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Abstract
It is shown that a suspension of particles in a partially-filled, horizontal, rotating cylinder is lin-

early unstable towards axial segregation and an undulation of the free surface at large enough par-
ticle concentrations. Relying on the shear-induced diffusion of particles, concentration-dependent
viscosity, and the existence of a free surface, our theory provides an explanation of the experiments
of Tirumkudulu et al., Phys. Fluids 11, 507-509 (1999); ibid. 12, 1615 (2000).
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The primary motivation for this work is to understand the experiments of [1, 2], showing

spontaneous segregation in sheared suspensions. In these experiments, monodisperse poly-

mer spheres several hundred microns in diameter were suspended uniformly in fluids about

1000 times as viscous as water, with the same mass density as the particles, so that there

was no sedimentation. The initial experiments [1] were carried out with a suspension in a

horizontal Couette cell, i.e., in the gap between two concentric cylinders, but in subsequent

studies [2], a single horizontal cylinder of radius R was used. In both sets of experiments

the container was filled only partially, i.e., there was a free surface. Let us restrict our

description to the experiments in [2] for simplicity. When the cylinder was rotated at a

tangential speed v0 = RΩ about its symmetry axis the initially uniform suspension was

found to undergo a dramatic instability towards segregation into bands of high and low

concentration, with wavevector along the cylinder axis. The surface profile was modulated

as well, i.e., the thickness of the fluid layer varied along the axis (see Fig. 1), with thicker

regions corresponding to higher concentration. No instability was seen if there was no free

surface, i.e. when the cylinder was completely filled with suspension.

The phenomena reported in the experiments [1, 2] are among the many intriguing effects

known to arise in suspensions of non-Brownian particles in highly viscous fluids, driven

by shear flow or sedimentation. The feature of these suspensions that is of relevance in

this paper is that the particles diffuse [3] even though their thermal Brownian motion is

negligible. The microscopic explanation [3, 4, 5] for this diffusion is that the hydrodynamic

interaction between the particles renders their motion chaotic, even in the Stokesian limit

where inertia of fluid and particles is ignored. The diffusive flux of particles has two parts,

one driven by a gradient in the particle volume fraction φ, the other by a gradient in the

deformation-rate γ̇. For situations in which the predominant variation is with respect to

a single coordinate z (e.g., the axial coordinate of the cylinder in [1, 2]) and time t the

local volume fraction φ(z, t) (integrated over the remaining directions) of particles obeys the

conservation law
∂φ

∂t
= −

∂j

∂z
, (1)

where the shear-induced current [3, 6] can be written as

j = −fc(φ)a2γ̇
∂φ

∂z
− fs(φ)a2φ

∂γ̇

∂z
, (2)

In (2), a is the particle radius, and fc and fs are dimensionless functions of the particle

volume fraction φ [3, 6, 7]. Note that (2) says that particles can move in the absence

of concentration gradients, or even against concentration gradients, if the gradient in the

deformation-rate is appropriately directed. These equations are an essential ingredient of

our theory of the shear-induced segregation seen in [1, 2].

The main result of our analysis is that equations (1) and (2), when applied to neutrally

buoyant Stokesian suspensions in horizontal rotating cylinders, predict precisely the insta-

bility seen in the experiments of [1, 2], if the concentration is large enough. The growth rate

Γq of the instability varies as q2 for small wavenumber q. The parameters which govern the
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instability depend only on the volume fraction φ of the suspension and the fill fraction of

the cylinder. At low rotation rates, Ω scales completely out of the problem: the range of

unstable wavenumbers is therefore independent of Ω. For φ just above the instability-onset

value φc, Γq reaches a maximum at q = q∗ ∼
√

(φ− φc)ρg/σ where σ is the surface tension

of the suspension. For reasonable values of these parameters we find that the fastest growing

mode has wavelength of order centimetres. We also explain why the instability disappears

for large rotation rates.

