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Abstract

We review the past decade�s theoretical and experimental studies of flocking: the collective,
coherent motion of large numbers of self-propelled ‘‘particles’’ (usually, but not always, living
organisms). Like equilibrium condensed matter systems, flocks exhibit distinct ‘‘phases’’ which
can be classified by their symmetries. Indeed, the phases that have been theoretically studied to
date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, li-
quid crystals). This analogy with equilibrium phases of matter continues in that all flocks in
the same phase, regardless of their constituents, have the same ‘‘hydrodynamic’’—that is,
long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described
by the Navier–Stokes equations. Flocks are nonetheless very different from equilibrium sys-
tems, due to the intrinsically nonequilibrium self-propulsion of the constituent ‘‘organisms.’’
This difference between flocks and equilibrium systems is most dramatically manifested in
the ability of the simplest phase of a flock, in which all the organisms are, on average moving
in the same direction (we call this a ‘‘ferromagnetic’’ flock; we also use the terms ‘‘vector-or-
dered’’ and ‘‘polar-ordered’’ for this situation) to exist even in two dimensions (i.e., creatures
moving on a plane), in defiance of the well-known Mermin–Wagner theorem of equilibrium
statistical mechanics, which states that a continuous symmetry (in this case, rotation invari-
ance, or the ability of the flock to fly in any direction) can not be spontaneously broken in
a two-dimensional system with only short-ranged interactions. The ‘‘nematic’’ phase of flocks,
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in which all the creatures move preferentially, or are simply oriented preferentially, along the
same axis, but with equal probability of moving in either direction, also differs dramatically
from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows
enormous number fluctuations, which actually grow with the number of organisms faster than
the
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‘‘law of large numbers’’ obeyed by virtually all other known systems. As for equilib-

rium systems, the hydrodynamic behavior of any phase of flocks is radically modified by addi-
tional conservation laws. One such law is conservation of momentum of the background fluid
through which many flocks move, which gives rise to the ‘‘hydrodynamic backflow’’ induced
by the motion of a large flock through a fluid. We review the theoretical work on the effect of
such background hydrodynamics on three phases of flocks—the ferromagnetic and nematic
phases described above, and the disordered phase in which there is no order in the motion
of the organisms. The most surprising prediction in this case is that ‘‘ferromagnetic’’ motion
is always unstable for low Reynolds-number suspensions. Experiments appear to have seen
this instability, but a quantitative comparison is awaited. We conclude by suggesting further
theoretical and experimental work to be done.
1. Introduction

Flocking [1]—the collective, coherent motion of large numbers of organisms—is
one of the most familiar and ubiquitous biological phenomena. We have all seen
flocks of birds, schools of fish, herd of wildebeest, etc. (at least on film). We will here-
after refer to all such collective motions—flocks, swarms, herds, etc.—as ‘‘flocking.’’
This phenomenon also spans an enormous range of length scales: from kilometers
(herds of wildebeest) to micrometers (e.g., the micro-organism Dictyostelium discoid-
eum) [2–4]. Remarkably, despite the familiarity and widespread nature of the phe-
nomenon, it is only in the last 10 years or so that many of the universal features
of flocks have been identified and understood. It is our goal in this paper to review
these recent developments, and to suggest some of the directions future research on
this subject could take.

This ‘‘modern era’’ in the understanding of flocks began with the work of Vicsek
et al. [5], who was, to our knowledge, the first to recognize that flocks fall into the
broad category of nonequilibrium dynamical systems with many degrees of freedom
that has, over the past few decades, been studied using powerful techniques origi-
nally developed for equilibrium condensed matter and statistical physics (e.g., scal-
ing, the renormalization group, etc.). In particular, Vicsek noted an analogy
between flocking and ferromagnetism: the velocity vector of the individual birds is
like the magnetic spin on an iron atom in a ferromagnet. The usual ‘‘moving phase’’
of a flock, in which all the birds, on average, are moving in the same direction, is then
the analog of the ‘‘ferromagnetic’’ phase of iron, in which all the spins, an average,
point in the same direction. Another way to say this is that the development of a
nonzero mean center of mass velocity h~vi for the flock as a whole therefore requires
spontaneous breaking of a continuous symmetry (namely, rotational), precisely as
the development of a nonzero magnetization ~M � h~Si of the spins in a ferromagnet
breaks the continuous [6] spin rotational symmetry of the Heisenberg magnet [7].



Of course, many flocking organisms do not move in a rotation-invariant environ-
ment. Indeed, the most familiar examples of flocking—namely, the seasonal migra-
tions of birds and mammals—clearly do not: creatures move preferentially south (in
the Northern hemisphere) as winter approaches, and north, as summer does. Pre-
sumably, the individual organisms get their directional cues from their environ-
ment—the sun, wind, ocean and air currents, temperature gradients, the earth�s
magnetic field, and so on—by a variety of means which we will term ‘‘compasses’’
[8]. Collective effects of the type we will focus most of our attention on in this paper
are in principle less important in such ‘‘directed flocks.’’ However, collective aligning
tendencies greatly enhance the ability of the flock to orient in the presence of a small
external guiding field. Once aligned, like a permanent magnet made of soft iron, a
flock below its ordering ‘‘temperature’’ will stay aligned even without the guiding
field. Moreover, even if there are external aligning fields, it is highly likely that crea-
tures in the interior of a flock decide their alignment primarily by looking at their
immediate neighbors, rather than the external field. Gruler et al. [9] has remarked
on the possible physiological advantage of the spontaneous aligning tendency. We
will have little more to say about this here (but see the discussion in Section 8).

All in all, it seems likely that there are many examples of flocking in nature where
collective behavior and interparticle interaction dominate over externally imposed
aligning fields, and experimental situations can certainly be devised where the gradi-
ents of nutrient, temperature or gravitational potential that produce such nonspon-
taneous alignment are eliminated, enabling a study of the phenomenon of
spontaneous order in flocks of micro-organisms such as D. discoidae [2] and melano-
cytes [9], the critters that carry human skin pigment. It is precisely here, as Vicsek
noted, that the ferromagnetic analogy just described immediately becomes useful,
suggesting that compasses are not necessary to achieve a coherently moving ‘‘ferro-
magnetic’’ flock, just as no external magnetic field picking out a special direction for
the spins is necessary to produce spontaneous magnetization in ferromagnets. It now
becomes an interesting question whether or not such spontaneous long-ranged or-
der—by which we mean order (in this case, collective motion of all of the birds in
the same direction) that arises not by being imposed by an external field detected
by an internal compass, but rather arises just from the interaction of the birds with
each other—can, in fact, occur in flocks as it does in ferromagnets [10]. Is the anal-
ogy to ferromagnets truly a good one?

Vicsek pushed this analogy much further. Just as the spins in ferromagnets only
have short-ranged interactions (often modeled as strictly nearest-neighbor) so birds
in a flock may only interact with a few nearest neighbors. Of course, one again
might dispute this idea: perhaps birds can see the flock as a whole, and respond
to its movements. While this is undoubtedly true of some organisms (e.g., many
types of birds), it again seems unlikely that all flocking organisms (particularly
microscopic ones) have such long-ranged interactions. And likewise it is again an
interesting question whether such interactions are necessary to achieve a ferromag-
netic flocking state.

There remains one further analogy between moving flocks and ferromagnets: tem-
perature. The most striking thing about long-ranged ferromagnetic order in systems



with only short-ranged interactions is that it is robust at finite temperature, a fact so
un-obvious that it was not firmly established until Onsager�s solution of the 2D Ising
model. Is there an analogy of temperature in flocks? Vicsek realized that there was:
errors made by the birds as they tried to follow their neighbors. The randomness of
these errors introduces a stochastic element to the flocking problem in much the
same way that thermal fluctuations do at nonzero temperature in an equilibrium fer-
romagnet. Does the ordered, coherently moving ‘‘ferromagnetic’’ state of a flock sur-
vive such randomness, making a uniformly moving, arbitrarily large flock possible,
just as an arbitrarily large chunk of iron can become uniformly magnetized, even at
finite temperature (and, indeed, is in its ordered, ferromagnetic phase at room tem-
perature)?

To answer this, and the questions raised earlier, about the nature of, and require-
ments for, flocking, Vicsek devised a ‘‘minimal’’ numerical simulation model for
flocking. The model incorporates the following general features:

1. A large number (a ‘‘flock’’) of point particles (‘‘boids’’ [11]) each move over time
through a space of dimension d (= 2, 3, . . .), attempting at all times to ‘‘follow’’
(i.e., move in the same direction as) its neighbors.

2. The interactions are purely short-ranged: each ‘‘boid’’ only responds to its neigh-
bors, defined as those ‘‘boids’’ within some fixed, finite distance R0, which is
assumed to be independent of L, the linear size of the ‘‘flock.’’

3. The ‘‘following’’ is not perfect: the ‘‘boids’’ make errors at all times, which are
modeled as a stochastic noise. This noise is assumed to have only short-ranged
spatio-temporal correlations.

4. The underlying model has complete rotational symmetry: the flock is equally
likely, a priori, to move in any direction.

Any model that incorporates these general features should belong to the same
‘‘universality class,’’ in the sense that term is used in critical phenomena and con-
densed matter physics. The specific discrete-time model proposed and simulated
numerically by Vicsek is the following:

The ith bird is situated at position f~riðtÞg in a two-dimensional plane, at integer
time t. Each chooses the direction it will move on the next time step (taken to be
of duration Dt = 1) by averaging the directions of motion of all of those birds within
a circle of radius R0 (in the most convenient units of length R0 = 1) on the previous
time step (i.e., updating is simultaneous). The distance R0 is assumed to be �L, the
size of the flock. The direction the bird actually moves on the next time step differs
from the above described direction by a random angle gi (t), with zero mean and
standard deviation D. The distribution of gi (t) is identical for all birds, time indepen-
dent, and uncorrelated between different birds and different time steps. Each bird
then, on the next time step, moves in the direction so chosen a distance v0Dt, where
the speed v0 is the same for all birds.

To summarize, the rule for bird motion is:

hiðt þ 1Þ ¼ hhjðtÞin þ giðtÞ; ð1Þ



~riðt þ 1Þ ¼~riðtÞ þ v0ðcos hðt þ 1Þ; sin hðt þ 1ÞÞ; ð2Þ

hgiðtÞi ¼ 0; ð3Þ

hgiðtÞgjðt0Þi ¼ Ddijdtt0 ; ð4Þ

where the symbol Æ æn denotes an average over ‘‘neighbors,’’ which are defined as the
set of birds j satisfying

j~rjðtÞ �~riðtÞj < R0; ð5Þ
Æ æwithout the subscript n denote averages over the random distribution of the noises
gi (t), and hi (t) is the angle of the direction of motion of the ith bird (relative to some
fixed reference axis) on the time step that ends at t.

The flock evolves through the iteration of this rule. Note that the ‘‘neighbors’’ of a
given bird may change on each time step, since birds do not, in general, move in ex-
actly the same direction as their neighbors.

As first noted by Vicsek himself, this model is exactly a simple, relaxational
dynamical model for an equilibrium ferromagnet, except for the motion. That is,
if we interpret the ~vi’s as ‘‘spins’’ carried by each bird, and update them according
to the above rule, but do not actually move the birds (i.e., just treat the~vi’s as ‘‘point-
ers’’ carried by each bird), then the model is easily shown to be an equilibrium fer-
romagnet, which will relax to the Boltzmann distribution for an equilibrium
Heisenberg model (albeit with the ‘‘spins’’ living not on a periodic lattice, as they
usually do in most models and in real ferromagnets, but, rather, on a random set
of points).

What Vicsek found in simulating this model largely supports the ferromagnetic
analogy, with one important exception. Specifically, Vicsek found that a coherently
moving, ferromagnetic flock was, indeed, possible in a system with full rotation
invariance, short-ranged interaction, and ‘‘nonzero temperature’’ (i.e., randomness,
characterized by D „ 0). This was demonstrated by the existence of a nonzero aver-

age velocity h~vi �
P

i
~vi

N for the entire flock for a range of values of D < Dc, where the

critical Dc above which this order disappears is >0. A schematic plot of the behavior
of the average velocity jh~vij as a function of the D is shown in Fig. 1.

As noted by Vicsek, this looks very much like a plot of magnetization versus tem-
perature in a ferromagnet, with h~vi playing the role of the magnetization ~M � h~Si,
and D playing the role of temperature, exactly as the flock-ferromagnet analogy de-
scribed earlier would predict.

There is only one problem: for a two-dimensional ferromagnet, a plot like Fig. 1
would never happen. The reason for this is the well-known ‘‘Mermin–Wagner–
Hohenberg Theorem’’ [12] of equilibrium statistical mechanics. This theorem states
that in a thermal equilibrium model at nonzero temperature with short-ranged inter-
actions, it is impossible to spontaneously break a continuous symmetry. This implies
in particular that the equilibrium or ‘‘pointer’’ version of Vicsek�s algorithm de-
scribed above, in which the birds carry a vector~vi whose direction is updated accord-
ing to Vicsek�s algorithm, but in which the birds do not actually move, can never



Fig. 1. The magnitude of the average velocity jh~vij versus the noise strength D. The existence of the two
phases, the moving (ordered) phase with jh~vij > 0 and the nonmoving (disordered) phase with jh~vij ¼ 0,
are evident from the figure.
develop a true long-range ordered state in which all the~vi’s point, on average, in the

same direction (more precisely, in which h~vi �
P

i
~vi

N 6¼~0), since such a state breaks a
continuous symmetry, namely rotation invariance.

Yet the moving flock evidently has no difficulty in doing so; as Vicsek�s simulation
shows, even two-dimensional flocks with rotationally invariant dynamics, short-ran-
ged interactions, and noise—i.e., seemingly all of the ingredients of the Mermin–
Wagner theorem—do move with a nonzero macroscopic velocity, which requires
h~vi 6¼~0, which, in turn, breaks rotation invariance, in seeming violation of the the-
orem.

How can this be? Is the Mermin–Wagner theorem wrong? Are birds smarter than

nerds?
The answer to the last two questions is, of course, no. The reason is that one of the

essential premises of the Mermin–Wagner theorem does not apply to flocks: they are
not systems in thermal equilibrium. The nonequilibrium aspect arises from the mo-
tion of the birds.

Clearly, it must: as described above, the motion is the only difference between Vic-
sek�s algorithm and a (slightly unconventional) equilibrium spin system. But how

does motion get around the Mermin–Wagner theorem? And, more generally, how
best to understand the large-scale, long-time dynamics of a very large, moving flock?

The answer to this second question can be found in the field of hydrodynamics.
Hydrodynamics is a well-understood subject. This understanding does not come

from solving the many (very many!) body problem of computing the time-depen-
dent positions~riðtÞ of the 1023 constituent molecules of a fluid subject to intermo-
lecular forces from all of the other 1023 molecules. Such an approach is analytically
intractable even if one knew what the intermolecular forces were. Trying to



compute analytically the behavior of, e.g., Vicsek�s algorithm directly would be the
corresponding, and equally impossible, approach to the flocking problem.

Instead, the way we understand fluid mechanics is by writing down a set of
continuum equations—the Navier–Stokes equations—for a continuous, smoothly
varying number density qð~r; tÞ and velocity~vð~r; tÞ fields describing the fluid.

Although we know that fluids are made out of atoms and molecules, we can define
‘‘coarse-grained’’ number density qð~r; tÞ and velocity~vð~r; tÞ fields by averaging over
‘‘coarse-graining’’ volumes large compared to the intermolecular or, in the flocks,
‘‘interbird’’ spacing. On a large scale, even discrete systems look continuous, as we
all know from close inspection of newspaper photographs and television images.

In writing down the Navier–Stokes equations, one ‘‘buries one�s ignorance’’ [13]
of the detailed microscopic dynamics of the fluid in a few phenomenological
parameters, namely the mean density q0, the bulk and shear viscosities gB and
gS, the thermal conductivity j, the specific heat cv, and the compressibility v. Once
these have been deduced from experiment (or, occasionally, and at the cost of im-
mense effort, calculated from a microscopic model), one can then predict the out-
comes of all experiments that probe length scales much greater than a spatial
coarse-graining scale ‘0 and timescales �t0, a corresponding microscopic time,
by solving these continuum equations, a far simpler task than solving the micro-
scopic dynamics.

But how do we write down these continuum equations? The answer to this ques-
tion is, in a way, extremely simple: we write down every relevant term that is not ru-
led out by the symmetries and conservation laws of the problem. In the case of the
Navier–Stokes equations, the symmetries are rotational invariance, space and time
translation invariance, and Galilean invariance (i.e., invariance under a boost to a
reference frame moving at a constant velocity), while the conservation laws are con-
servation of particle number, momentum, and energy.

‘‘Relevant,’’ in this specification means terms that are important at large-length
scales and long timescales. In practice, this means a ‘‘gradient expansion’’: we only
keep in the equations of motion terms with the smallest possible number of space
and time derivatives. For example, in the Navier–Stokes equations we keep a viscous
term gsr2~v, but not a term cr4~v, though the latter is also allowed by symmetry, be-
cause the cr4~v term involves more spatial derivatives, and hence is smaller, for slow
spatial variation, than the viscous term we have already got.

In Section 2, we will review the formulation and solution of such a hydrodynamic
model for ‘‘ferromagnetic’’ flocks in [14–16].

In addition to these symmetries of the questions of motion, which reflect the
underlying symmetries of the physical situation under consideration, it is also neces-
sary to treat correctly the symmetries of the state of the system under consideration.
These may be different from those of the underlying system, precisely because the
system may spontaneously break one or more of the underlying symmetries of the
equations of motion. Indeed, this is precisely what happens in the ordered state of
a ferromagnet: the underlying rotation invariance of the system as a whole is broken
by the system in its steady state, in which a unique direction is picked out—namely,
the direction of the spontaneous magnetization.



