminary results [59] suggest

the following scenario: as the system parameters are allowed to approach the range
where a critical point would have occurred at thermal equilibrium, the (equilibrium)

correlation length grows, and hence so does the static structure factor. However, at

longer length scales, the screening mechanism [30] takes over, so that the small-

wavenumber structure factor is suppressed. The result is a structure factor with a

peak at an intermediate wavenumber for directions normal to gravity. This clearly
raises the possibility of ordered, columnar structures at intermediate length scales, by

a mechanism quite diŒerent from any discussed in references [58, 104]. There is also

the intriguing possibility that analogues of the depletion interaction arise even in

driven (and hence noisy) suspensions without thermal noise, in which case the ideas

discussed in this section could be extended to non-Brownian systems.

7. Conclusion

This article has attempted to present the current state of understanding of steady-

state sedimentation in a highly viscous ¯ uid, from the point of view of a statistical
physicist. It is hoped that the reader now sees the problem of dirt settling in a ¯ uid as

a challenging problem at the frontier of non-equilibrium statistical physics. The

article has summarized progress on a few selected problems in sedimentation, which

in turn is a subset of the large class of problems in which particles are driven through
viscous ¯ uids, by gravity, imposed shear, electrophoresis [9] and the motion of self-

propelled organisms [106, 107]. It should be clear that this small sub® eld itself has a

great many open problems, to which I hope some readers will be drawn.
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