We now obtain coupled equations of motion for the particle concentration and free-surface

profile, and show that these lead naturally to the above results. Consider a homogeneous

suspension with kinematic viscosity ν, filling a fraction F of the volume of a horizontal

cylinder of radius R, rotating about its symmetry axis with a tangential velocity v0 =

RΩ (See Fig. 2). Recall first the results of [8]. (a) The dimensionless combination β ≡

F
√

gR2/νv0, where g is the acceleration due to gravity, measures the relative importance

of gravitational and viscous forces; (b) As v0 is increased (i.e., as β is decreased), a fluid

film of thickness w̄ is dragged up and coats the cylinder wall; (c) Since w̄, for low speeds,

is smaller than the depth of the residual pool of fluid at the bottom of the cylinder, the

thickness profile has a “bump” at the bottom. (d) Once w̄ reaches a value ≃ FR, which

occurs for β = βc ≃ 1.4, the growth of w̄ saturates since all the available fluid then coats

the cylinder more or less uniformly, and the bump disappears. (e) For higher speeds, i.e.,

for β < βc, w̄ is effectively independent of the rotation speed, and is determined simply by

the geometrical statement w̄/R = F . The mechanism we propose below for the instability

applies only when the thickness is determined by the rotation speed by an explicit balance

between viscous and gravitational forces which is why, in [2], the instability disappears when

the bump does.

Consider a general situation (Fig. 2) where the thickness w(z, t) of the fluid film dragged

up, as well as the volume fraction field φ(z, t) (and hence the viscosity), are varying in space

and time. The component of the deformation rate that could vary in the axial direction is

given by the velocity difference across the layer divided by the thickness:

γ̇(z, t) ∝
v0 − α2ẇ

w
, (3)

where α2 is a pure number of order unity, independent of material parameters. The experi-

ments of [1, 2] are performed on highly viscous fluids, so that the Reynolds number is very

small over the entire range of speeds and length scales studied. We shall therefore work

in the limit of zero Reynolds number, where the inertia of particles and fluid are ignored.

Accordingly, the balance of gravitational, viscous and interfacial forces per unit area of the

layer tells us that

ρgw(z, t) = α1η(φ)
v0 − α2ẇ

w
+ σ

∂2w

∂z2
(4)

and in particular that the layer thickness in the steady, spatially uniform state is

w̄ =

√

α1η(φ)v0

ρg
. (5)
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In (4) and (5), ρ, η(φ), and σ are respectively the density, effective viscosity (as a function

[9, 10] of the local particle volume fraction φ) and surface tension of the suspension, g is

the acceleration due to gravity, and α1 is another geometrical factor of order unity, with

no dependence on any material parameter. The fill fraction F determines the angle made

by the cylinder with the free surface of the pool of suspension, and hence the details of the

flow in the fluid layer. This is reflected in the parameters α1 and α2 in our model, but our

conclusions are qualitatively insensitive to their precise numerical values.

Let us now perturb the thickness and concentration fields: [w(z, t), φ(z, t)] = [w̄ +

δw(z, t), φ0 + ψ(z, t)]. This will in turn lead to perturbations of the local values of γ̇ and η,

yielding closed equations of motion for the evolution of δw(z, t) and ψ(z, t) via (1) and (4).

We work to linear order in δw and ψ. Let us work in terms of the nondimensional quantities

H ≡ δw/w̄, τ ≡ (v0/α2w̄)t, ζ ≡ z/a. ψ is of course already dimensionless. Note that to

write (1) and (4) in terms of thickness and concentration fluctuations, we must use (3) to

express the local deformation-rate in (2) in terms of the thickness perturbation, and replace

a local viscosity perturbation by a local concentration fluctuation via δη/η ≃ Nψ where

N ≡
∂ ln η

∂φ
(φ = φ0). (6)

Although the procedure is straightforward, some care must be taken in obtaining the per-

turbation equation from (1): the perturbation of γ̇ will involve ẇ, which must then once

again be eliminated in favour of δw, ψ. Carrying out these steps, and Fourier-transforming

with respect to ζ , i.e., considering spatial variation of the form exp iqζ , we find that the

Fourier components Hq, ψq obey

∂
∂t

[

Hq

ψq

]

= M

[

Hq

ψq

]

≡

[

−(2 + Σq2) N

−Sq2(1 + Σq2) −(C −NS)q2

] [

Hq

ψq

]

, (7)

where

S ≡ α2φ0fs(φ0), C ≡ α2fc(φ0) and Σ ≡
σ

ρga2
. (8)

The stability or otherwise of our sheared suspension is determined by the characteristic

equation

λ2 + (2 +Dq2)λ+ Eq2 + CΣq4 = 0 (9)

for the eigenvalues λ of the dynamical matrix M in (7), where

D ≡ Σ + C −NS,

E ≡ 2C −NS. (10)

For q → 0, the solutions to (9) are

λ1 ≃ −
E

2
q2, (11)