As should be apparent from our earlier discussion, this is also what happens in a
spontaneously moving flock. Indeed, the symmetry that is broken—rotational—and
the manner in which it is broken—namely, the development of a nonzero expectation
value for some vector (the spin ~S in the ferromagnetic case; the velocity h~vi in the
flock) are precisely the same in both cases [7].

Many different ‘‘phases’’ [17], in this sense of the word, of a system with a given
underlying symmetry are possible. Indeed, we have already described two such
phases of flocks: the ‘‘ferromagnetic’’ or moving flock, and the ‘‘disordered,’’ ‘‘para-
magnetic,’’ or stationary flock.

In equilibrium statistical mechanics, this is precisely how we classify different
phases of matter: by the underlying symmetries that they break. Crystalline solids,
for example, differ from fluids (liquid and gases) by breaking both translational
and orientational symmetry. Less familiar to those outside the discipline of soft
condensed matter physics are the host of mesophases known as liquid crystals,
in some of which (e.g., nematics [18]) only orientational symmetry is broken, while
in others, (e.g., smectics [18]) translational symmetry is only broken in some direc-
tions, not all.

It seems clear that, at least in principle, every phase known in condensed matter
systems could also be found in flocks. To date, hydrodynamic models have been for-
mulated for three such phases: the paramagnetic and ferromagnetic state [14–
16,19,20] and the nematic [21] state. In intriguing contrast to the situation in thermal
equilibrium systems, the long-wavelength stability of such phases is found to depend
on the type of dynamics (momentum-conserving versus nonconserving, inertial ver-
sus viscosity-dominated) obeyed by the system [19,21].

In particular, the theoretical work on the ferromagnetic state explains how such
systems ‘‘get around’’ the Mermin–Wagner theorem, and exhibit long-ranged order
even in d = 2.

In Section 5, we summarize the theoretical work on what we call ‘‘nematic’’ flocks,
which are flocks in which the motion and/or orientation of the creatures picks out an
axis, but not a sense along that axis. This could happen (for example, but not exclu-
sively) if the system settled down into a state in which creatures moved preferentially
along the x axis, say, half in the +x and half in the �x direction with the +x and �x

creatures well mixed. The state would then have zero mean velocity for the flock, but
would be uniaxially ordered. Nematic phases have been observed in, e.g., living mel-
anocytes [9]. Dynamical states of exactly the same symmetry occur in agitated gran-
ular materials composed of long, thin grains [22–24]. Surprisingly, even though such
flocks have no net motion, the continuum theory for this state, developed along the
same lines as that for the ferromagnetic state, predicts that their behavior is very dif-
ferent from that of conventional equilibrium nematic liquid crystals, despite the fact
that they have the same symmetry, just as ferromagnetic flocks are quite different
from their equilibrium counterparts.

In addition to changing which symmetries are broken (i.e., which phase we are
considering) in a flock, we can also consider different underlying symmetries. The
simplest such change of underlying symmetry is considered in Section 4, in which
we treat ferromagnetic flocks which move in a non-rotationally invariant environ-



ment. Specifically, we consider ‘‘easy-plane’’ models, in which the ‘‘birds’’ prefer to
fly in a particular plane (e.g., horizontally), which is obviously the case for many real
examples.

A more dramatic change is to restore Galilean invariance. The work on ferromag-
netic and nematic flocks described above dealt with systems lacked this symmetry,
which is usually included in fluid mechanics. To lack Galilean invariance simply
means that the equations of motion do not remain the same in a moving coordinate
system. This is appropriate if we are modeling creatures moving in the presence of
friction over (or through) a static medium; e.g., wildebeest moving over the surface
of the Serengeti plane, bacteria crawling over the surface of a Petri dish, etc. It is
equally clearly not appropriate for creatures moving through a medium which is it-
self fluid (e.g., the air birds fly through, the water fish swim through). In these cases,
there is an additional symmetry (Galilean invariance) not present in the previous
models, which leads to additional conservation laws (of total momentum of flock
plus background fluid), which in turn lead to additional hydrodynamic variables
(e.g., total momentum density), and a completely different hydrodynamic descrip-
tion.

Hydrodynamic models of both ferromagnetic and nematic flocks moving
through such a background fluid [19] are reviewed in Section 6, where it is shown
that nematic flocks in suspension have an inviscid instability at long wavelengths.
The most striking prediction of this section, however, is that ‘‘ferromagnetic’’
flocks in suspension are unstable at sufficiently low Reynolds number. This means
it is impossible in principle to find long-range ordered swimming bacteria; in the
absence of external aligning fields, a large flock of bacteria initially all swimming
in the same direction must break up into finite flocks with velocities uncorrelated
from flock to flock. The section also summarizes predictions [20] for novel rheo-
logical properties of isotropic flocks as their correlation length and time are in-
creased. Experimental evidence for the instability of ferromagnetic flocks in
suspension is reviewed in Section 7, along with many other experiments done
on flocking.

In Section 8, we discuss a number of experiments we would like to see done. The-
ory is currently far ahead of experiment in this field, an unhealthy situation that can
be corrected by careful measurements of fluctuations in flocks to test, quantitatively,
the many detailed predictions that are available from the theories described in Sec-
tions 2–5.

Finally, in Section 9, we discuss possible directions for future research in this area.
We hope to make clear there that the subject of flocking is an extremely rich and fer-
tile one, the surface of which we have scarcely scratched. In particular, as discussed
earlier, virtually every one of the dozens of phases known in soft condensed matter
physics should have an analog in flocks. So far, as mentioned earlier, only three of
these phases have even had their hydrodynamics formulated, and only two of them
(the ordered ferromagnetic and nematic states) have really been investigated thor-
oughly. The study of the rich variety of other possible phases of flocks therefore re-
mains a wide open subject, potentially as intriguing as any in Condensed Matter of
Physics, as well as being of obvious interest to anyone interested in biology, zoology,



and dynamical systems. We hope that this review will stimulate further research on
this rich, fascinating, and still largely unexplored subject.

The remainder of this paper is organized as follows: in Section 2, we review the
hydrodynamic theory of ferromagnetic flocks in isotropic (i.e, fully rotationally
invariant) environments. In Section 3, we describe numerical experiments confirming
the theory in detail, and addressing the phase transitions in these systems as well. In
Section 4, we consider ‘‘easy-plane’’ models, in which the ‘‘birds’’ prefer to fly in a
particular plane (e.g., horizontally), which is obviously the case of many real exam-
ples. In these models, the positions of the birds are fully extended over 3 (or, as a
theorist�s toy model, more) dimensions; it is just the velocities of the birds that lie
preferentially in a plane (e.g., consider a tall, broad, and deep flock of flamingoes fly-
ing horizontally). In Section 5, we discuss nematic flocking, while Section 6 treats the
incorporation of ‘‘solvent hydrodynamic effects’’ (e.g., the motion of the background
fluid) on ferromagnetic, nematic, and disordered flocks. In Section 7, we discuss the
experimental work that has been done to date testing some of these ideas, while in
Section 8 we provide a ‘‘wish-list’’ of experiments we would like to see done, which
would provide detailed quantitative tests of the theories we describe here. This sec-
tion will also lay out in detail precisely what those quantitative predictions are, and
how experiments can test them. Experimentalists interested in testing our ideas
should proceed directly to this section, which is fairly self-contained.

And finally, we conclude in Section 9 by suggesting several directions for future
work. Our list is necessarily abbreviated; any clever reader can no doubt think of
many equally fascinating problems in this area which are not on our list, but should
be studied. This is a fascinating field with room for many more researchers, both the-
oretical and experimental.
2. Isotropic ferromagnetic flocks

2.1. Formulating the hydrodynamic model

In this section, wewill review the derivation and analysis of the hydrodynamicmod-
el of ferromagnetic flocks.Amore detailed discussion can be found in [16].As discussed
in Section 1, the systemwewish tomodel is any collection of a large numberNof organ-
isms (hereafter referred to as ‘‘birds’’) in a d-dimensional space, with each organism
seeking to move in the same direction as its immediate neighbors.

We further assume that each organism has no ‘‘compass’’; in the sense defined in
Section 1, i.e., no intrinsically preferred direction in which it wishes to move. Rather,
it is equally happy to move in any direction picked by its neighbors. However, the
navigation of each organism is not perfect; it makes some errors in attempting to fol-
low its neighbors. We consider the case in which these errors have zero mean; e.g., in
two dimensions, a given bird is no more likely to err to the right than to the left of
the direction picked by its neighbors. We also assume that these errors have no long
temporal correlations; e.g., a bird that has erred to the right at time t is equally likely
to err either left or right at a time t 0 much later than t.



The continuum model will describe the long distance behavior of any flock satis-
fying the symmetry conditions we shall specify in a moment. The automaton studied
by Vicsek et al. [5] described in Section 1 provides one concrete realization of such a
model. Adding ‘‘bells and whistles’’ to this model by, e.g., including purely attractive
or repulsive interactions between the birds, restricting their field of vision to those
birds ahead of them, giving them some short-term memory, etc., will not change
the hydrodynamic model, but can be incorporated simply into a change of the
numerical values of a few phenomenological parameters in the model, in much the
same way that all simple fluids are described by the Navier–Stokes equations, and
changing fluids can be accounted for simply by changing, e.g., the viscosity that ap-
pears in those equations.

This model should also describe real flocks of real living organisms, provided that
the flocks are large enough, and that they have the same symmetries and conserva-
tion laws that, e.g., Vicsek�s algorithm does.

So, given this lengthy preamble, what are the symmetries and conservation laws of
flocks?

The only symmetries of the model are invariance under rotations and transla-
tions. Translation-invariance simply means that displacing the positions of the
whole flock rigidly by a constant amount has no physical effect, since the space
the flock moves through is assumed to be on average homogeneous [25]. Since we
are not considering translational ordering, this symmetry remains unbroken and
plays no interesting role in what follows, any more than it would in a fluid. Rotation
invariance simply says the ‘‘birds’’ lack a compass, so that all direction of space are
equivalent to other directions. Thus, the ‘‘hydrodynamic’’ equation of motion we
write down cannot have built into it any special direction picked ‘‘a priori’’; all
directions must be spontaneously picked out by the motion and spatial structure
of the flock. As we shall see, this symmetry severely restricts the allowed terms in
the equation of motion.

Note that themodel does not haveGalilean invariance: changing the velocities of all
the birds by some constant boost~vb does not leave the model invariant. Indeed, such a
boost is impossible in amodel that strictly obeysVicsek�s rules, since the speeds of all the
birds will not remain equal to v0 after the boost. One could image relaxing this con-
straint on the speed, and allowing birds to occasionally speed up or slow down, while
tending an average to move at speed v0. Then the boost just described would be possi-
ble, but clearly would change the subsequent evolution of the flock.

Another way to say this is that birds move through a resistive medium, which pro-
vides a special Galilean reference frame, in which the dynamics are particularly sim-
ple, and different from those in other reference frames. Since real organisms in flocks
always move through such a medium (birds through the air, fish through the sea, wil-
debeest through the arid dust of the Serengeti), this is a very realistic feature of the
model [26].

As we shall see shortly, this lack of Galilean invariance allows terms in the hydro-
dynamic equations of birds that are not present in, e.g., the Navier–Stokes equations
for a simple fluid, which must be Galilean invariant, due to the absence of a luminif-
erous ether.



The sole conservation law for flocks is conservation of birds: we do not allow
birds to be born or die ‘‘on the wing.’’

In contrast to the Navier–Stokes equation, there is no conservation of momentum
in the models discussed in this section. This is, ultimately, a consequence of the ab-
sence of Galilean invariance.

Having established the symmetries and conservation laws constraining our model,
we need now to identify the hydrodynamic variables. They are precisely the same as
those of a simple fluid [27]: the coarse grained bird velocity field ~vð~r; tÞ, and the
coarse grained bird density qð~r; tÞ. The field~vð~r; tÞ, which is defined for all~r, is a suit-
able weighted average of the velocities of the individual birds in some volume cen-
tered on ~r. This volume is big enough to contain enough birds to make the
average well-behaved, but should have a spatial linear extent of no more than a
few ‘‘microscopic’’ lengths (i.e., the interbird distance, or by a few times the interac-
tion range R0). By suitable weighting, we seek to make~vð~r; tÞ fairly smoothly varying
in space.

The density qð~r; tÞ is similarly defined, being just the number of particles in a
coarse graining volume, divided by that volume.

The exact prescription for the coarse graining should be unimportant, so long as
qð~r; tÞ is normalized so as to obey the ‘‘sum rule’’ that its integral over any macro-

scopic volume (i.e., any volume compared with the aforementioned microscopic
lengths) be the total number of birds in that volume. Indeed, the coarse graining
description just outlined is the way that one imagines, in principle, going over from
a description of a simple fluid in terms of equations of motion for the individual con-
stituent molecules to the continuum description of the Navier–Stokes equation.

We will also follow the historical precedent of the Navier–Stokes [13,28] equation
by deriving our continuum, long wavelength description of the flock not by explicitly
coarse graining the microscopic dynamics (a very difficult procedure in practice), but,
rather, by writing down the most general continuum equations of motion for~v and q
consistent with the symmetries and conservation laws of the problem. This approach
allows us to bury our ignorance in a few phenomenological parameters, (e.g., the vis-
cosity in the Navier–Stokes equation) whose numerical values will depend on the de-
tailed microscopic rules of individual bird motion. What terms can be present in the
EOMs, however, should depend only on symmetries and conservation laws, and not

on other aspects of the microscopic rules.
To reduce the complexity of our equations of motion still further, we will perform

a spatio-temporal gradient expansion, and keep only the lowest order terms in gra-
dients and time derivatives of~v and q. This is motivated and justified by our desire to
consider only the long distance, long time properties of the flock. Higher order terms
in the gradient expansion are ‘‘irrelevant’’: they can lead to finite ‘‘renormalization’’
of the phenomenological parameters of the long wavelength theory, but cannot

change the type of scaling of the allowed terms.
With this lengthy preamble in mind, we now write down the equations of motion:

ot~vþ k1ð~v � ~rÞ~vþ k2ð ~r �~vÞ~vþ k3 ~rðj~vj2Þ

¼ a~v� bj~vj2~v� ~rP þ DB
~rð ~r �~vÞ þ DTr2~vþ D2ð~v � ~rÞ2~vþ~f ; ð6Þ



P ¼ P ðqÞ ¼
X1
n¼1

rnðq� q0Þ
n
; ð7Þ

oq
ot

þr � ð~vqÞ ¼ 0; ð8Þ

where b, DB, D2, and DT are all positive, and a < 0 in the disordered phase and a > 0
in the ordered state (in mean field theory). The origin of the various terms is as fol-
lows: the k terms on the left-hand side of Eq. (6) are the analogs of the usual convec-
tive derivative of the coarse-grained velocity field ~v in the Navier–Stokes equation.
Here the absence of Galilean invariance allows all three combinations of one spatial
gradient and two velocities that transform like vectors; if Galilean invariance did ap-
ply here, it would force k2 = k3 = 0 and k1 = 1. However, as we have argued above,
we are not constrained here by Galilean invariance, and so all three coefficients are
nonzero phenomenological parameters whose nonuniversal values are determined by
the microscopic rules. The a and b terms simply make the local ~v have a nonzero
magnitude ð¼

ffiffiffiffiffiffiffiffi
a=b

p
Þ in the ordered phase, where a > 0. DB,T,2 are the diffusion con-

stants (or viscosities) reflecting the tendency of a localized fluctuation in the veloci-
ties to spread out because of the coupling between neighboring ‘‘birds.’’ Amusingly,
it is these ‘‘viscous’’ terms that contain the ‘‘elasticity’’ of an ordered flock—the
restoring torques that try to make parallel the orientation of neighboring birds.
The ~f term is a random driving force representing the noise. We assume it is Gauss-
ian with white noise correlations

hfið~r; tÞfjð~r 0; t0Þi ¼ Ddijd
dð~r �~r 0Þdðt � t0Þ; ð9Þ

where D is a constant, and i, j denote Cartesian components. Finally, P is the pres-
sure, which tends to maintain the local number density qð~rÞ at its mean value q0, and
dq = q � q0. Strictly speaking, here too, as in the case of the ‘‘viscous’’ terms involv-
ing DB,T,2, we should distinguish gradients parallel and perpendicular to~v, i.e., gra-
dients in the density should be allowed to have independent effects along and
transverse to ~v in (6). In an equilibrium fluid this could not happen, since Pascal�s
Law ensures that pressure is isotropic. In the nonequilibrium steady state of a flock,
no such constraint applies. For simplicity, however, we ignore this possibility here,
and consider purely longitudinal pressure forces.

The final Eq. (8) is just conservation of bird number (we do not allow our birds to
reproduce or die on the wing).

