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We study the interplay of activity, order and flow through a set of coarse-grained equations gov-
erning the hydrodynamic velocity, concentration and stress fields in a suspension of active, energy-
dissipating particles. We make several predictions for the rheology of such systems, which can be
tested on bacterial suspensions, cell extracts with motors and filaments, or artificial machines in a
fluid. The phenomena of cytoplasmic streaming, elastotaxis and active mechanosensing find natural
explanations within our model.

PACS numbers: 87.16.Ac, 87.15.Ya, 87.10.+e

An active particle [1, 2] absorbs energy from its sur-
roundings or from an internal fuel tank and dissi-
pates it in the process of carrying out internal move-
ments usually resulting in translatory or rotary mo-
tion. This broad definition includes macroscopic ma-
chines and organisms, living cells, and their compo-
nents such as actin-myosin and ion pumps [3]. In
this paper, we consider the interplay of activity, or-
der and flow via coarse-grained equations governing
the hydrodynamic velocity, concentration and stress
fields in a suspension containing active particles of
linear size ℓ, at concentration φ, each particle ex-
erting a typical force f on the ambient fluid, with
the activity of an individual particle correlated over
a time τ0 (say the ‘run’ time of a bacterium), and
collective fluctuations in the activity correlated over
length scales ξ and timescales τ . Rather than fo-
cussing on ordered phases [4], instabilities [4, 5], or
patterns (asters, vortices, spirals) formed in such as-
semblies [6] which our equations are of course ca-
pable of predicting, we apply them in the isotropic
phase, with a view to understanding how a system
such as a biological cell, composed of active elements,
responds to deformation or mechanical stress. In ad-
dition to throwing light on full-cell rheometry [7, 8],
our equations form the framework for an analysis
of any experiment probing the mechanical conse-
quences of biological activity.

Our simple model makes rather interesting predic-
tions: An orientationally ordered state of active par-
ticles has a nonzero, macroscopic, anisotropic stress
in contrast with thermal equilibrium nematics. Ac-
tivity contributes an amount δη ∼ fℓc0τ to the vis-
cosity, with a sign determined by the type of active

particle, and always enhances the apparent (noise)
temperature. The latter greatly enhances the am-
plitude of the t−d/2 long-time tails [9] in the veloc-
ity autocorrelation. On approaching an orientation-

ally ordered state, active suspensions with δη > 0
behave like passive systems near translational freez-
ing, showing strong shear thickening and Maxwell-
like viscoelasticity. Nonlinear fluctuation corrections
give a dynamic modulus G∗(ω) ∼

√
iω for ω ≫ τ−1

observable over a large dynamic range, since τ is
large. Cytoplasmic streaming [10], in which mate-
rial flows from the depolymerising trailing edge to
the polymerising leading edge of a crawling amoe-
boid cell, finds a natural explanation in our model,
as do elastotaxis [11] and active mechanosensing [12],
where cells orient their motion along preferred axes
of the ambient medium.

These results follow from equations of motion based
simply on the conservation law ∂tg = −∇ ·σ for the
total (particles + fluid) momentum density g(x, t)
for an incompressible suspension. The stress ten-
sor σ must in turn be determined by constitutive
relations which emerge from an additional equation
of motion for an active order parameter field. We
ignore, for simplicity, the dynamics of the active-
particle concentration φ(x, t), energy density and
nutrient fields.

To determine the contributions of activity to the
stress, we need the forces associated with the ac-
tive particles. Since there are no external forces
on the system, the simplest active particle, on long
timescales, is a permanent force dipole [13] (see Fig.
1). A collection of such particles [4] where the αth
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(a)

(b)

(c)

FIG. 1: Force dipoles for (a) a rowboat, (b) a “bac-
terium” with two flagella [14], and (c) a motor on a fila-
ment

particle, centred at Rα, has point forces of strength
f and directions ±n̂α situated at Rα + bn̂α and
Rα + b′n̂α, leads to a force density

Fa ≃ −(b + b′)f∇ ·
∑

α

n̂αn̂αδ(r − Rα)

+
(b + b′)(b − b′)

2
f∇∇ :

∑

α

n̂αn̂αn̂αδ(r − Rα) + . . .

= ∇ · σa, (1)

which defines the active stress σ
a. For bacteria

swimming at speed v0 in a fluid of viscosity η0,
f ∼ η0bv0. Both polar (b 6= b′) and apolar (b = b′)
particles disturb the fluid; the former (a “mover”)
induces a nonzero fluid velocity at its centre and
hence moves, the latter (a “shaker”), by symmetry,
cannot. Note that σ

a is insensitive, at lowest or-
der in gradients, to the asymmetry b − b′: movers
and shakers have the same far-field fluid flow, and
an isotropic collection of either or both should have
similar rheology. Since the force dipole determines
an axis for each active particle, the natural defini-
tion φ(r)Q(r) ≡

∑

α(n̂αn̂α − 1

3
I)δ(r − Rα) (where

I is the unit tensor) of a local nematic order pa-
rameter or alignment tensor Q associated with the
activity lets us explore the rheological consequences
of spatiotemporal correlations in the activity by a
simple generalisation of nematodynamics [15]. We
have thus established that the active contribution
to the deviatoric (traceless symmetric) stress [16]