λ2 ≃ −2 + (
E

2
−D)q2. (12)
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We see from (11) that the uniform state is linearly unstable to segregation and thickness

modulation if E < 0, with perturbations growing at a rate Γq ∼ q2 at small q, and particles

concentrating in the thick regions. It is straightforward to show that λ1 turns over at larger

q, passing through zero at q =
√

−E/CΣ, with a peak located, for E → 0−, at

q∗ ≃
√

−E/2CΣ (13)

which determines the observed wavelength of the initial instability [11]. For a given fill

fraction, E can vary only with the volume fraction φ. If there is an instability, it must then

be because E turns negative, in general as φc −φ, as φ crosses a critical value φc. This leads

to the main result presented at the start of the paper. In terms of the parameters in (2) and

(6), the instability criterion is
[

φ

η

∂η

∂φ

]

φ0

>
2fc(φ0)

fs(φ0)
, (14)

which should in general happen in real suspensions at large enough φ0.

In more detail, note that the coefficient fc(φ) originates [3, 6] from a direct shear-induced

self-diffusion as well as from a tendency to move down viscosity gradients. The latter ten-

dency opposes the instability, as we shall now show. For a Newtonian suspension, η varies

only if φ does. Thus, by the arguments of Leighton and Acrivos [3], we can write the current

in (1) as

j = −a2φ[Msφ
∂γ̇

∂z
+ γ̇(Mc +MηN )

∂φ

∂z
], (15)

where Mc, Ms and Mη are order-unity phenomenological quantities. Comparing (15) and

(2) we see that fs = φMs and fc = φ(Mc +NMη), and the instability criterion (14) becomes

(Ms − 2Mη)N > 2Mc. The experiments of [3, 6] have determined these coefficients for

diffusion in the gradient direction, while diffusion in the problem we consider is in the

vorticity direction. Further, a microscopic theory for determining them is also not available.

Provided Ms > 2Mη, the growth of the viscosity with φ [9, 10] means that the instability

should always arise at large enough concentration. An independent measurement of these

coefficients is clearly called for.

We now assume that the uniform state is unstable and ask whether the typical wavenum-

ber of the segregation changes from its initial value q∗, and whether nonlinear terms cause

the exponential growth to saturate at long times. It suffices to look at the dynamics for the

slow mode (eigenvalue λ1 in the linearised limit). In that case Hq in (7) is “slaved” to ψq,

Hq ≃ −Nψq/(2 + Σq2). Expanding (2) about φ0, and retaining terms nonlinear in ψq, we

obtain the effective equation of motion

∂ψ

∂t
=

∂2

∂z2
(
E

2
ψ + c2ψ

2 + c3ψ
3.....) −

NS

4

∂4ψ

∂z4
(16)

where c2 and c3 are coefficients arising from the φ dependence of fc, fs, and η. Eqn. (16)

is well-known in the domain-growth literature [12, 13]. In particular, it has been shown [14]

that the nonlinear terms in (16) with E < 0 cause the characteristic wavelength L(t) of the
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pattern of segregation at time t to grow as ln t at long times. This extremely slow growth

should in principle be testable by a patient experimenter.

We have shown that two classic properties of non-Brownian suspensions, viz.,

concentration-dependent viscosity [9, 10] and shear-induced diffusion [3], lead to a natu-

ral explanation of the experiments of [1, 2] on segregation in suspensions in partially filled,

rotating horizontal cylinders. Our dynamical equations, at high enough concentration, dis-

play an instability towards axial segregation and a modulation of the free surface, with

particles accumulating under the crests of the modulation. For parameter values, say, 10 %

past the instability, taking a plausible surface tension of 30 dyne/cm, (13) implies a wave-

length of about 3 cm for the fastest growing mode at onset, which is consistent with the

experiments of [2]. Independent measurements of the parameters in (14) and (13), in tran-

sient experiments, should provide a stringent test of our theory, as should studies of the

long-time behaviour of the wavelength of the segregation pattern.
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FIGURE CAPTIONS

Figure 1: Schematic of steady-state surface profile of a horizontal cylinder of radius R,

rotating with angular speed Ω. The thickness w of the suspension layer dragged up, as well

the concentration of solute indicated by shading, are modulated with respect to the axial

coordinate z (see ref. [2]).

Figure 2: Cross-sectional schematic of profile of fluid layer of characteristic thickness w

and kinematic viscosity ν, dragged up against gravity g by the wall of a cylinder, rising at

tangential speed v0.
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