Symmetry allows any of the phenomenological coefficients ki, a, rn, b, and Di in
Eqs. (6) and (7) to be functions of the squared magnitude j~vj2 of the velocity, and of
the density q as well.
2.2. The broken symmetry ferromagnetic state

The hydrodynamic model embodied in Eqs. (6)–(8) is equally valid in both the ‘‘dis-
ordered’’ (i.e., nonmoving) (a < 0) and ‘‘ferromagnetically ordered’’ (i.e., moving)
(a < 0) state. In this section, we are mainly interested in the �ferromagnetically



ordered,’’ broken-symmetry phase; specifically in whether fluctuations around the
symmetry broken ground state destroy it (as in the analogous phase of the 2DXYmod-
el). For a > 0, we can write the velocity field as~v ¼ v0x̂k þ ~dv, where v0x̂k ¼ h~vi is the
spontaneous average value of~v in the ordered phase. We will chose v0 ¼

ffiffi
a

p

b (which

should be thought of as an implicit condition on v0, since a andb can, in general, depend
on j~vj2); with this choice, the equation of motion for the fluctuation dvi of vi is

otdvk ¼ �r1okdq� 2advk þ irrelevant terms. ð10Þ

Note now that if we are interested in ‘‘hydrodynamic’’ modes, by which we mean
modes for which frequency x fi 0 as wave vector q fi 0, we can, in the hydrody-
namic (x,q fi 0) limit, neglect otdvi relative to advi in (10). The resultant equation
can trivially be solved for dvi

dvk ¼ �ðr1=2aÞokdq. ð11Þ

Inserting (11) in the equations of motion for ~v? and dq, we obtain, neglecting
‘‘irrelevant’’ terms:

ot~v? þ cok~v? þ k1 ~v? � ~r?

� �
~v? þ k2 ~r? �~v?

� �
~v?

¼ �~r?P þ DB
~r? ~r? �~v?
� �

þ DTr2
?~v? þ Dko

2
k~v? þ~f ?; ð12Þ

odq
ot

þ qo
~r? �~v? þ ~r? � ð~v?dqÞ þ v0okdq ¼ Dqo

2
jjdq; ð13Þ

where Dq � q0
r1
2a, DB, DT, and Dk � DT þ D2v20 are the diffusion constants, and we

have defined

c � k1v0. ð14Þ
The pressure P continues to be given, as it always will, by Eq. (7).

From this point forward, we will treat the phenomenological parameters ki, c, and
Di appearing in Eqs. (12) and (13) as constants, since they depend, in our original
model (6), only on the scalar quantities j~vj2 and qð~rÞ, whose fluctuations in the bro-
ken symmetry state away from their mean values v20 and q0 are small. Furthermore,
these fluctuations lead only to ‘‘irrelevant’’ terms in the equations of motion.

It should be emphasized here that, once nonlinear fluctuation effects are included,
the v0 in Eq. (13) will not be given by the ‘‘mean’’ velocity of the birds, in the sense of

hvi �
j
P
i
~vij

N
; ð15Þ

where N is the number of birds. This is because, in our continuum language

hvi ¼
h
R
qð~r; tÞ~vð~r; tÞddri

�� ��
h
R
qð~r; tÞddri

¼ hq~vij j
hqi ð16Þ

while v0 in Eq. (14) is

v0 ¼ jh~vð~r; tÞij. ð17Þ



Once q fluctuates, so that q = Æqæ + dq, the ‘‘mean’’ velocity of the birds

hvi ¼ hq~vi
hqi

����
���� ¼ hqih~vi

hqi þ hdq~vi
hqi

����
���� ð18Þ

which equals v0 � jh~vij only if the correlation function hdq~vi ¼ 0, which it will not, in
general. For instance, one could easily imagine that denser regions of the flock might
move faster; in which case hdq~vi would be positive along h~vi. Thus, h~vi measured in a
simulation by simply averaging the speed of all birds, as in Eq. (15), will not be equal
to v0 in Eq. (14). Indeed, we can think of no simple way to measure v0, and so chose
instead to think of it as an additional phenomenological parameter in the broken
symmetry state equations of motion (12) and (13). It should, in simulations and
experiments, be determined by fitting the correlation functions we will calculate in
the next section. One should not expect it to be given by Ævæ as defined in Eq. (16).

Similar considerations apply to c: it should also be thought of as an independent,
phenomenological parameter, not necessarily determined by the mean velocity and
nonlinear parameter k1 through (14).

2.3. Linearized theory of the broken symmetry ferromagnetic state

As a first step towards understanding the implications of these equations of mo-
tion, we linearize them in~v? and dq ” q � q0. Doing this, and Fourier transforming
in space and time, we obtain the linear equations:

�i x� cqk
� �

þ CTð~qÞ
h i

~vTð~q;xÞ ¼ ~f Tð~q;xÞ; ð19Þ

�i x� cqk
� �

þ CLð~qÞ
h i

vL þ ir1q?dq ¼ fLð~q;xÞ; ð20Þ

�i x� v0qk
� �

þ Cqð~qÞ
h i

dqþ iq0q?vL ¼ 0; ð21Þ

where

vLð~q;xÞ �
~q? �~v?ð~q;xÞ

q?
ð22Þ

and

~vTð~q;xÞ ¼~v?ð~q;xÞ �
~q?vL
q?

ð23Þ

are the longitudinal and transverse (to~q?) pieces of the velocity,~f Tð~q;xÞ and fLð~q;xÞ
are the analogous pieces of the Fourier transformed random force~f ð~q;xÞ, andwe have
defined wavevector dependent transverse, longitudinal, and q dampings CL,T,q:

CLð~qÞ � DLq2? þ Dkq2k; ð24Þ

CTð~qÞ ¼ DTq2? þ Dkq2k; ð25Þ

Cqð~qÞ ¼ Dqq2k; ð26Þ

where we have defined DL ” DT + DB, q? ¼ j~q?j.



Note that in d = 2, the transverse velocity~vT does not exist: no vector can be per-
pendicular to both the xi axis and ~q? in two dimensions. This leads to many impor-
tant simplifications in d = 2, as we will see later; these simplifications make it (barely)
possible to get exact exponents in d = 2 for the full, nonlinear problem.

It is now a straightforward exercise in linear algebra to solve these linearized
equations for the hydrodynamic mode structure of a flock. By ‘‘hydrodynamic
mode-structure’’ we simply mean the eigenfrequencies xð~qÞ of the homogeneous
equations obtained by setting the noise term ~f ¼~0. It is just as straightforward to
solve these linearized equations for ~vð~q;xÞ and qð~q;xÞ in terms of ~f ð~q;xÞ. Using
the known correlations of ~f from Eq. (9) given earlier, one can thereby straightfor-
wardly compute the correlations of ~vð~q;xÞ and qð~q;xÞ with each other, and with
themselves. Readers interested in the details of these calculations are referred to
[16]; here we simply summarize the results.

The normal modes of these equations are d � 2 purely diffusive transverse modes
associated with~vT, all of which have the same eigenfrequency

xT ¼ cqk � iCTð~qÞ ¼ cqk � i DTq2? þ Dkq2k
� �

ð27Þ

and a pair of damped, propagating sound modes with complex (in both senses of the
word) eigenfrequencies

x� ¼ c�ðh~qÞq� iCL

v�ðh~qÞ
2c2ðh~qÞ

� �
� iCq

v�ðh~qÞ
2c2ðh~qÞ

� �

¼ c�ðh~qÞq� iðDLq2k þ D?q2?Þ
v�ðh~qÞ
2c2ðh~qÞ

� �
� iDqq2k

v�ðh~qÞ
2c2ðh~qÞ

� �
; ð28Þ

where h~q is the angle between ~q and the direction of flock motion (i.e., the xi axis):

c�ðh~qÞ �
cþ v0
2

cosðh~qÞ � c2ðh~qÞ; ð29Þ

v�ðh~qÞ � � c� v0
2

cosðh~qÞ þ c2ðh~qÞ; ð30Þ

c2ðh~qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðc� v0Þ2cos2ðh~qÞ þ c20sin

2ðh~qÞ
r

; ð31Þ

and c0 �
ffiffiffiffiffiffiffiffiffi
r1q0

p
. A polar plot of this highly anisotropic sound speed is given in

Fig. 2.
We remind the reader that here and hereafter, we only keep the leading order

terms in the long wave length limit, i.e., for small qi and q^.
These direction-dependent sound speeds can most easily be determined experi-

mentally by measuring the spatio-temporally Fourier-transformed density–density
correlation function Cqqð~q;xÞ � hjqð~q;xÞj2i. We will describe in detail in Section 7
how to easily obtain this correlation function from observation of a flock via, e.g.,
computer imaging of a film. The linearized calculation described above predicts that
this density–density correlation function, when considered as a function of frequency
x, has two sharp peaks at x ¼ c�ðh~qÞq, with widths of O(q2), as illustrated in Fig. 3.



Fig. 2. Polar plot of the direction-dependent sound speeds c�ðh~qÞ, with the horizontal axis along the
direction of mean flock motion.

Fig. 3. Plot of the spatio-temporally Fourier-transformed density correlation function Cqð~q;xÞ versus x
for fixed~q. It shows two sharp asymmetrical peaks at x ¼ c�ðh~qÞq associated with the sound modes of the
flock, where c�ðh~qÞ are the sound mode speeds. The widths of those peaks are the second mode dampings
Imx�ðh~qÞ / qz?f�

qk‘0

ðq?‘0Þf

� �
.

We call these peaks ‘‘sharp’’ precisely because their widths, for q fi 0, are much
smaller than their displacement from the origin (of x). Indeed, as q fi 0, they be-
come infinitely sharp in this sense.

All of the above results persist in the full, nonlinear theory we will describe later
except the scaling of the widths, which becomes anisotropic and ‘‘anomalous,’’ as



will be described in Section 2.4. The peaks do remain sharp, however, and their posi-
tions are correctly predicted by the linearized theory.

The exact expression for Cqqð~q;xÞ that we obtain is

Cqq ¼
Dq2

0q
2
?

ðx� cþðh~qÞqÞ2ðx� c�ðh~qÞqÞ2 þ ðxðCLð~qÞ þ Cqð~qÞÞ � qkðv0CLð~qÞ þ cCqð~qÞÞÞ2
.

ð32Þ

We can similarly find the velocity autocorrelations

Cijð~q;xÞ � hv?i ð�~q;�xÞv?j ð~q;xÞi � CTTð~q;xÞP?
ij ð~qÞ þ CLLð~q;xÞL?

ij ð~qÞ; ð33Þ

where:

L?
ij ð~qÞ �

q?i q
?
j

q2?
; ð34Þ

P?
ij ð~qÞ � d?ij � L?

ij ð~qÞ; ð35Þ

are longitudinal and transverse projection operators in the plane perpendicular to
the mean flock motion

CTTð~q;xÞ ¼
D

ðx� cqkÞ
2 þ C2

Tð~qÞ
ð36Þ

and

CLLð~q;xÞ¼
Dððx� v0qkÞ

2þC2
qð~qÞÞ

ðx� cþðh~qÞqÞ2ðx� c�ðh~qÞqÞ2þðxðCLð~qÞþCqð~qÞÞ�qkðv0CLð~qÞþ cCqð~qÞÞÞ2
.

ð37Þ

The transverse and longitudinal correlation functions in Eqs. (36) and (37) are plot-
ted as functions of x for fixed ~q in Fig. 4.

Note that they have weight in entirely different regions of frequency: CTT is
peaked at x = cqi, while CLL, like Cqq, has two peaks, at x ¼ c�ðh~qÞq. Since all three
peaks have widths of order q2, there is little overlap between the transverse and the
longitudinal peaks as j~qj ! 0.

With the velocity correlations Cijð~q;xÞ in hand, we can now address the question
which first caught our attention: Are birds smarter than nerds? That is, do flocks
obey the Mermin–Wagner theorem?

To answer this, we need to calculate the real-space, real-time fluctuations
hj~vð~r; tÞj2i.

To have true long-ranged orientational order, which is necessary to have an or-
dered, coherently moving flock, these fluctuations must remain finite as the size of
the flock goes to infinity. To calculate hj~vð~r; tÞj2i from Cijð~q;xÞ, we must Fourier
Transform back to real space ~r and real time t from ~q and x space, respectively.
Going back to real time first gives the spatially Fourier transformed equal time
velocity correlation function:



Fig. 4. Plot of CLLð~q;xÞ and CTTð~q;xÞ versus x for identical fixed ~q. Note the smallness of the overlap
between the transverse and longitudinal peaks.
Cijð~qÞ � hvið~q; tÞvjð�~q; tÞi

¼ P?
ij ð~qÞ

Z 1

�1

dx
2p

CTTð~q;xÞ þ L?
ij ð~qÞ

Z 1

�1

dx
2p

CLLð~q;xÞ

¼ D
2

P?
ij ð~qÞ

CTð~qÞ
þ /ðq̂Þ

L?
ij ð~qÞ

CLð~qÞ

" #
/ 1

q2
; ð38Þ

where the second integral over frequency has been evaluated in the limit of j~qj ! 0,
so that cðh~qÞq � CL / q2, and the factor /ðq̂Þ depends only on the direction q̂ of ~q,
not its magnitude.

The quite complicated expression for /ðq̂Þ is given in [16]; for our power-counting
purposes, it suffices to note that /ðq̂Þ is a smooth, analytic function of q̂ that is O(1)
and nonvanishing for all q̂.

The 1
q2 divergence of (38) as j~qj ! 0 reflects the enormous long wavelength fluctu-

ations in this system.
These fluctuations predicted by the linearized theory are strong enough to destroy

long-ranged order in d 6 2. To see this, calculate the mean squared fluctuations in
~v?ð~r; tÞ at a given point ~r, and time t. This is simply the integral of the trace of
Eq. (38) over all ~q

hj~v?ð~r; tÞj2i ¼
Z

ddq

ð2pÞd
hvið~q; tÞvið�~q;�tÞi

¼ D
2

Z
ddq

ð2pÞd
ðd � 2Þ

DTq2? þ Dkq2k
þ /ðq̂Þ
DLq2? þ Dkq2k

 !" #
. ð39Þ

The last integral clearly diverges in the infrared ðj~qj ! 0Þ for d 6 2. The divergence
in the ultraviolet ðj~qj ! 1Þ for d P 2 is not a concern, since we do not expect our



theory to apply for j~qj larger than the inverse of a microscopic length (such as the
interaction range ‘0).

The infra-reddivergence inEq. (39) for d 6 2 cannot be dismissed so easily, since our
hydrodynamic theory should get better as j~qj ! 0. Indeed, in the absence of nonlinear
effects, this divergence is real, and signifies the destruction of long-ranged order in the
linearized model by fluctuations, even for arbitrarily small noise D, in spatial dimen-
sions d 6 2, and in particular in d = 2, where the integral in Eq. (39) diverges logarith-
mically in the infra-red. This is so since, if hj~v?j2i is arbitrarily large even for arbitrarily
small D, our original assumption that~v can be written as a mean value h~vi plus a small

fluctuation~v? is clearlymistaken; indeed, the divergence of~v? suggests that the velocity
can swing through all possible directions, implying that h~vi ¼ 0 for d 6 2.

In d = 2, this result is very reminiscent of the familiar Mermin–Wagner–Hohen-
berg (MWH) theorem[12], which states that in equilibrium, a spontaneously broken
continuous symmetry is impossible in d = 2 spatial dimensions, precisely because of
the type of logarithmic divergence of fluctuations that we have just found here. In-
deed, to the linear order we ave worked here, this model looks just like an equilib-
rium model. All of the crucial differences between the equilibrium model and our
flocking model must therefore lie in the nonlinearities. In the next section, we will
show this is indeed the case: much of the scaling of correlation functions and prop-
agators is changed from that predicted by the linearized theory in spatial dimensions
d 6 4. Most dramatically, this change in scaling makes it possible for flocks to devel-
op long-ranged order even in d = 2, even though equilibrium systems cannot.

2.4. Non-linear effects and breakdown of linear hydrodynamics in the broken symmetry

state

2.4.1. Scaling analysis

In this section, we analyze the effect of the nonlinearities in Eqs. (12) and (13) on
the long length and time behavior of the system, for spatial dimensions d < 4. We will
rescale lengths, time, and the fields~v? and dq according to:

~x? ! b~x?;

xk ! bfxk;

t ! bzt;

~v? ! bv~v?;

dq ! bvqdq.

ð40Þ

We begin by constructing the scaling which preserves the structure of the linearized

theory, and then see if the nonlinearities grow or shrink under this rescaling. Accord-
ingly, we first choose the scaling exponents to keep the diffusion constants DB,T,q,i,
and the strength D of the noise fixed. The reason for choosing to keep these partic-
ular parameters fixed rather than, e.g., r1, is that these parameters completely deter-
mine the size of the equal time fluctuations in the linearized theory, as can be seen
from Eq. (39). Under the rescalings (40), the diffusion constants rescale according
to DB,T fi bz�2DB,T and Dq,i fi bz�2fDq,i; hence, to keep them fixed, we must choose



z = 2 and f = 1. The rescaling of the random force ~f can then be obtained from the
form of the f � f correlations Eq. (9) and is, for this choice of z and f

~f ! b�1�d=2~f . ð41Þ
To maintain the balance between ~f and the linear terms in~v? in Eq. (12), we must
choose

v ¼ 1� d=2 ð42Þ
in Eq. (40). v is the roughness exponent for the linearized model, i.e., we expect~v?
fluctuations on length scale L to scale like Lv. Therefore, the linearized hydrody-
namic equations, neglecting the nonlinear convective terms and the nonlinearities
in the pressure, imply that~v? fluctuations grow without bound (like Lv) as L fi 1
for d 6 2, where the above expression for v becomes positive. Thus, this linearized
theory predicts the loss of long range order in d 6 2, as we saw in the last section
by explicitly evaluating the real space fluctuations.

Making the rescalings as described in Eq. (40), the equation of motion (12)
becomes

ot~v? þ bcvcok~v? þ bck ½k1ð~v? � ~r?Þ~v? þ k2ð~r? �~v?Þ~v?�

¼ �~r?
X1
n¼1

bcnrnðdqÞn
 !