σ
a − (1/3)ITrσa = WQ + W2Q

2 + .... (2)

where the constants W, W2 ∼ (b+b′)fφ characterise
the strength of the elementary force dipoles, and the
sign of W has vital rheological consequences. The
relation (2) is at the heart of the novel mechani-
cal properties of active systems [4]. Even without
equations of motion, (2) tells us why an active sus-
pension with long-range nematic order is different

(c) (d)

(a) (b)

FIG. 2: Discs (a) and (c) and rods (b) and (d) with ac-
tive force densities attached along their symmetry axes,
under shear (horizontal arrows). The parameter W > 0
in (a) and (b) and < 0 in (c) and (d).

from its passive counterpart. Both have Q 6= 0; the
passive nematic, bound by Pascal’s Law since it is
an equilibrium liquid despite its orientational order,
has a purely isotropic mean stress, i.e., a pressure,
whereas the active nematic has a nonzero mean de-
viatoric stress, a truly nonequilibrium effect.

Fig. 2 shows what the parameter W means. In an
imposed flow, in the absence of activity, discs (rods)
tend to spend most of their time with symmetry axis
along the compression (extension) axis of the flow
[17]. When activity is switched on, the flow induced
by the intrinsic force dipoles will clearly oppose the
imposed flow in cases (a) and (b), and enhance it in
(c) and (d).

For passive nematogens, Q is governed by a free-
energy functional F [Q] containing polynomials in Q

as well as Frank elastic terms ∼ ∇Q∇Q, giving rise
to a passive order-parameter stress [17]

σ
OP = 3G − G · Q − Q ·G (3)

where G ≡ −δF/δQ+(1/3)ITrδF/δQ is the nematic
molecular field. The mean deviatoric passive stress
(3) is zero in both isotropic and nematic phases.
For small nematic perturbations δQ in the isotropic
phase, F ∝ a

∫

φTr(δQ)2 so that the stress fluctua-
tion ∼ aφδQ with a coefficient a which decreases on
approaching the transition to the ordered phase. In
active systems, the relation (2) between stress and
order parameter does not arise from a free-energy
functional, and the proportionality constant W has
no reason to decrease with increasing nematic cor-
relations. This difference will be seen to be crucial
when we compare the pretransitional viscoelasticity
of passive and active nematogenic suspensions.

Including the viscous stress σ
v = −η0A + O(Q∇u),



3expressed in terms of the rate of deformation A ≡
(1/2)[∇u + (∇u)T ] and the hydrodynamic velocity
field u ≡ g/ρ for a system of density ρ, the total
deviatoric stress σ in the active case can be written
as σ = σ

a + σ
v + σ

OP , plus a noise source uncon-
strained by a fluctuation-dissipation theorem since
this is a nonequilibrium system. This defines com-
pletely the equation of motion for the momentum
density g.

The coarse-grained equation of motion for σ follows
from that for Q which when linearised involves only
terms [4] of a form present in passive nematodynam-
ics [15]:

∂Q

∂t
= −1

τ
Q + D∇2Q + λ0A + .... + f, (4)

where τ is the activity correlation time, D is a diffu-
sivity which in passive systems would be the ratio of
a Frank constant to a viscosity, λ0 is a “reversible”
kinetic coefficient [17], f is a traceless, symmetric,
spatiotemporally white tensor noise with variance
NQ, representing thermal or active fluctuations, and
the ellipsis includes the coupling of orientation to
flow.

We are now ready to calculate the linear viscoelastic
properties of our active suspension. In the isotropic
phase, Eqs. (2), (3) and (4), linearised and ap-
plied to spatially uniform oscillatory shear flow at
frequency ω in the xy plane, imply

σxy(ω) = −
[

η0 +
(a + W )λ0

−iω + τ−1

]

Axy

≡ −G′(ω) − iG′′(ω)

ω
iAxy. (5)

which defines the storage and loss moduli G′(ω) and
G′′(ω). This is the claimed active enhancement or
reduction ηact ∝ Wτ of the effective viscosity at zero
shear-rate and zero frequency. Activity enhances
viscosity in Fig. 2 (a) and (b), since W > 0, and re-
duces it in (c) and (d) (W < 0). For W > 0 (5) tells
us that the viscosity grows substantially as the sys-
tem approaches a transition to orientational order
(which is in general continuous for active vectorial

order [2]), i.e., as τ is increased. By contrast, in a
passive system approaching a nematic phase the ex-
cess viscosity ∼ aτ is roughly constant since τ ∝ 1/a.

Eq. (5) also predicts strong viscoelasticity as τ in-
creases. For passive systems W = 0. Since a ∝ τ−1,
G′(ωτ ≫ 1) decreases as λ0η0/τ . There is little
viscoelasticity near an equilibrium isotropic-nematic

transition. For active systems, by contrast, W is in-
dependent of τ and of proximity to the transition.
Thus, as τ grows,

G′(ωτ ≫ 1) ≃ W (6)

independent of τ and, of course, the dynamic range
over which elastic behaviour is seen increases. At
equilibrium, one would expect such strong viscoelas-
tic behaviour from a fluid or suspension near trans-

lational freezing, not near orientational ordering.

The contribution WQ to the deviatoric stress in ac-
tive systems modifies sharply the stress vs rate flow
curve. To see this, start with a passive sheared ne-
matogenic system [18] in the isotropic phase near
the transition to a nematic. Qualitatively, as the
shear-rate is increased from zero, Q increases ini-
tially linearly, then more rapidly and then essentially
linearly again, leading to shear-thinning [19]. If we
switch on activity, with a positive value of W , the
rapid increase in Q implies an equally rapid increase
in σ

a. This will at the very least mitigate the shear-
thinning and, if strong enough, will lead to shear-
thickening. Alternatively, a system with W < 0 will
enhance the unstable shear thinning. Note that the
sign of W can be got from an independent experi-
ment at low concentration, simply by seeing whether
switching on activity increases or decreases the vis-
cosity. Thus, the effect of activity on the zero fre-
quency shear viscosity predicts the shear-thickening
or -thinning nature of the active suspension.

We now calculate active fluctuation corrections
to the shear viscosity. Eq. (2) contributes
an active force density ∼ W2∇QQ to the mo-
mentum equation, whose effect on viscosities,
at one-loop order, is of the form ∆η(ω) ∼
W

∫

d3kdt exp(iωt)GQ(k, t)CQ(−k, t), where GQ
and CQ are respectively the propagator and corre-
lation function of Q. From (4),

∆η(ω)

η0

∼ WNQ

η0D3/2(iω)1/2
for ωτ ≫ 1 . (7)

Expressing the noise strength in terms of an ef-
fective temperature Teff , and assuming on dimen-
sional grounds η0/W ∼ τ0, NQ ∼ kBTeff/τ0, and
D ∼ ℓ2/τ0, τ0 = η0ℓ

3/kBTeff is the rotational relax-
ation time of a single active particle, and ℓ its typi-
cal size, we see from (7) that ∆η(ω)/η0 ∼ (ωτ0)

−1/2,
i.e., G∗(ω) ∼

√
iω.

All of the above effects are likely to be greatly en-
hanced if the transition is to a polar-ordered phase,
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FIG. 3: Flow fields due to polymerisation and depoly-
merisation at two ends of an aggregate

since such a transition is expected [2] to be continu-
ous, so that τ can increase without bound. Further-
more, since the bare timescale τ0 is of order seconds
for bacteria, the effects can be observed over a large
dynamic range.

Activity greatly enhances the noise temperature: on
dimensional grounds the variance of σ

a(k = 0, ω =
0) is ∼ W 2ξ 3τ , with W ∼ ηu0/ξ for active parti-
cles moving with typical speed u0, correlated over
a scale ξ and time τ . Equating this to kBTeff η
and estimating η ∼ ηwater = 0.01 poise, u0 to be
a bacterial swimming speed ∼ 20 µm/s, τ ∼ 1 sec
(an E. coli run time) gives us an noise temperature
Teff ∼ 105 − 106 K, consistent with [20]. This will
mean a thousandfold enhancement of the t−d/2 long-
time tails [9] in the autocorrelation of tagged-particle
velocities. On timescales shorter than τ , effects as-
sociated with spatiotemporal correlations in Q [21]
intervene. For a drop [22] or a film [20] of size L the
tails will be cut off on a scale τv ∼ ρL2/π2η. In [20],
τ ≃ τv.

Rheology enters biology crucially through the active
order parameter Q in several motility experiments
which we discuss below. In gels imposed strains as
well as elastic anisotropies enter (4) in exactly the
same way as A does in a fluid medium. This provides
a natural explanation for elastotaxis, the ability of
individual motile rod-shaped bacteria such as Myx-

ococcus xanthus to orient with their long axes along
the extension axis of an imposed elastic stress in
their substrate [11], as well as active mechanosens-

ing [12], where cells orient along the axis of greatest
rigidity of an ambient gel. Cytoplasmic streaming

[10], associated with the crawling of amoebae, arises
naturally in our model. Fig. 3 shows that an aggre-
gate actively polymerising at one end and depoly-
merising at the other has induced flow fields with ex-
tensional and compressional axes interchanged. The
resulting gradient in the active stress can be seen,
in Fig. 3, to generate a mass flux from left to right.
The effect will be enhanced by the fact that the de-

polymerising end, with negative W , is shear thinning
and hence more fluid. These arguments suggest why
such streaming always accompanies amoeboid loco-
motion.

To summarise, we have constructed the general
equations governing the rheology of suspensions of
active particles, and derived several novel predic-
tions, quantitative and qualitative. Our description
is universal: only the values of parameters such as
W , τ and λ0 distinguish the rheologies of a bac-
terial suspension and a motor-microtubule extract.
We look forward to tests of these predictions in ex-
periments on living, reconstituted, or artificial [24]
active-particle systems.
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