þ DB
~r?ð~r? �~v?Þ þ DTr2

?~v? þ Djjo
2
jj~v? þ~f ? ð43Þ

with:

ck ¼ vþ 1 ¼ 2� d=2; ð44Þ

cv ¼ z� f ¼ 1; ð45Þ
and

cn ¼ z� vþ nv� 1 ¼ nþ ð1� nÞ d
2
. ð46Þ

The scaling exponent vq for dq is given by vq = v, since the density fluctuations dq
are comparable in magnitude to the~v? fluctuations. To see this, note that the eigen-
mode of the linearized equations of motion that involves dq is a sound mode, with
dispersion relation x ¼ c�ðh~qÞq. Inserting this into the Fourier transform of the con-
tinuity Eq. (13), we see that dq 	 ~q?�~v?

q?
. The magnitude of ~q? drops out of the right

hand side of this expression; hence dq scales like j~v?j at long distances. Therefore,
we will choose vq ¼ v ¼ 1� d

2
.

The first two of these scaling exponents for the nonlinearities to become positive
as the spatial dimension d is decreased are ck and c2, which both become positive for
d < 4, indicating that the k1ð~v? � ~rÞ~v?; k2ð~r? �~v?Þ~v? and r2

~r?ðdq2Þ nonlinearities
are all relevant perturbations for d < 4. So, for d < 4, the linearized hydrodynamics
will break down.

A very similar breakdown of linearized hydrodynamics has long been known [28]
to occur in simple equilibrium fluids for d 6 2. Somewhat less well-known is the
more dramatic, and experimentally verified, breakdown of linearized hydrodynamics
that occurs in equilibrium smectic [29] and columnar [30] liquid crystals.



What can we say about the behavior of Eqs. (12) and (13) for d < 4, when the lin-
earized hydrodynamics no longer holds? The answer is provided by the dynamical
renormalization group, whose results we summarize in the next two sections. The
first of these presents the general form of the results in arbitrary spatial dimensions
d with 2 6 d 6 4, while the second presents results in d = 2 exactly, in which case we
can obtain exact exponents.

2.4.2. Renormalization group analysis, d < 4

In this section, we summarize the results of the dynamical renormalization group
analysis of the effect of the nonlinearities in the flock equations of motion. Readers
interested in the details of the analysis (which are quite involved) are referred to [16].

The simplest summary of the scaling of all correlation functions and propagators
is: simply use the harmonic expressions for them, except that the diffusion constants
DT,B,q should be replaced by wavevector-dependent quantities that diverge as~q ! 0,
according to the scaling laws

DT ;B;qð~qÞ ¼ qz�2
? fT;B;q

qk
K

� �
q?
K

� �f
 !

; ð47Þ

the bare noise strength D should be replaced by

Dð~qÞ ¼ D

q?
K

� �z�f�2vþ1�d
fD

ðqkKÞ
ðq?K Þf

 !
ð48Þ

and the diffusion constant Di should be replaced by

Dkð~qÞ ¼ qz�2f
? fk

ðqkKÞ
ðq?K Þf

 !
. ð49Þ

The scaling functions fD,B,T,q,i (u) in these expressions have the following asymp-
totic limits:

fT;B;qðuÞ /
constant; u ! 0;

u
z�2
f ; u ! 1;

(
ð50Þ

fDðuÞ /
constant; u ! 0;

u
z�f�2vþ1�d

f ; u ! 1;

(
ð51Þ

and

fkðuÞ /
constant; u ! 0;

u
z
f�2; u ! 1.

	
ð52Þ

HereK 	 1/‘NL is an ultraviolet cutoff, with ‘NL the length scale at which nonlinear
effects become important. a one-loop RG analysis predicts: lNL 	 ð10D5=4

? D1=4
jj =

kD1=2Þð2=ð4�dÞÞ �Oð1Þ. Higher loop corrections may affect this result, but it presumably
remains accurate to factors of O(1).



The form of these scaling functions is such that the renormalized diffusion con-
stants and the noise strength depend only on qi for

qjj
K � ðq?K Þ

f, and only on q^ in
the opposite limit. That is:

DT;B;qð~qÞ /
qz�2
? ;

qjj
K � ðq?K Þf;

q
z�2
f

k ;
qjj
K � ðq?K Þf;

8<
: ð53Þ

Dð~qÞ /
qz�f�2vþ1�d
? ;

qjj
K � ðq?K Þf;

q
z�f�2vþ1�d

f

k ;
qjj
K � ðq?K Þf;

8<
: ð54Þ

and

Dkð~qÞ /
qz�2f
? ;

qjj
K � ðq?K Þf;

q
z
f�2

k ;
qjj
K � ðq?K Þf.

8<
: ð55Þ

None of the other parameters of the linearized theory is appreciably affected by the
nonlinearities (beyond finite renormalizations). In particular, the sound speeds
remain given by Eq. (29), with all of the parameters in that equation remaining
constants as q fi 0.

The divergence of these diffusion ‘‘constants’’ and noise correlations as q fi 0 is
the ‘‘breakdown of linearized hydrodynamics’’ that we argued in the last section
would occur below d = 4.

The physics of this breakdown is very simple: above d = 4, where the breakdown
does not occur, information about what is going on in one part of the flock can be
transmitted to another part of the flock only by being passed sequentially through
the intervening neighbors via the assumed short-ranged interactions. Below d = 4,
where the breakdown occurs, this slow, diffusive transport of information is replaced
by direct, convective transport: fluctuations in the local velocity of the flock become
so large, in these lower dimensions, that the motion of one part of the flock relative
to another becomes the principal means of information transport, because it be-
comes faster than diffusion. There is a sort of ‘‘negative feedback,’’ in that this im-
proved transport actually suppresses the very fluctuations that give rise to it [31],
leading to long-ranged order in d = 2, as we will see in the next section.

The dynamical exponent z, the roughness exponent v, and the anisotropy expo-
nent f completely characterize the scaling of the dynamics of flocks. Unfortunately,
we have been unable to calculate them in any dimension except d = 2. All we know is
6/5 < z < 2, v < min(�1/5,1 � d/2), and 3/5 < f < 1 for 2 < d < 4.

The origin of our uncertainty is the k2 term in Eq. (12). When k2 = 0, the structure
of the theory is such that we can determine the exponents v, z, and f exactly. (Details
of the somewhat involved argument are given in [16]; here we will simply sketch the
reasoning.) This is because, when k2 = 0, all of the relevant pieces of the remaining
vertices are total ^ derivatives. It is straightforward to show that an immediate con-
sequence of this is that D and Di,q acquire no graphical renormalization when k2 = 0.
The requirement that D, Di, and Dq flow to fixed points ðdDk;q

d‘
Þ ¼ 0 ¼ dD

d‘
leads to two



independent exact scaling relations between the three independent exponents v, z,
and f. Requiring

dDk;q
d‘

¼ 0 implies

z ¼ 2f ð56Þ
while requiring dD

d‘
¼ 0 leads to

z ¼ fþ 2vþ d � 1. ð57Þ
We emphasize that we have only shown that these relations (56) and (57) hold when
k2 = 0.

We can obtain a third independent exact scaling relation between these three
exponents, and thereby determine them exactly, when k2 = 0, by exploiting a ‘‘pseu-
do-Galilean’’ invariance that the equations of motion (12) and (13) have when
k1 = kq, which leads to a exact scaling relation, namely

v ¼ 1� z. ð58Þ
The three relations ((56)–(58) that hold when k2 = 0 can trivially be solved, to find
the exact scaling exponents in all d < 4 that describe flocks with k2 = 0:

f ¼ d þ 1

5
; ð59Þ

z ¼ 2ðd þ 1Þ
5

; ð60Þ

and

v ¼ 3� 2d
5

. ð61Þ

Note that these match continuously, at the upper critical dimension d = 4, onto their
harmonic values f = 1, z = 2, and v ¼ 1� d

2
¼ �1, as they should.

But can k2 be ignored? Only if it renormalizes to zero. We have performed a
dynamical RG analysis of this question, and find that k2 is unrenormalized at one
loop order, leading to an apparent fixed line at that order. Since we do not know
what happens to k2 at higher order, all we can say at this point is that there are three
possibilities:

1. At higher order, k2 renormalizes to zero. If this is the case, then Eq. (59)–(61) hold
exactly, for all flocks, for d in the range 2 6 d 6 4. Note that these results linearly
interpolate between the equilibrium results z = 2, f = 1, and v ¼ 1� d

2
in d = 4,

and our 2d results z = 6/5, f = 3/5, and v = �1/5 in d = 2.
2. At higher order, k2 grows upon renormalization and reaches a nonzero fixed point

value k
2 at some new fixed point that differs from the k2 = 0 fixed point we have
studied previously, at which Eqs. (59)–(61) holds. The exponents v, z, and f would
still be universal (i.e., depend only on the dimension of space d) for all flocks in
this case, but those universal values would be different from Eqs. (59)–(61).

3. k2 is unrenormalized to all orders. Should this happen, k2 would parameterize a
fixed line, with continuously varying values of the exponents z, v, and f.



We reiterate: we do not know which of the above possibilities holds for d > 2.
However, whichever holds is universal; that is, only one of the three possibilities
above applies to all flocks. We do not, however, know which one that is.

In any case, the exponents z, v, and f completely characterize the scaling of the
dynamics and fluctuations in flocks for all dimensions d in the range 2 6 d 6 4. This
can be seen by looking at any of the quantities we calculated in our linearized treat-
ment in Section 2.3. For example, the full dispersion relation for the sound modes is

x� ¼ c�ðh~qÞq� iqz?f�

qk
K

ðq?K Þf

 !
; ð62Þ

which follows from Eq. (28) upon replacing the diffusion constants with their wave-
vector-dependent values in Eqs. (47) and (49). The scaling function f± in this expres-
sion obeys

f�ðuÞ /
constant; u ! 0;

uz=f; u ! 1.

	
ð63Þ

As a result, the attenuation of sound scales like qz? for
qjj
K � ðq?K Þf, and like qz=fjj for

qjj
K � ðq?K Þf.

As discussed in Section 2.3, the dispersion relations for x± and xs can be directly
probed by measuring the spatio-temporally Fourier transformed density–density and
velocity–velocity auto-correlation functions Cqqð~q;xÞ and Cijð~q;xÞ.

These take exactly the same form as predicted in Section 2.3, with the replacement
of the diffusion constants Dq,B,T with the wavevector-dependent quantities given in
Eqs. (47) and (49).

As a result, the two sharp peaks in Cqq at x = c± ðh~qÞq, now have width

/ qz?fLð
qk
K

ðq?K ÞfÞ and height / q�ð2vþzþ3fþd�3Þ
? gð

qk
K

ðq?K ÞfÞ, rather than the q2 and q�4 scaling

predicted by the linearized theory. Thus, c�ðh~qÞ can be simply extracted from the po-
sition of the peaks, while the exponents v, z, and f can be determined by comparing
their widths and heights for different ~q’s.

Fourier transformingCijð~q;xÞ back to real time gives an equation of the same form
as (38), but with CL;Tð~qÞ and D modified from their linearized forms by the same
replacement of D�s and D by their renormalized, wavevector-dependent values Eqs.
((47)–(49). This implies that the equal-time velocity correlationCijð~qÞ obeys the scaling
laws:

Cijð~qÞ /
qz�f�2vþ1�d
? ;

qjj
K � ðq?K Þf;

q
z�f�2vþ1�d

f

k ;
qjj
K � ðq?K Þf.

8<
: ð64Þ

Since z < 2 and f < 1, these results imply that, for all d < 4, equal-time velocity
fluctuations diverge more slowly than 1

q2 (the latter being both the equilibrium result
and that obtained by the linearized theory).

This suppression of fluctuations in Fourier space leads to fluctuations in real

space that are finite, even in d = 2, as we will show in detail in the next section.
Specifically



hj~v?ð~r; tÞj2i ¼
Z

ddq

ð2pÞd
hvið~q; tÞvið�~q; tÞi

¼ 1

2

Z
ddq

ð2pÞd
Dð~qÞ ðd � 2Þ

DTð~qÞq2? þ Dkð~qÞq2k
þ /ðq̂Þ
DLð~qÞq2? þ Dkð~qÞq2k

" #
ð65Þ

remains finite, even in d = 2.
So far, our discussion has focussed on velocity fluctuations. The density qð~r; tÞ

shows huge fluctuations as well: indeed, at long wavelengths, the fluctuations of
the density of birds in a flock become infinitely bigger than those in a fluid or an ideal
gas. This fact is obvious to the eye in a picture of a flock. Quantitatively, Fourier
transforming Cqqð~q;xÞ back to real time yields the spatially Fourier transformed,
equal time density–density correlation function Cqqð~qÞ � hjqð~q; tÞj2i, which obeys
the scaling law:

Cqqð~qÞ ¼
q3�d�f�2v
?
q2

fq

qk
K

ðq?K Þf

 !
Y ðh~qÞ /

q1�d�f�2v
? ; qk � q?;

q�2
jj q3�d�f�2v

? ; q?
K

� �f � qk
K � q?

K ;

q
�3þ1�d�2v

f

k q2?; ðq?K Þf � qk
K ;

8>>><
>>>:

ð66Þ
where Y ðh~qÞ is a finite, nonvanishing, O(1) function of the angle h~q between the
wavevector~q and the direction of mean flock motion, qi and~q? are the wavevectors
parallel and perpendicular to the broken symmetry direction, and q? ¼ j~q?j.

The most important thing to note about Cqð~qÞ is that it diverges as j~qj ! 0, unlike
Cqð~qÞ for, say, a simple fluid or gas, or, indeed, for any equilibrium condensed matter
system, which goes to a finite constant (the compressibility) as j~qj ! 0.

This completes our discussion of the behavior of the full, nonlinear model in
dimensions d between 2 and 4. We now turn to the behavior of the model in

d = 2, where we can actually determine the exponents exactly.

2.4.3. Ferromagnetic flock exponents in d = 2

In the last section, we argued that the three exponents z, v, and f which completely
determine the scaling properties of the flock can be determined exactly if only one
could show that k2 fi 0 upon renormalization.

However, in d = 2, any flock is equivalent to a flock with k2 = 0. This is because
the k1 and k2 vertices become identical in d = 2, where~v? has only one component,
which we will take to be x. That is, in d = 2:

k1ð~v? � ~r?Þ~v? ¼ k1x̂vxoxvx ¼
1

2
k1oxðv2xÞx̂; ð67Þ

k2ð~r? �~v?Þ~v? ¼ k2x̂ðoxvxÞvx ¼
1

2
k2oxðv2xÞx̂; ð68Þ

so that the full ~v? nonlinearity becomes 1
2
ðk1 þ k2Þoxðv2xÞx̂, which is just what

we would get if we started with a (primed) model with k02 ¼ 0 and k01 ¼ k1 þ k2. This



latter model, since it has k02 ¼ 0, must have the ‘‘canonical’’ exponents (59)–(61)
hence, so must the (k1,k2) model, which includes all possible d = 2 models. So all
models in d = 2 must have the canonical exponents (59)–(61).

Setting d = 2 in (59)–(61), we obtain:

f ¼ 3

5
; ð69Þ

z ¼ 6

5
; ð70Þ

v ¼ � 1

5
. ð71Þ

Note, in particular, that v < 0. This implies, as discussed earlier, that the flock exhib-
its true long-ranged order.

Using the exponents (69)–(71) in the general scaling relations, such as (64) and
(66), we obtain all of the scaling results for correlation functions in d = 2. Note also
that for this set of exponents z � f � 2v + 1 � d = 0. Hence, from Eq. (48), we see
that the noise strength D is a constant, independent of ~q, which makes sense since
D is unrenormalized graphically. So, in the d = 2 model, we can calculate all corre-
lation functions from their harmonic expressions, except that we replace the diffusion
constants DB,T with functions that diverge as ~q ! 0 according to the scaling laws

DB;Tð~qÞ ¼ q�4=5
? fB;T

qk
K

� �
q?
K

� �3=5
 !

; ð72Þ

where we have used the exact d = 2 exponents z = 6/5 and f = 3/5 in the general
scaling law (47). Di,q, on the other hand, are, like D, constants, since z = 2f (see gen-
eral Eq. (49)), which also makes sense since Di,q are unrenormalized graphically.
Hence, the only replacement needed to turn the harmonic results into the correct
results for the full, nonlinear theory in d = 2 is (72). Therefore, in d = 2, f = 3/5,
and v = �1/5

Cqqð~qÞ ¼
q4=5?
q2

fq
qk

K q?
K

� �3=5
 !

Y ðh~qÞ /

q�6=5
? ; qk � q?;

q�2
jj q

4=5
? ; q?

K

� �3=5 � qk
K � q?

K ;

q�4
k q2?; ðq?K Þ3=5 � qk

K .

8>><
>>: ð73Þ

These scaling predictions agree extremely well with numerical simulations [15,16],
as we will discuss in detail in the next section.
3. Comparison with numerical simulations

Many aspects of flocking dynamics are too complex to be tractable analytically.
Numerical simulation thus becomes an important and necessary tool in exploring
the rich phenomena in various flocking models. Even though the concept of simulat-



ing collective behaviors in self propelled systems was introduced to the physics com-
munity by Vicsek et al. [5], computer models for flocks, not surprisingly, were used
earlier in disciplines as diverse as ecology and computer graphics[1], albeit with dif-
ferent emphasis in each field. The main focus of the physicists in this field has been
the (bulk) properties of the system in the limit of large system size, corresponding to
what we refer to, at thermal equilibrium, as the thermodynamic limit. We shall use
that term here as well, although we do not mean to suggest that the properties of that
limit for equilibrium systems, such as equivalence of ensembles, hold here as well.
We would like to understand the types of possible nonequilibrium steady states,
i.e., phases of the system, and the nature of the changes from one type of phase to
another when parameters are changed, i.e., the nature of the nonequilibrium phase
transitions. In this section, we review numerical simulation studies in this area, with
discussions of their connections to both the analytical results and the actual exper-
imental observations, whenever possible.

3.1. Possible behaviors (phases)

The Vicsek model does not include any interaction to enforce a preferred distance
between boids, which are kept together only by the periodic boundary conditions in
the Vicsek�s original study[5]. While the Vicsek model probably yields an adequate
description of the transition from the moving to the nonmoving state in large sys-
tems, it cannot capture the behavior of finite flocks and of possible positional, as dis-
tinct from orientational order within the flock.

Following a model introduced by biologists Huth and Wissel [1] in the early 1990s
for describing real bird flocks, the Vicsek model can be generalized by adding a cen-
tral force between each pair of boids within a distance R of each other. Since the
main function of such interaction is to keep the flock together, it can be called the
‘‘cohesive interaction.’’ At each time step, a total force vector is determined by sum-
ming the cohesive interaction, the velocity alignment interaction and a random noise
[32] for each boid i

~f i ¼
X
j

ðafaðrijÞ~vj þ bfbðrijÞr̂ijÞ þ~gi; ð74Þ

where j represents all the neighbors [33] within a radius R centered around the ith
boid, ~vj is the velocity of j, and r̂ij is the unit vector from i to j. a and b are the
strengths of the aligning and cohesive forces, respectively, and the distance-depen-
dence is contained in the functions fa,b (rij), where rij is the distance between boids
i and j. ~gi is a noise with unit amplitude and random angle. At the next time step,
the velocity of boid i changes its direction to that of ~f i, and the boid i moves with
that velocity to its new position. After each boid�s position and velocity have been
updated, the process is repeated with the new position and velocity of the boids.

In two separate papers [34,35], the general qualitative behaviors of the flocking
model with cohesive force were examined with specific choices of the interaction
functions fa,b (rij). In [35], the strength of the alignment force is set to be constant
fa (rij) = 1 and the form of the cohesive force was taken to be



Fig. 5. Sketch of the asymptotic phase diagram in the zero-density limit. Due to the large separation of
scales in b, the phase diagram is broken into two panels to show details of the transition regions. Filled
circles indicate points determined numerically in [35] for a system of size L = 180, q = 1/16, see text for the
parameters of the model.
fbðrijÞ ¼
�1 : rij < rc;
1
4

rij�re
ra�re

: rc < rij < ra;

1 : ra < rij < R.

8><
>:

With the parameters rc = 0.2, ra = 0.8, re = 0.5, R = 1.0, and v0 = 0.05 fixed, various
behaviors of the flock were then studied in the parameter space spanned by the rel-
ative strength (with respect to noise) of the cohesive (b) and the alignment (a) forces
in [35]. Fig. 5 summarizes the different behaviors of the system in the zero-density
limit.

There are five different kinds of behaviors, which can be loosely called as ‘‘phas-
es’’: moving solid (MS), stationary solid (S), moving liquid (ML), stationary liquid
(L), and the gas phase (G). For small values of b, the boids do not stay together
as a single group; instead they form smaller clusters or fly solo. We call this region
the gas phase. The rest of the parameter space where the boids stay in one cluster is
partitioned into four phases. In general, as a increases, the flock starts to move, and
as b increases, the boids seems to transform from the liquid phase, where their rel-
ative positions are constantly changing, to the solid phase, where the relative posi-
tions are fixed. In Fig. 6, the structures of these four condensed phases for a small
system are shown, each with several snap shots in time, to illustrate the different
flocking behaviors.

The moving and nonmoving phases can be distinguished by the average velocity
of the system, as in [5]. To distinguish between the solid and the liquid phases, a rel-
ative diffusion constant D over some large time T of initially neighboring boids was
used in [35]

D � 1

ni

X
j	i

1� rijðtÞ2

r2ijðt þ T Þ

 !* +
i;t

; ð75Þ



Fig. 6. Structures of condensed phases for a small system of 128 particles, and L = 32. (A) Immobile
‘‘solid’’ at a = 1.0 and b = 100.0 (20 timesteps superimposed). (B)‘‘Flying crystal’’ at a = 3.0 and b = 100.0
(three snapshots, separated by 120 timesteps). (C) Stationary fluid droplet at a = 1.0 and b = 2.0 (20
consecutive timesteps). (D) Moving droplet at a = 3.0 and b = 3.0 (20 consecutive timesteps). (B and D)
The arrow indicates the (instantaneous) direction of motion.
where ni is the number of neighbors (in the Voronoi sense) for the ith boid at time t.
Time T was taken to be proportional to the volume of the system, which ensures that
D records, in the large-size limit, an asymptotic property of the system. D measures
the inter-boid mixing inside the flock. Clearly, D 	 1 in the liquid phases, while D 	 0
for the solid phases. For finite system sizes, the transition point was chosen to be at
D ¼ 1

2
.

It is clear that the flocking model exhibits much richer behaviors once the cohesive
force is taken into account. The topology of the phase diagram is generally in agree-
ment with our intuition and it is also evident from Fig. 5 that there are strong inter-
actions between the two orders (positional and orientational) as reflected by the
curvatures of the phase boundaries. However, to establish the existence of these
phases in the thermodynamic sense requires much larger flocks and longer running
time. In particular, as we see from the next section, the nature of the phase transition
is very subtle, and extremely large simulation size is needed to understand it.



3.2. The nature of the order to disorder transition

As described before, the global orientational order of the system is described by
the average velocity of all the boids in the system. By changing the noise strength
or the size of the system with constant number of boids, Vicsek et al. [5,36] found
that the order parameter decreased to zero at a critical point continuously, suggest-
ing a second order or, more generally, continuous, phase transition between a or-
dered and a disordered phase for the system. By doing a finite scaling analysis, a
set of critical exponents were also obtained to characterize the critical point [36].

However, in a recent numerical study with much larger system size by Grégoire
and Chaté [37], the continuous nature of the moving to nonmoving phase transition
was challenged. Grégoire and Chaté showed strong evidence for a discontinuous
transition between the ordered and disordered phases of the Vicsek model. The re-
sults of their simulation are summarized in Fig. 7. From their simulation of large sys-
tems, the disordered phase can be best described as many finite clusters of boids,
Fig. 7. Discontinuous character of the onset of collective motion in the original Vicsek model at q = 1/8.
(A) The Binder cumulant G ” 1 � Æ/4æ/3Æ/2æ2 versus noise g at various system sizes. (B) Density (bottom
curve) and velocity (top curve) profiles along the direction of motion in the ordered phase (L = 1024,
g = 0.18). (C) PDF of the instantaneous order parameter /t near the transition point, t 2 [s,500s]; s . 105

is the correlation (persistent) time, L = 512. (D) Snapshot of coarse-grained density field in disordered
phase at the threshold, q = 2, L = 256. The arrows indicate the direction of motion of dense, ordered
clusters.



each moving in a different direction, coexisting with a dilute background of statisti-
cally stationary boids (Fig. 7D). Each finite ordered cluster evolves in time by collect-
ing and losing boids from the background, they can also nucleate from and dissolve
into the background. The ordered phase, on the other hand, consists of one or a few
large clusters of boids with some intriguing internal density and velocity profile (Fig.
7B). Grégoire and Chaté argued that because these two distinctive states coexist (at
least near the transition point) for finite system size, these two states occur alter-
nately in time, leading to a seemingly continuous order parameter variation, which
is probably what was observed in Vicsek�s original numerical simulations. As the sys-
tem size increases, the persistence time for each state becomes longer and, in the ther-
modynamic limit, the transition becomes discontinuous.

Perhaps the strongest evidence for a discontinuous transition is provided by the
bimodal distribution of the coarse-grained local order parameter observed near
the transition point, as shown in Figs. 7A and C. Similar characteristics of the order
parameter were also found in other variations of the Vicsek model including ones
with different forms of the noise, thus substantiating the claim of a discontinuous
transition. Could the discontinuous nature of the transition be a special feature of
the Vicesk model due to its lack of cohesive force? To answer this question, Grégoire
and Chaté [37] also investigated the moving to nonmoving transition for flocking
models with cohesive interaction in large systems. Near the critical point in the dis-
ordered phase, they found the disordered phase again consists of many small clusters
connected by thin filaments of boids, each small cluster moving in different directions
in much the same way as in the original Vicsek model. Grégoire and Chaté therefore
argued that the transition between the ordered state and this ‘‘near critical’’ disor-
dered state resembled the order to disordered transition in the Vicsek model, and
the onset to collective motion is always discontinuous even in the presence of cohe-
sive force.

At the phenomenological level, it is evident that the nature of the transition is gov-
erned by the strong interaction between the positional and the orientational degrees
of freedom of the system. One possibility is that the transition from the (velocity) ori-
entationally ordered phase to the disordered phase may be caused by a finite wave-
length instability for the density profile. Such instability could break the extended
large cluster into many finite size ones, each of which moves in a different direction,
leading to the vanishing of the global order parameter. At the theoretical level, it re-
mains a challenge to formulate the proper interaction between density fluctuation
and the directional order parameter near the ordering transition, which could then
be used to understand the nature of the transition analytically.

3.3. The properties of the ordered phase

Away from the transition point into the ordered phase, things are a little clearer.
Theoretically, the ordered phase (with uniform density) is found to be stable against
fluctuations caused by the spontaneous (orientational) symmetry breaking [14–16].
However, despite its simple average behavior, the stable ordered phase has highly
nontrivial properties in terms of its positional and orientational fluctuations due



to the interaction between the sound wave and the (soft) Goldstone mode. Some of
the characteristics of these fluctuations, especially those in two dimensions, can be
determined from the analytical analysis of the coarse grained continuum equations.
In this section, we review the work done by Tu et al. [15] where the properties of both
the density and velocity fluctuations in the ordered phase were studied numerically
and compared directly with the predictions from the analytical work based on the
continuum equations.

The model used in [15] is similar to the modified Vicsek model given in Eq. (74).
At a given time t, the position and the direction of the velocity for each boid are gi-
ven as ð~riðtÞ; hiðtÞÞ for i = 1,2, . . . ,N. The magnitude of the velocity is fixed: j~vij ¼ v0,
its direction is updated at the next time step by averaging over its neighbors� moving
directions

hiðt þ 1Þ ¼ H
1

M

XM
j¼1

ð~vjðtÞ þ~gijðtÞÞ þ ~giðtÞ
 !

; ð76Þ

where M is the number of neighbors for boid i within radius R: rij ¼ j~ri �~rjj < R.
The extra interaction term ~gij ¼ g0ð~ri �~rjÞððl0rij Þ

3 � ðl0rij Þ
2Þ makes boids repel each

other when they are closer than l0, and attract each other otherwise, with l0 the aver-
age distance between boids in the flock. In [15], a high boid density q : ql20 	 1 was
chosen to prevent the formation of clusters, which render the average density profile
nonuniform and complicate the analysis. The noise term ~giðtÞ ¼ DvðcosðpeiðtÞÞ;
sinðpeiðtÞÞÞ, where ei (t) is a random number in the interval [�1,1]. The function
Hð~xÞ is just the polar angle of the vector ~x. The position update is simply:
~riðt þ 1Þ ¼~riðtÞ þ v0ðcosðhiðtÞÞ; sinðhiðtÞÞÞ. The parameters in this model are R, l0,
Dv, v0, and g0.

The particular form of the interactions should not affect the universal predictions
of the continuum theory presented above, but rather should only change nonuniver-
sal phenomenological parameters like c, k, Di, etc. They also affect the length scale
lNL beyond which the asymptotic long wavelength forms of the correlation functions
(32) and (37) apply. Indeed, a one-loop RG analysis predicts: lNL 	 ð10ðDo

?Þ
5=4

ðDo
jjÞ

1=4
=koD

1=2
o Þð2=ð4�dÞÞ �Oð1Þ, where the sub-(or super-)script o denotes the ‘‘bare,’’

or unrenormalized, value of the corresponding parameter. Higher loop corrections
may affect this result, but it presumably remains accurate to factors of O(1).

For the current numerical model, the parameters for the corresponding contin-
uum equations can be estimated on dimensional grounds: ko 	 1, Do 	 ðDvÞ2 Rd

t0
,

Do
jj 	 Do

? 	 R2

t0
. Inserting these estimates, one finds lNL 	 Rð10RDvt0

Þð2=4�dÞ. In the simula-
tion carried out in [15], choosing units of length and time such that R = t0 = 1, and
taking Dv 	 Dvc 	 1/3 in these units, for d = 2 a lower bound for lNL: lNL > 30 was
obtained. Previous simulations [36] took Dv � 1, and therefore have a much larger
lNL. Hence, no nontrivial nonlinear effects could be observed since their systems were
much smaller than lNL.

The above analysis shows that in order to test the scaling behavior with a reason-
able system size, one seeks a small lNL by increasing Dv and decreasing the radius of
interaction R as much as possible without entering the disordered phase. In the study



Fig. 8. (A) The order parameter /, as defined in the text, versus the noise strength Dv. The arrow shows
the value of Dv at which the fluctuations of the ordered state were calculated. (B) The scaling behavior of
the equal time correlation function for the density fluctuations in the two limits can be calculated
analytically (see [14,15] for details) in two dimensions. The lines illustrate the predicted slopes.
by Tu et al. [15], the results of a simulation with system size L · L with L = 400 and
the number of boids N = 320,000 were reported. For the parameter values R = 1,
g0 = 0.6, v0 = 1.0, l0 = .707 used in [15], the flock becomes disordered at Dvc 	 .375
(see Fig. 8A). The order parameter / is defined simply as the magnitude of the aver-
age velocity of the whole flock: / ¼ 1

Nj
PN

i¼1~vij. To stay in the ordered phase and have
enough fluctuations, a large but subcritical value of noise Dv = 0.15 was chosen in
[15].

For any finite flock, the direction of the average velocity will slowly change, ren-
dering difficult any comparison to the analytical results, which assume infinite system
size and hence a constant direction for h~vi. To make h~vi constant in its direction,
periodic boundary conditions in one of the directions, say the x direction, and
reflecting boundary conditions in the other direction y were used in [15]. When a
boid i with velocity ðvxi ; v

y
i Þ collides with the ‘‘walls’’ at y = ± L/2, its velocity changes

to ðvxi ;�vyi Þ. The symmetry broken velocity is thus forced to lie along the x-direction,
without changing the bulk dynamics of the system. Hereafter ‘‘i’’ and x are used
interchangeably, as are ‘‘^’’ and y.

The equal time correlation functions can be derived analytically from the contin-
uum model, as shown in Eq. (73), from which we see that there are three regimes of~q
space with different scalings of Cqqð~qÞ with~q. In Fig. 8B, the equal time density cor-
relation functions are plotted in Fourier space: Cqq (qi, q^ = 2p/L) versus qi and
Cqq (qi = 0,q^) versus q^ from our simulation. The scaling behavior at long length
scales can be fitted with: Cqqðqjj; q? ¼ 2p=LÞ 	 q�2.05

jj and Cqqðqjj ¼ 0; q?Þ 	 q�1.23
? .

These two exponents show excellent agreement with the analytical results �2 and
�6/5 predicted in Eq. (73), once one recognizes that all of the ~q’s in the first fit lie
in the region ðq?K Þ3=5 � qk

K � q?
K , where the analytical model predicts scaling as q�2

k .
As can be seen from Fig. 8B, the scaling region for the current simulation covers
slightly less than one decade in q^. It is not surprising that earlier simulations of
smaller systems with less carefully chosen parameters (leading to larger lNL), did
not observe the nontrivial scaling.



Another interesting measurement of the simulation is the anomalous diffusion of
individual boids in the direction y perpendicular to the flock�s moving direction. The
‘‘width’’ of the dispersion of an ensemble of boids: w2 (t) = Æ(yi (t) � yi(0))

2æ was mea-
sured in the simulation. The analytical behavior of the anomalous diffusion can be
obtained from w2ðtÞ 	

R t
0

R t
0hviyðt0Þviyðt00Þidt0 dt00, where viyðtÞ is the velocity of the ith

boid along y direction at time t. The velocity correlation function is given by (4):

hviyð0ÞviyðtÞi 	 hvyð~xþ /x̂t; tÞvyð~x; 0Þi

¼
Z

expðiðx� /qjjÞtÞDðx� vsqjjÞ
2 d2qdx

Sð~q;xÞ 	 t1�1=f ð77Þ

which implies: w2ðtÞ 	 t3�1=f ¼ t4=3. In Fig. 9, the width squared w2 (t) versus time t

from the numerical model was plotted in log–log scale. The scaling can be fitted ni-
cely with w2 (t) 	 t1.3, which agrees well with the analytical result t4=3.

Besides the scaling behavior, the analytical results (32), (37) also imply the exis-
tence of sound waves as reflected in the peaks of the correlation functions Eqs.
(32) and (37). From Eq. (32), at a given value of~q, the correlation function has peaks
at x = c±(hq) q. This prediction is tested by measuring the power spectrum in the y-
direction: hjdqðqjj ¼ 0; q? ¼ 2p

L n?;x ¼ 2p
T nxÞj2i (T = 1024) with different values of

n^(= 1,2, . . . , 20). Fig. 10 shows the power spectra for n^ = 5, 10, 20. The spectra
are symmetric around x = 0 (only half of the spectrum for x > 0 is shown) and
the positions of the peaks n
x versus ny are shown in the inset of Fig. 10, whose slope
determines the sound velocity in the y-direction c = 0.62. The power spectrum of v^
in the y direction was calculated also, which shows the same peaks.

Along the x direction, i.e., with qi „ 0 and q^ = 0, the analytical study predicts one
single peak for each correlation function. Indeed, as shown in figure Fig. 11, each
power spectrum shows only one peak, and again as predicted by (32), (37), the peak
for the v^ power spectrum is at a different x than the peak of the density power spec-
Fig. 9. The log–log plot of the anomalous transverse diffusion of an individual boid versus time.



Fig. 10. The power spectrum of the density for different wave vectors. The inset shows the peak positions
of the power spectrum versus wavenumber. The linear slope determines the sound velocity.

Fig. 11. Power spectra for the density and velocity fluctuations for the same wave vector along the parallel
direction. The peaks of the two curves are clearly different.
trum! This means that the velocity fluctuations propagate with a different velocity
than the density fluctuations in the x-direction!

The comparison between the numerical model and the analytical equations can be
made at the quantitative level even beyond the values of exponents. From Fig. 12,
the values of vs and k for the continuum model can be determined from the simula-



Fig. 12. The power spectra for the density and the velocity fluctuations in directions (A) hq,1 = arctan(4)
and (B) hq,2 = arctan(1/3). The two peaks are clearly visible, albeit with different magnitudes. (C) The
wave velocities c±(hq) are plotted in polar angle coordinates (c±(hq),hq) for the four different directions
hq = 0, hq,1, hq,2, p/2, the two axes represent cx = c±(hq) cos(hq) and cy = c±(hq) sin(hq), respectively. The
solid curve is the prediction from the continuum model.
tion: vs = 0.93, k = 0.75. (The fact that k „ 1 reflects the absence of Galilean invari-
ance.) With the value of c = 0.62 determined through Fig. 12, the sound speeds in all
other directions of propagation can be predicted from Eq. (29) with no adjustable
parameters. To test these predictions, the power spectra for the density and the
velocity fields were calculated in the numerical model at two other angles:
tan(hq) = 1/3, 4. For the large angle hq,1 = arctan (4) = 76.0�, the data are shown
in Fig. 12A. The peaks for q and v^ are at the same location, and the wave velocities
are c±(hq,1) = 0.75, �0.37. The data for hq,2 = arctan(1/3) = 18.4 � are shown in Fig.
12B. The peak at x = c� (hq,2) is just barely visible in the density correlation, but
both peaks show very well in the velocity correlation, and the peaks for both corre-
lation functions are at the same locations, giving the velocity c±(hq,2) = 0.97, 0.59. In
Fig. 12C, the full angle dependence of the wave velocity as predicted in Eq. (29) in
polar angle coordinates (c±(hq), hq) is plotted, with the values of vs, k, and c deter-
mined earlier. Included in Fig. 12C are also the sound velocities for the two angles
hq,1 and hq,2 measured in the numerical model. The agreement with the predicted
velocities is excellent.



In summary, the numerical simulations strongly support the analytical continuum
theory of flocks. The observed sound speeds agree very well with predictions from
the analytical model based on continuum equations of motion. In particular, the
analytical model�s assertion that Galilean invariance is absent is confirmed by the
existence of two different nonzero sound speeds for propagation along the mean
direction of flock motion. In addition, the sound attenuation shows the anomalous
scaling predicted analytically.

However, all the results presented here are based on the premise that the ordered
state has a homogeneous density profile, which was enforced in the numerical study
in [15] by having a boid density q compatible with the preferred inter-boid distance.
If the ordered state has an inhomogeneous density profile, as reported in [37] for the
Vicsek model with low boid density, the nature of the density and velocity fluctuation
could be different, depending on the detailed structure of the average boid density pro-
file.
4. Anisotropic model

Not all flocks, of course, are equally likely to move in any direction in the space
they occupy. Flocks of birds, for instance, although they occupy a d = 3-dimensional
volume (the air), are far more likely to move horizontally than vertically. This is pre-
sumably because gravity breaks the rotational symmetry between the horizontal
plane and vertical directions.

One can imagine a variety of ‘‘microscopic’’ rules, like the Vicsek rule described ear-
lier, that would exhibit such anisotropy. For example, one could apply a ‘‘Vicsek’’ rule
in three dimensions, selecting thereby a vector n̂. Instead of moving along that vector,
however, one could instead move along a vector ‘‘compressed’’ along some (z) axis

~n0 ¼ snzẑþ~n? ð78Þ
with s < 1 and~n? ¼ n̂� nzẑ. This will tend to promote motion in the x–y plane at the
expense of motion in the z-direction. Alternatively, one could project all velocities
into the x–y plane, apply a Vicsek rule to them (while still sampling neighbors in
three dimensions), and then add to this xy move a random decorrelated step in
the z direction [38].

In this section, we will review the work of [16] on such anisotropic models.
For technical reasons that will, we hope, become obvious, we will focus our atten-

tion on systems which, whatever their spatial dimension d, have an easy plane of mo-
tion; i.e., two components of velocity that are intrinsically favored over the other
d � 2. We will also assume perfect isotropy within this plane and within the d � 2
dimensional ‘‘hard’’ subspace. The case of birds flying horizontally corresponds to
d = 3.

A natural extension of our fully isotropic model (EOM) to this case is

ot~vþ k1ð~v � ~rÞ~vþ k2ð~r �~vÞ~vþ k3~rðj~vj2Þ

¼ �~rP ðqÞ þ a~v� b~vj j2~v� da~vH þ DB
~rð~r �~vÞ þ De

Tr2
e~vþ DH

Tr2
H~v

~ 2 ~
þ D2ð~v � rÞ ~vþ f . ð79Þ



Mass conservation, of course, still applies

otqþ ~r � ðq~vÞ ¼ 0 ð80Þ
and the pressure P (q) will still be given by the same expansion in dq = q � qo

P ðqÞ ¼
X1
n¼1

rnðdqÞn. ð81Þ

In Eq. (79),~vH denotes the d � 2 ‘‘hard’’ components of~v, i.e., those orthogonal to
the d = 2 easy plane. Likewise, r2

e and r2
H denote the operators

P2
i¼1

o2

ox2i
andPd

i¼3
o2

ox2i
, respectively, where i = 1, 2 are the ‘‘easy’’ Cartesian directions, and

i = 3 fi d the ‘‘hard’’ ones. The term �daj~vHj2, da > 0 suppresses these components
relative to those in the easy plane.

Eq. (79) is not, of course, the most general anisotropic model we could write
down. For instance, one could have anisotropy in the nonlinear terms: e.g, terms like
ð~ve � ~rÞ~ve could have different coefficients than ð~vH � ~rÞ~vH. However, because ~vH
winds up being ‘‘massive,’’ in the sense of decaying to zero too rapidly (i.e., nonhy-
drodynamically) at long wavelengths and times to nonlinearly affect the hydrody-
namic (long wavelength, long time) behavior of the flock (in its low temperature
phase), any additional terms in (79) distinguishing ~vH and~ve will have no effect on
the hydrodynamic behavior in the low ‘‘temperature’’ phase. That is, (79) already
contains enough anisotropy to generate all possible relevant, symmetry allowed
terms in the broken symmetry state. Hence, we will keep things simple and not gen-
eralize (79) further.

As we did for the isotropic problem, we will now break the symmetry of this mod-
el, i.e., look for solutions to the form

~vð~r; tÞ ¼ h~vi þ d~vð~r; tÞ. ð82Þ
Now, however, the direction of the mean velocity h~vi (which we will chose as be-

fore, to be a static, spatially uniform solution of the noiseless ð~f ¼ 0Þ version of (79))
is not arbitrary, but must lie in the easy (1,2) plane. To see this, let us, without loss of
generality, write

h~vi ¼ voy ŷ þ vozẑ ð83Þ
with voy and voz constants, ŷ in the easy plane and ẑ one of the d � 2 ‘‘hard’’ direc-
tions. To solve (79) with ~f ¼ 0, these must obey

avoy � bðv2oy þ v2ozÞvoy ¼ 0 ð84Þ

and

ða� daÞvoz � bðv2oy þ v2ozÞvoz ¼ 0 ð85Þ

Subtracting voy· (85) from voz ·; (84) we obtain davoyvoz = 0, which implies that
either voy or voz must be zero. It is straightforward to show that the former solution
is unstable (with two linear eigenvalues a > 0) to small~ve fluctuations, while the latter
is stable (with d � 2 linear eigenvalues �da > 0) to ~vH fluctuations, so the solution
with h~vi in the easy plane is the stable one. Furthermore, fluctuations in the ‘‘hard’’



directions are ‘‘massive,’’ in the sense of decaying rapidly to zero even at long wave-
lengths, and so can be neglected in the low temperature phase (just like vi fluctua-
tions in the isotropic case). Likewise, if we take

h~vi ¼ voŷ ð86Þ
fluctuations in dvy = vy � vo, will also be massive (with linear eigenvalue—2a). Elim-
inating the massive fields dvy and~vH in favor of the pressure, as we did for dvi in the
isotropic case, gives:

dvy ¼ �Dqyoyq; ð87Þ

~vH ¼ �DqH
~rHq; ð88Þ

where we have defined the diffusion constants:

Dqy �
r1

2a
; ð89Þ

DqH � r1

da
; ð90Þ

and we have used the relation (81) for the pressure, and dropped all but the leading
order linear terms in dq, since higher powers of d q in Eqs. (87) and (88) prove to be
irrelevant.

Using the solutions (87) and (88), and taking, for the reasons just discussed

~vð~rÞ ¼ ðvo þ dvyð~r; tÞÞŷ þ vxð~r; tÞx̂þ~vHð~r; tÞ ð91Þ
we can write a closed system of equations for vxð~r; tÞ and dqð~r; tÞ:

otdqþ vooydqþ oxðqvxÞ ¼ ðDqyo
2
y þ DqHr2

HÞdq; ð92Þ

otvx þ coyvx þ
k
2
oxðv2xÞ ¼ �r1oxðdqÞ � r2oxðdqÞ2 þ ðDko

2
y þDxo

2
x þDHr2

HÞvx þ fx;

ð93Þ
where we have defined k ” k1 + k2, and c = k1v0, and dropped irrelevant terms.

Proceeding as we did in the isotropic model, we begin by linearizing these equa-
tions, Fourier transforming them, and determining their mode structure.

The result of the first two steps is the Fourier transformed equations of motion:

½�iðx� voqyÞ þ Cqð~qÞ�dqð~q;xÞ þ iqxq0vxð~q;xÞ ¼ 0; ð94Þ

½�iðx� cqyÞ þ Cvð~qÞ�vxð~q;xÞ þ ir1qxdqð~q;xÞ ¼ fxð~q;xÞ; ð95Þ

where we have defined:

Cqð~qÞ � Dqyq2y þ DqHq2H; ð96Þ

Cvð~qÞ � Dkq2y þ DHq2H þ Dxq2x . ð97Þ

Again as in the isotropic model, we first determine the eigenfrequencies xð~qÞ of
these equations, finding



x�ð~qÞ ¼ c� h~q;/~q

� �
q� i��ð~qÞ; ð98Þ

where the sound speeds

c�ðh~q;/~qÞ ¼
1

2
ðcþ v0Þ cos h~q � c2ðh~q;/~qÞ ð99Þ

with

c2ðh~q;/~qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðc� v0Þ2cos2h~q þ r1q0sin

2h~qcos2/~q

r
; ð100Þ

where h~q is the polar angle between ~q and the y-axis, and /~q is the azimuthal angle,
measured relative to the x-axis: i.e., the angle between the projection of~q orthogonal
to y, and the x-axis.

A polar plot of this sound speed versus h~q for /~q ¼ 0 (i.e.,~q in the ‘‘easy’’ (i.e., x–
y) plane) looks exactly like that for the isotropic model (Fig. 2). Indeed, any slice
with fixed /~q looks qualitatively like that figure, although, as /~q ! p

2
(i.e., as ~q?,

the projection of ~q orthogonal to y, approaches orthogonality to the x-axis), the
sound velocity profile becomes two circles with their centers on the y axis and both
circles passing through the origin.

The dampings ��ð~qÞ in (98) are 0 (q2), and given by

��ð~qÞ ¼ �
c�ðh~q;/~qÞ
2c2ðh~q;/~qÞ

ðCvð~qÞ þ Cqð~qÞÞ �
v0 cosðh~qÞ
2c2 h~q;/~q

� � Cvð~qÞ þ
c
v0
Cqð~qÞ


 �
. ð101Þ

Note that, unlike the isotropic problem in d > 2, here there are no transverse
modes in any d: we always have just two longitudinal Goldstone modes associated
with dq and vx.

We can now again parallel our treatment of the isotropic model and calculate the
correlation functions and propagators. The calculation is so similar that we will not
repeat the details, but merely quote the results:

Cvvð~q;xÞ ¼
D½ðx� voqyÞ

2 þ C2
qð~qÞ�

jDen ~q;xð Þj2
; ð102Þ

Cqvð~q;xÞ ¼ hdqð~q;xÞvxð�~q;�xÞi ¼
Dr1qxðx� voqy � iCqð~qÞÞ

jDenð~q;xÞj2
; ð103Þ

and

Cqqð~q;xÞ ¼
Dq2

0q
2
x

jDenð~q;xÞj2
; ð104Þ

where we have defined

Denð~q;xÞ ¼ ðx� cþðh~q;/~qÞqÞðx� c�ðh~q;/~qÞqÞ þ i½xðCqð~qÞ þ Cvð~qÞÞ
� qyðvoCvð~qÞ þ cCqð~qÞÞ� ð105Þ

which, of course, implies



jDenð~q;xÞj2 ¼ ðx� cþðh~q;/~qÞqÞ
2ðx� c�ðh~q;/~qÞqÞ

2 þ ½xðCqð~qÞ

þ Cvð~qÞÞ � qyðvoCvð~qÞ þ cCqð~qÞÞ�2. ð106Þ

These horrific expressions actually look quite simple when plotted as a function of x
at fixed ~q; indeed, such a plot of Cvv looks precisely like Fig. 3: two asymmetrical
peaks, centered at x ¼ c�ðh~q;/~qÞq, with widths ��ð~qÞ / q2.

Note that, at this linear order, everything scales as it did in the isotropic problem:
peak positions �q, widths �q2, and heights / 1

q4.
Continuing to blindly follow the path we trod for the isotropic problem, we can

calculate the equal-time vx � vx correlation function

Cvvð~qÞ � hvxð~q; tÞvxð�~q; tÞi ¼
Z 1

�1

dx
2p

Cvvð~q;xÞ ¼
D
2

Uðq̂Þ
CLð~qÞ

; ð107Þ

where Uðq̂Þ depends only on the direction q̂ of ~q, and is given by

Uðq̂Þ � 1

c2 h~q;/~q

� �
q

ðcþ h~q;/~q

� �
q� voyqyÞ

2

cþðh~qÞq� voyqy þ cþðh~qÞq� k1voyqy
� � Cq

CL

"

þ
ðc� h~q;/~q

� �
q� voyqyÞ

2

cþ h~q;/~q

� �
q� voyqy þ c�ðh~qÞq� k1voyqy

� � Cq

CL

#
. ð108Þ

These fluctuations again diverge like 1/q2 as j~qj ! 0, just as in the isotropic
problem.

This completes our abbreviated discussion of the linearized theory of the aniso-
tropic model. The most succinct summary of this linearized theory is that everything
scales just as it did in the isotropic problem. This implies that the nonlinearities (i.e.,
the k and r2 terms in the equations of motion (92)) become relevant in and below the
same upper critical dimension duc = 4 as in the isotropic problem. For d < 4, there-
fore, these nonlinearities will change the long-distance behavior of the anisotropic
model. We will now treat these nonlinearities using renormalization group argu-
ments similar to those we used for the isotropic model in d = 2. Now, however, they
will work for all d between 2 and 4.

Notice that all of the nonlinearities in (92) are total x-derivatives, just as in the
d = 2 case for the isotropic problem. Now, however, this is true in all spatial dimen-
sions, not just in d = 2. (This, of course, is the reason we chose to consider precisely
two ‘‘soft’’ components.) Thus, we will now be able to derive exact exponents in this
model for all spatial dimensions. We will not go through the arguments in detail, as
they are virtually identical to those in the d = 2 case for the isotropic model, but will
simply quote the conclusions:

1. There are no graphical corrections to any of the diffusion constants in (92) except
Dx.

2. The stable fixed point that controls the ordered phase must have k
q 6¼ 0 at least for
k(0) < kq (0), which is a finite fraction of all flocks, and

3. D and kq are not graphically renormalized.



Point one suggests that, in constructing our dynamical renormalization group for
(92), we should scale the x-direction differently from both the y-direction and the
d � 2 hard directions. Furthermore, since both the y-direction and the d � 2 hard
directions are alike in having their associated diffusion constants unrenormalized,
we should scale these directions the same way. Therefore, in our renormalization
group, we will rescale as follows: x fi bx, ðy;~xHÞ ! bfðy;~xHÞ, tfi bzt. With these
rescalings, the recursion relations for Di, i „ x, q, D, and kq become:

dDi

dl
¼ ðz� 2fÞDi; ði 6¼ xÞ; ð109Þ

dD
dl

¼ ½z� 2vþ ð1� dÞf� 1�D; ð110Þ

dkq
dl

¼ ðvþ z� 1Þkq. ð111Þ

All three relations are exact, since none of these parameters experiences any graph-
ical renormalization. As in the isotropic case, we want all of these parameters to flow
to fixed points; this leads to three exact scaling relations between the three exponents
v, z, and f:

z ¼ 2f; ð112Þ

z� 2vþ ð1� dÞf ¼ 1; ð113Þ

v ¼ 1� z; ð114Þ
whose solution is easily found in all d < 4:

f ¼ 3

7� d
; ð115Þ

z ¼ 6

7� d
; ð116Þ

v ¼ 1� d
7� d

. ð117Þ

Note that these reduce to our isotropic results in d = 2, as they should, since the two
models are identical there. They also reduce to the harmonic values z = 2, f = 1, and
v = �1, in d = 4, as they should, since 4 is the upper critical dimension.

In the physically interesting case of d = 3, we obtain:

f ¼ 3

4
; ð118Þ

z ¼ 3

2
; ð119Þ

v ¼ � 1

2
. ð120Þ



As in the isotropic case, we can use scaling arguments here to show that the effect of
the nonlinearities can be fully incorporated by simply replacing Dx everywhere it ap-
pears in the linearized expressions by the divergent, wavevector-dependent scaling
form:

Dxð~qÞ ¼ qz�2
x f

qy
K

� �
qx
K

� �f ;
qH
K

� �
qx
K

� �f
" #

. ð121Þ

Doing this leads to all of the scaling laws for this anisotropic problem.
5. Active nematics on a substrate: giant number fluctuations and anomalous long-time

tails

As we said in Section 1, uniaxial orientational order, whether in active or in pas-
sive suspensions, can be of two qualitatively different kinds, namely nematic, i.e.,
apolar, defined by a nonvanishing traceless symmetric tensor order parameter (with
a single independent component when diagonalized, for the uniaxial case) and vec-

tor, that is, polar, defined by the nonvanishing of a vector order parameter. On sym-
metry grounds [39], a vector-ordered nonequilibrium steady state should have a
nonzero macroscopic drift velocity ~v0, while for true nematic order ~v0 ¼ 0. One
can therefore take the order parameter for the vector-ordered phase to be the mean
swimming velocity of the self-propelled particles themselves, as we did in Section 2
and [14–16]. A phase with nematic symmetry has no mean drift velocity and in this
sense is not ‘‘self-propelled,’’ i.e., it is not like the boids that we have discussed so far
in this review or that the initial work in this field was concerned with. One might
imagine that such a phase has no distinctive nonequilibrium properties, since a phase
that is not drifting on average does not have an order parameter that breaks time-
reversal symmetry. We show [21] that this naive expectation is wrong, and that cer-
tain dynamical processes allowed by the spatial symmetry of the system but ruled out
by the requirements of thermal equilibrium, introduce remarkable features in the sta-
tistical behavior of active nematics. We also suggest systems where our predictions
could be tested in the laboratory.

The work summarized in this section and presented in [21] makes two striking pre-
dictions.

(i) A region of an active nematic containing on average N particles, should show
huge number fluctuations, with a standard deviation rN � N1/2+1/d in d space dimen-
sions, for N fi 1, in the entire active nematic phase. For a two-dimensional system,
in particular, this means that rN � N, a standard deviation scaling as the mean. This
is overwhelmingly larger than that expected for any thermal equilibrium system
where, for any system with a finite compressibility, i.e., for any system away from
a critical point, rN � N1/2 for large N.

(ii) Velocity autocorrelations of a tagged particle decay anomalously slowly as
functions of time t, as t�d/2 for space dimension d P 2. Again by contrast, in thermal
equilibrium systems, such a slow long-time tail [40] occurs for tagged diffusion at



thermal equilibrium in bulk fluids, where momentum conservation dominates, not in
our systems which are confined to a substrate. The solid substrate acts as a sink for
momentum, so that momentum–density fluctuations are fast, not hydrodynamic
[41]. These predictions should be straightforward to test in experiments, by analyzing
real-space, real-time images of nematic phases of amoeboid cells [9] or agitated layers
of granular rods [22], which we discuss below.

The results summarized above show that nematic phases of rod-like powders can-
not be described by an effective equilibrium statistical mechanics with a noise temper-
ature. Active nematics are qualitatively different from their thermal equilibrium
counterparts. That some monodisperse isotropic granular systems (ping-pong balls)
[42] and sheared fluids [43] apparently show effective equilibrium behavior tells us
that fluxes induced by distortions of broken-symmetry phases detect ‘‘nonequilibri-
umness’’ better than those in isotropic systems.

The motivation for considering active nematics comes also from recent experi-
ments [9,22] that find such phases in collections of driven particles. These two works
study two very different physical systems—collections of living cells of various types
[9] on a glass surface, and vertically vibrated layers of granular rods [22]. The cells
involved in the experiments of [9] include melanocytes,the critters that carry human
skin pigment, adipocytes (fat cells), fibroblasts (cells which form connective tissue),
osteoblasts (bone cells), and granulocytes (a type of white blood cell). The first four
of these, under normal circumstances, are fore-aft symmetric and thus form apolar
nematic phases, while granulocytes show polar behavior, although the experimental
evidence for long-ranged polar order is sparse. In [22] nematic order is discussed with
polar structures forming in the nematic-isotropic interface: since the nematic and iso-
tropic domains consist, on average, of horizontal and vertical particles, respectively,
the interfacial region contains tilted particles. If these are all tilted in the same direc-
tion, as happens in the experiments of [22], there is local polar order and hence a non-
zero drift velocity. Note that the cells involved in the experiments of [9] are tens to
hundreds of micrometers in length, and the rods in [22] are 6 mm long. Thus, thermal
motion plays no role in the dynamics of these particles; the noise in these systems is
nonequilibrium in origin, arising from biological activity in one case and collisions
and mechanical shaking in the other.

Why do we treat living cells and dead granular rods on the same footing? We re-
marked in Section 1 that an active particle can be thought of, mechanically, as an
object endowed with an internal degree of freedom (a motor) which, when fed energy
from an external source, executes some kind of cyclical motion resulting, via physical
couplings, in a displacement of its center of mass. The dynamical behavior of mela-
nocytes, for example, involves rhythmic movements of the cell body and of two long
projections called dendrites which appear to be responsible for the inter-cell interac-
tion and the level of fluctuations [9]. It is clear from this point of view why a living,
shape-changing cell is an active particle, but what is the internal coordinate in the
case of granular rods? A little thought will show that it is the tilt of the rod away
from the horizontal. This has been analyzed in detail by numerical studies in [44].
Consider one rod in the granular layer, lofted by agitation of the solid surface on
which it lies. When the rod descends, the two ends will in general not make contact



with the surface at the same instant. As a result of static friction at the point of con-
tact, the rod will be impelled forward (generally towards the end not yet in contact
with the surface [44]). Experiments on agitated granular particles show also that [22]
an agitated layer of particles with a systematic tilt in one direction behaves macro-
scopically like a polar-ordered phase, with a mean nonzero drift velocity, and [45]
that a single, intrinsically asymmetrical granular particle moves systematically in a
direction determined by its orientation. Orientationally ordered phases of particles
on an air-table—a generalization of the work of [42] to the case of rod-like particles,
for example—would also obey our model. Although there might be complications
arising from the periodic array of air-holes, these will probably be unimportant if
the array spacing is much smaller than the particle size.

Before we construct the equations of motion for the dynamics of an active apolar
nematic, a few remarks are in order regarding the theoretical analysis in [22,9] and in
a related work [46]. Ref. [9] measures global nematic order parameters and shows
striking images of classic strength—1/2 disclinations in melanocyte nematics, but at-
tempts to fit the system into an essentially equilibrium framework which, we show
below, misses some rather interesting physics. In [22,46] the emphasis is entirely
on the polar nature of macroscopically tilted regions. Accordingly, they account
for the observations of [22] through a model closely related to that of [14–16]. In
addition, none of the papers mentioned above discusses, experimentally or theoret-
ically, the statistics of fluctuations, choosing instead to consider only average prop-
erties.

Already from the work of [14–16] discussed in the preceding sections, we know
how to modify the equations of classical multicomponent spin models to describe
the case where the ‘‘spin’’ order parameter in question is actually the local velocity
of a flock, and where momentum conservation plays no important role since the mo-
tion takes place on a substrate which acts as a sink for momentum. Let us now use
arguments in the same spirit to derive the most general equations of motion for the
case where the order parameter is instead the traceless symmetric tensor describing
apolar nematic order, retaining all relevant terms allowed by symmetry. Our aim
is to discover universal experimentally measurable properties, which would distin-
guish an active nematic from its thermal equilibrium counterpart. Our equations
and the predictions that flow from them should apply to any system of active nem-
atogenic particles on a substrate or confined between two surfaces, including the two
we have mentioned above in this section.

After that prolonged preamble, we construct our equations of motion.
Since we are working within a given phase, the nematic, and not at a continuous

phase transition, the slow variables for our problem are (i) the local densities of con-
served quantities and (ii) the broken-symmetry modes (which become continuous
symmetry transformations in the limit of zero wavenumber). Since the solid sub-
strate on which our active particles live is a momentum sink, the only conservation
law of consequence is that for the number of particles. A description valid at suffi-
ciently long length- and timescales [47] needs then to include only the concentration
field c (r, t) of particles and the traceless symmetric orientational order parameter ten-
sor Q with components Qij (r, t) at point r and time t. For uniaxial nematics, to which



we restrict our attention here, we can write, in d space dimensions,
Q ¼ ½n̂n̂� ð1=dÞI�S, where the unit vector n̂ is the director field specifying the local
axis of orientation, I is the unit tensor, and the amplitude S, the conventional scalar
order parameter [18], measures the degree of order. For convenience in deriving the
equations of motion, we introduce a fast variable, the velocity field~vðr; tÞ of the par-
ticles, which we will later eliminate in favor of the slow variables, by going to long
timescales. Number conservation states

oc
ot

¼ �$ � j; ð122Þ

where j ¼ c~v is the number current. Newton�s second law for the local momentum
density mj, where m is the mass of a particle, gives

m
oj

ot
¼ �C~v� $ � rþ fR ¼ �C~v� wo$c� w1$ � ðQcÞ þ fR ð123Þ

up to bilinear order in the fields. In (123) the C term, representing friction with the
substrate, is the momentum sink, and the stress tensor r contains the (momentum-
conserving) effect of interparticle interactions, the w0 term in particular being the
analogue of an osmotic pressure, fR is a random, nonconserving, spatiotemporally
white Gaussian noise, not in general of thermal origin, and the w1 term, unique to
this driven system, says that inhomogeneities in the nematic order drive mass mo-
tion.

How does this last term arise? First, in any system, by definition, inhomogeneities
in r produce local acceleration. The w1 term in (123) is novel because it implies a con-
tribution to r proportional to the nematic order parameter. For the present, let us
accept such a term simply because symmetry allows it. In [19], as we will discuss
in more detail in the next section of this review, we show that this form can be ob-
tained by starting with a microscopic description of an active particle as a permanent
force dipole. Terms of the form of the w1 term are ruled out in thermal equilibrium

nematics since the stress tensor there must be derived from functional derivatives
of the free energy, which leads ultimately to a stress r which depends on derivatives

of n̂. Such terms, although present in active nematics as well, are clearly subdomi-
nant in a gradient expansion to the w1 term in (123) and will thus be ignored in
our long-wavelength theory. Since we are considering active (i.e., nonequilibrium)
nematics, we are liberated from the constraint linking r to functional derivatives
of a rotation-invariant free-energy functional. Hence, the only constraint on allowed
terms is rotation invariance of the equations of motion, which (123) respects since it
is tensorial in form, both r and Q being symmetric second rank tensors.

Let us now consider small-amplitude, long-wavelength fluctuations about the uni-
axial nematic phase, aligned along the z axis, denoting vector components in direc-
tions normal to z by the subscript ^, assuming we are deep in the nematic phase so
that S can be treated as constant, and considering spatial variations
c (r, t) = c0 + dc(r,t) about the mean concentration c0 and nðr̂; tÞ ¼ ẑþ dnðr; tÞ about
perfect alignment. Since n̂ is a unit vector, we need consider only the transverse com-
ponents dn^.



The equation of motion for n̂ [19], which is identical in form to that for an equi-
librium nematic, reads, to linear order

otdn̂? ¼ kþoz~v? þ k�$?vz þ K1$?ð$? � dn?Þ þ K2r2
?dn? þ K3d

2
zdn? þ f?.

ð124Þ
Here k± = (k ± 1)/2; k is the ‘‘flow alignment parameter,’’ familiar from equilibrium
nematics, which affects the response of the nematic director to shear, and the noise f^
is delta-correlated in space and time

hf?iðr; tÞf?jðr0; t0Þi ¼ dijDnd
dðr� r0Þdðt � t0Þ. ð125Þ

On long timescales we can neglect motj relative to C~v in (123), which allows us to
treat (123) as a constitutive relation determining ~v in terms of the slow variables
yielding, to linear order

~v ¼ �aðozdn̂? þ ð$? � dn̂?ÞẑÞ � c1$?c� c2ozcẑþ
fR

C
; ð126Þ

where a and ci are related to co, S, and the coefficients in (123). Inserting (126) into
(122) gives, to linear order in fluctuations, the concentration equation of motion

odc
ot

¼ ðDzo
2
z þ D?r2

?Þdcþ 2c0aozð$? � dn?Þ þ $ � fc; ð127Þ

where the noise fc and coefficients in (127) are determined by those in (123) and (126).
The linear couplings to the director in (127), a strictly nonequilibrium effect, are cru-
cial to the analysis here, as we shall see.

The director dynamics obtained by inserting (126) into (124) is given to linear or-
der by

odn?
ot

¼ ðKzo
2
z þ K?r2

? þ K 0
L$?$?�Þdn? þ Dcnoz$?dcþ f?; ð128Þ

where, again, the phenomenological parameters and noise source f^ come from cor-
responding terms in (123)–(126).

Non-linearities such as $? � ðozdn?dcÞ and $?$? : ðdn?dn?Þ are permitted in (127),
and similarly ozdn?ð$? � dn?Þ, dn?ozð$? � dn?Þ will in general arise in (128). Their ef-
fect remains to be sorted out in detail.

Non-linearities like the last two arise in thermal equilibrium nematics as well [48],
but with prescribed relations between their coefficients because they come from dif-
ferentiating anharmonic terms in the Frank free energy. Specifically in dimension
d = 2 where the director fluctuation is a single angle field h, the quadratic nonlinear-
ities in the equation of motion of a thermal equilibrium nematic take the form
(K1 � K3) [oxhozh � oxoz(h)

2] where K1 and K3 are the splay and bend Frank con-
stants. These nonlinearities contain the seeds of their own destruction: in d = 2 they
give rise to fluctuation corrections to K1 and K3 which initially grow logarithmically
in space dimension d = 2 as wavenumber is decreased. This growth ultimately drives
the system towards a one-Frank-constant nematic, so that the strength K1 � K3 of
the nonlinearity is driven to zero. On asymptotically large scales, therefore, the



Frank constants are finite and equal in thermal equilibrium nematics. The argument
that two-dimensional nematics have only quasi-long-range order thus remains unaf-
fected when the renormalization of the elastic constants is taken into account.

In active nematics these nonlinearities are not constrained to arise as the variation
of a scalar functional. Preliminary results on the role of such nonlinearities in active
nematics [49] suggest that they are marginally relevant in dimension d = 2 in active
nematics. Whether they result in true rather than quasi-long-range order in
active nematics remains to be determined. The nonlinearities mentioned above
and, more important, the concentration field itself, are absent in the treatment of
Gruler et al. [9]. In what follows we stick to a strictly linearized treatment, and show
how the effect of the director field on the concentration field leads to our most
striking nonequilibrium effect, namely, giant number fluctuations.

Wenow linearize the equations ofmotion and look at themode structure they imply,
with an eye on possible instabilities, and then extract the statistics of small fluctuations.
Let us considermodes that go as exp (iq.r � ixt), andwork in terms of theFourier com-
ponents dc (q,x) of the concentration, fLðq;xÞ � q̂? � f?; fT ¼ f? � q̂?ðq̂? � f?Þ of the
noise and dnLðq;xÞ � q̂?ðq̂? � dn?ðq;xÞÞ and dnT ” dn^ � dnL of the director, the sub-
scripts L and T, respectively, denoting the components of f^ and dn^ along and trans-
verse to q̂?. We can then rewrite (127) and (128) as:

½�ixþ Dcðq̂Þq2�dcðq;xÞ þ 2c0aqzq?dnLðq;xÞ ¼ iq � fcðq;xÞ; ð129Þ

Dcnqzq?dcðq;xÞ þ ½�ixþ KLðq̂Þq2�dnLðq;xÞ ¼ fLðq;xÞ; ð130Þ

½�ixþ KTðq̂Þq2�dnT ¼ fT; ð131Þ
where Dcðq̂Þ � Dzq̂

2
z þ D?q̂

2
?;KLðq̂Þ � Kzq̂

2
z þ ðK? þ K 0

LÞq̂
2
? and KTðq̂Þ � Kzq̂

2
z þ

K?q̂
2
?are direction-dependent diffusivities, whence it is straightforward to see that ac-

tive nematics have d � 2 degenerate diffusive modes (i.e., none, in two dimensions)
from nT, with frequencies xT ¼ �iKTðq̂Þq2 and a pair of coupled concentration-splay
modes with x� ¼ �iC�ðq̂Þq2, where

C�ðq̂Þ ¼
1

2
Dcðq̂Þ þ KLðq̂Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcðq̂Þ � KLðq̂Þð Þ2 þ 8c0aDcnq̂

2
?q̂

2
z

q� �
. ð132Þ

This mode structure should be seen in contrast with that found [14–16] in Section 2
for polar ordered phases, where the interplay of the splay and concentration fields in
the absence of n̂ ! �n̂ invariance gave rise to propagating wavelike excitations with
a complicated direction-dependent wavespeed. For some ranges of parameter values
the eigenfrequencies we have just derived can have a positive imaginary part, imply-
ing a linear instability of the uniform nematic. We shall assume linear stability,
which can be seen to be assured if the Kis and Dis are positive and c0a Dcn is not
too large.

With these eigenfrequencies in hand, it is straightforward to solve (129)–(131) for
dc, dnL, and dnT, autocorrelate these using the known statistical properties Eq. (125)
for the random forces, and integrate over frequency to find the equal-time correla-
tions of the fields. Unsurprisingly, we find that the variance of director fluctuations



grows as 1/q2 at small wavenumber q (see [21] for details). Remarkably, as we have
mentioned above, this leads to a similar divergence

c0SðqÞ �
Z

ddr

ð2pÞd
e�iq�rhdcð0; tÞdcðr; tÞi ¼ ð2c0aq?qzÞ

2Dn

F ðq̂Þq6 / 1

q2
ð133Þ

in the static structure factor S (q) for concentration fluctuations, where

F ðq̂Þ � 2ðDcðq̂Þ þ KLðq̂ÞÞ½Dcðq̂ÞKLðq̂Þ � 2c0aDcnq̂
2
?q̂

2
z �. ð134Þ

This implies colossal concentration fluctuations at small q, diverging as 1/q2 in the
entire nematic phase, comparable only to thermal equilibrium systems at a critical
point where where the compressibility diverges as q fi 0, i.e., in real space, as L2

for a system of linear dimension L. An additional feature in the systems of interest
here is that the singularity is strongly direction-dependent, vanishing both along and
perpendicular to the ordering direction, but nonvanishing for all directions in be-
tween. We have not considered what this means for response functions in the driven
systems of interest; it is not completely obvious how to formulate this, since response
functions require for their definition an underlying Hamiltonian, which one would
need to identify for each physical realization of active nematics. Regardless of the
relation between response and correlation, it is an identity that

Sðq ! 0Þ ¼ hN 2i � hNi2

hNi

" #
N!1

. ð135Þ

We see thus that (133) implies that the standard deviation rN / N
1
2þ

1
d and in partic-

ular for d = 2, as claimed earlier in this section, we see that rN � N, standard devi-
ation proportional to the mean.

An effect as large as this should be measurable in experiments on active nematics,
and would be a striking signal of their nonequilibrium nature. Two notes of caution
should accompany this prediction, however. First, experimental realizations of
nematics, active or otherwise, generally require quite a high particle concentration.
Detecting concentration fluctuations in such dense systems could require going to
very large system sizes (recall that the predictions we have made above are asymp-
totic results for large N). Second, our mechanism for giant fluctuations is in similar
in spirit to the work of Das et al. [50] on particles sliding downhill on fluctuating sur-
faces with an invariance under uniform translations of the height field h. In active
nematics, orientational fluctuations are soft and slowly relaxing because of sponta-
neously broken rotation-invariance; in the surface problem, the symmetry of
h fi h+ constant means that the height field is a broken-symmetry mode. If we were
to carry out a simple linearized analysis of concentration fluctuations in the problem
of [50], about a state with uniform concentration and height, we would find giant
concentration fluctuations with a divergent structure factor. The treatment of [50]
shows that the system is actually unstable to coarsening, and the true statistical stea-
dy state at infinite time is one with a delicate kind of macroscopic phase separation.
It is unclear whether that is what must ultimately happen in active nematics too.
There is an important difference between the two cases: the particle velocity in the



problem of [50] is proportional to $h, whereas in the active nematic it is has in gen-
eral a nonzero curl.

We turn next to tagged-particle motion in an active nematic. It is clear from Eq.
(126) that, roughly speaking, the velocity _R of a tagged particle with position R (t) at
time t is a sum of contributions proportional to the values of $c and $ �Q in its
vicinity. As we have seen above, both c and Q have diffusive dynamics and structure
factors that grow as 1/q2 at small wavenumber q. On long timescales their effect will
thus dominate purely noise driven motions of the particle. This means the tagged-
particle velocity autocorrelation has contributions schematically of the form

h _Rð0Þ � _RðtÞi 	 h/ðRð0Þ; 0Þ/ðRðtÞ; tÞi; ð136Þ
where / denotes $c or $ �Q. Using the static and dynamic correlation functions dis-
cussed above for the concentration and nematic order parameter fields, and the fact
that, for a diffusing particle, Æ|R (t) � R(0)|2æ � t, it is easy to see that velocity auto-
correlation function (136) decays as �ddqexp(�q2t) 	 t�d/2, as claimed earlier. Strictly
speaking this analysis is internally consistent only for dimension d > 2, since it is only
then that the long-time tails can be integrated to yield a finite diffusivity. In two
dimensions both tails and diffusivities will acquire multiplicative logarithmic correc-
tions.

No experiments have yet been done to test the predictions of [21] outlined here,
although several groups [23,24] are currently studying mesophases in granular rods.
6. Mode structure and instabilities of ordered active suspensions

6.1. General considerations and summary of results

Thus far, we have treated our active or self-propelled particles (SPPs) as moving
through a passive frictional medium. Implicitly, of course, the microscopic origin of
some of the nonequilibrium terms lies in the interactions of the active particles with
the medium, as discussed in [45] and in the section on active nematics on a substrate.
But dynamical degrees of freedom corresponding to excitations of the medium have
not made an appearance up to this point in our review. This is quite all right if one is
describing migratory herds on the earth�s surface, or experiments on thin layers of
active particles on a solid substrate. However, it clearly leaves out a slow variable,
the total momentum density of the particles plus the medium, in the case of fish
or swimming bacteria. An interesting variant, which we shall not discuss here, is
when the active particles are confined to the surface of a fluid medium, while their
motion generates fluid flow in its bulk. In all these case, active particles speed up
or slow down by exchange of momentum with the ambient fluid, leading to the
well-known hydrodynamic interaction, viscous or inertial, between widely separated
particles. This effect is in principle present, although perhaps weak, in birds flying
through the air as well. In this section, we therefore survey such suspensions, ordered
or disordered, of active particles in a fluid medium, and show how the inclusion
of momentum-conserving, hydrodynamic flow into the analysis of active-particle



systems introduces important qualitative departures from the behavior presented in
the preceding sections of this review.

The problem of the individual and collective swimming of organisms has long at-
tracted the attention of fluid-dynamicists [51–53], However, we know of no work
apart from [19,20] which attempts a general theory of ordered states and fluctuations
therein in the context of active particles suspended in a fluid. Part of the motivation
the work in [19,20] came from an original experiment [54] on correlated bacterial
swimming in a freely suspended fluid film, which we will discuss briefly at the end
of this section, along with more recent experiments [55].

The main results of the analysis of [19,20] illustrate the crucial role of the hydro-
dynamics of the ambient fluid medium.

(A) If the role of viscosity is ignored, as should be the case for inertia-dominated
swimmers like fish, then the analysis of [19] predicts that apolar, purely nematic order
in active suspensions is always destabilized at small enough wavenumber q, by a cou-
pled splay of the axis of orientation and a corresponding Taylor–Couette-like circu-
lation of the velocity field, oriented near 45� to the nematic axis, with a growth rate
linear in q. Recall, by contrast, from Section 5 and [21] that, for active nematics on a

substrate, parameter ranges could always be found within which the phase was
dynamically stable. Small fluctuations about a state with polar order in an active sus-
pensions travel as propagating waves, with a most elaborate dispersion relation (see
[19]), as a result of the interplay of hydrodynamic flow and the concentration with
bend, twist and splay of the director field. Again, there is an important qualitative
difference between these results and those obtained for polar-ordered phases of ac-
tive particles on a substrate [14–16], as discussed in Section 2.3, where bend and twist
displayed an overdamped rather than a propagating character.

(B) Bacterial suspensions are one natural testing ground for ideas on active-
particle systems. The appropriate dynamical regime for these ubiquitous systems
is the Stokesian limit where viscous damping is dominant and inertia and accel-
erations are ignored. In this important limit, it was shown in [19] that a suspen-
sion in a state of uniform polar order, with nonzero mean drift velocity ~v0, is
always unstable for wavevectors q oriented near 45� to the ~v0, with a growth rate
	v0/a, for particles of size a, for Re � qa � /1/2, where / is the volume fraction
of particles, and Re is the Reynolds number evaluated at the size of a particle.
The instability is ‘‘convective’’: it travels with a speed 	v0 as it grows. This result
tells us that collections of coherently swimming bacteria cannot exceed a certain
size 	a/�1/2. It is likely that this instability has been seen in [55], although the
latter do not make a quantitative comparison between their observations and
the predictions of [19].

(C) Isotropic suspensions of active particles are of interest for their rheology
[56,57], i.e., the response to imposed shear, and for the huge noise temperature they
display [54]. Ref. [20] offers a framework to understand these phenomena, account-
ing for the large apparent temperature, predicting, as a result, hydrodynamic long-
time tails with a greatly enhanced amplitude, and arguing that as the relaxation time
for orientational order increases, active suspensions should display viscoelasticity of
the sort seen near translational arrest in equilibrium systems.



Lastly, number fluctuations in polar-ordered SPP suspensions are also shown to
be anomalously large. The purely linearized analysis in [19] predicts precisely the
same divergence as in active nematics on a substrate (Section 5 and [21]), viz.
The variance Æ(dN)2æ in the number of particles, scaled by the mean N, is predicted
to diverge as N2/d in d dimensions. This result is likely to be altered in detail
once nonlinear fluctuation effects are included, as in [14–16] for polar ordered sys-
tems without fluid flow. Such an analysis has not yet been carried out for active
suspensions.

6.2. Equations of motion, modes, and instabilities

The equations of motion from which these results follow are straightforward to
construct. We begin by identifying the slow variables. The local densities of con-
served quantities in an active suspension are the coarse-grained number density
c (r, t) of active particles and the total (solute + solvent) momentum density
g (r,t) ” qu (r, t), where we take q, the mass density of the suspension as a whole—
particles plus fluid—to be constant since the flows in question are far slower than
the speed of longitudinal sound, and u is the hydrodynamic velocity field. The bro-
ken symmetry variables, that is the director components dn^ perpendicular to the
mean ordering direction ẑ, in uniaxial nematic or vector ordered phases have al-
ready been discussed above in Sections 2 and 5. We use the same notation as in
those sections. The nematic phase is a traceless symmetric second-rank tensor
Q (r, t); Qij � ninj�(1/3)dij where n̂ is the unit director field. In the ordered phase
ÆQ(r,t)æ ” Q0diag (�1,�1,2), Q0 „ 0. The presence of order in the vectorial phase
is indicated by a Galilean-invariant order parameter, the nonzero average drift
velocity h~vðr; tÞi ¼ ð0; 0; v0Þ relative to the fluid. Fluctuations about the vector or-
dered state are expressed in terms of the director field as~v ¼ ð0; 0; v0Þ þ v0dn?. When
constructing the equations of motion we must keep in mind that the polar-ordered
state lacks the n̂ ! �n̂ invariance of the nematic.

We use once again the general principle that the nonequilibrium conditions oblige
us to consider all terms not explicitly forbidden by symmetry or conservation, and
that all invariances are to be imposed directly on the equations of motion, with
no ad hoc assumptions about the existence of a free-energy functional. We impose
a priori no relations amongst the phenomenological parameters other than those de-
manded by purely geometrical symmetries. The equations of motion follow quite
simply from these considerations.

For the polar-ordered case, the director field obeys an equation which combines
features of the equations for polar order on a substrate with the flow-alignment
terms familiar from nematic hydrodynamics

otdn? ¼�k1v0ozdn?�r1$?dcþ
1

2
ðozu?�$?uzÞþ

1

2
c2ðozu?þ$?uzÞþD$$dn?.

ð137Þ
In sequence, the first two terms on the right-hand side of (137), which arise in [14–
16] and the discussion in Section 2, represents advection by the mean drift v0, and



a nonequilibrium ‘‘osmotic pressure,’’ the third and fourth together, absent in [14–
16] and Section 2, are the well-known coupling of orientation to flow [18,58,59] of
nematic hydrodynamics, governed by the phenomenological parameter c2, and play
a central role in this section, and the last term schematically denotes director dif-
fusion.

As in any momentum-conserving system, the momentum density g of particles
plus fluid obeys

otg ¼ �$ � r; ð138Þ
where r is the stress tensor. The distinctive feature of active systems, as we pointed
out in our discussion on active nematics on a substrate in Section 5, is a contribution
to r / n̂n̂� I=d in d dimensions, where I is the unit tensor, arising from the activity
of the particles. We already argued that such a term was inevitable in driven systems
simply because symmetry could not rule it out. Let us see how it arises in a more
microscopic picture. Newton�s third law, that the active particles and the fluid exert
equal and opposite forces on each other. Thus, in the equation of motion for the to-
tal momentum density g, the force density associated with each active particle must
integrate to zero, which means that it can have no monopole moment. Averaging
over the internal motions that lead to activity and self-propulsion, we see that the
simplest model for, say, the ath active particle is a rod with axis n̂aðtÞ, at time t, de-
fined by a pair of equal and opposite point forces of magnitude f on its ends, directed
along �n̂a [19]. Any real active particle will of course have higher multipoles in its
force distribution as well, but the monopole will be absent. In addition real active
particles will not in general be uniaxial, but we restrict ourselves for simplicity here
to uniaxial particles. A collection of uniaxial active particles with centers at ra (t) and
ends (in general asymmetrically disposed about the center) at ra þ an̂a and ra � a0n̂a,
lead to a force density (divergence of stress)

�r � rðpÞ � fðpÞðr; tÞ

¼ f
X
a

n̂aðtÞ½dðr� raðtÞ � an̂aðtÞÞ � dðr� raðtÞ þ a0n̂aðtÞÞ�. ð139Þ

The polar and apolar SPPs we mentioned in Section 1 correspond respectively to
a „ a 0 and a = a 0. For obvious reasons, [20] terms the former ‘‘movers’’ and the latter
‘‘shakers.’’ That this force–dipole picture of active particles is physically reasonable
can be seen by considering, as in [20], a simple model swimmer such as a bacterium
with two flagella. This physical picture is realized as well in bundles of active fila-
ments such as those found in the cytoskeleton [60].

Expanding the delta-functions in (139) about ra gives

f ðpÞ
i ’ � aþ a0

2
frj

X
a

n̂ain̂ajdðr� raÞ þOðrrÞ ð140Þ

leading upon coarse-graining to an active contribution

ra
ijðr; tÞ ¼

aþ a0

2
fcðr; tÞ ninj �

1

3
dij


 �
þOðrÞ ð141Þ



to the deviatoric (traceless symmetric) stress. This justifies in detail the claim that ac-
tive stresses are proportional to the local nematic order parameter. It is interesting
that a and a 0 appear only in the symmetric combination a + a 0 in (141); to leading
order in gradients, movers and shakers have the same active stress and hence the
same far-field fluid flow. A mover swims because the fluid velocity its activity induces
at its own center is nonzero; the corresponding quantity is zero by symmetry for
shakers. This distinction is a property of the near field fluid flow.

Using the stress (141) in the momentum Eq. (138), linearizing, Fourier-transform-
ing in space, writing g = qu, and projecting transverse to the wavevector q to impose
incompressibility ($ Æ u = 0) yields

ou?

ot
¼ �iw0qz I� 2

q?q?
q2


 �
.dn? � i

q2z
q2

aðq?dcÞ þ g$$u?; ð142Þ

where g is a viscosity tensor, I is the unit tensor, and a 	 fa/q and w0 	 c0 a are phe-
nomenological constants proportional to the activity of the SPPs. In (142), nematic
elastic torques [18], which are subdominant at small q, have been ignored, as have
inertial and other nonlinearities. The presence of forces from concentration gradients
(the pressure-like a term) in an incompressible system, and the acceleration propor-
tional to the bend qzdn^, are key features arising entirely because of nonequilibrium
activity.

Expanding the continuity equation otdc = �$ Æ j for the concentration for small
fluctuations about the uniform ordered state, where the current j ¼ cv0n̂ apart from
advection by fluid flow. To leading order this leads to

ðot þ v0ozÞdcþ c0v0r? � dn? ¼ 0 ð143Þ
which contains advection by the mean drift v0 and the nonequilibrium effect of local
splay.

The propagating waves and instabilities mentioned at the start of this section fol-
low from (137), (142), and (143) by considering, once again, disturbances varying as
exp(iq Æ r � ixt), and assuming small wavenumber. Briefly, the coupled dynamics of
bend or twist ð$� n?Þ and vorticity along z, ð$� u?Þ, leads, from (137) and (142) to
‘‘bend-twist’’ waves with wavespeeds

cbtðhÞ ¼ ðc1 � c2Þ cos h; ð144Þ
where h is the angle between the propagation vector and the ordering direction, and
c1 and c2 (of order the drift speed v0 of the SPPs) are phenomenological constants.
The corresponding modes in [14–16] were purely diffusive, thus highlighting the
importance of fluid flow. Taking instead the divergence of (137) and (142) results
in coupled equations of motion for splay $ � n̂?, dilation in the xy plane $ � u?,
and concentration fluctuations dc. The resulting wavelike eigenmodes are a rather
complicated generalization of those seen in the flocking problem on a substrate
[14–16], with wavespeeds determined by the solution to a cubic equation. All that
really matters here is that one can show that there exists a finite range of parameter
values in which the wavespeeds are real in all directions, i.e., that the system is not
inevitably dynamically unstable. The speeds as functions of direction, for typical



Fig. 13. Sketch of the speeds of propagating modes arising from the coupling of splay, concentration, and
the x–y-plane dilation. The speed in a particular direction h relative to the axis of orientation is the
distance from the origin to the curve(s) in that direction.
parameter values, can be found in [19], and are plotted in Fig. 13. In all the above
propagating modes, the damping, for small values of viscosity, is of order q2.

Systems at low Reynolds number, for example bacteria, are an altogether different
story. Their speeds v0 are so low that one is in practice always in the wavenumber
range where gq2 � qv0q. We can then use the Stokesian approximation, where the
velocity field u is determined instantaneously by a balance between viscous and stres-
ses stresses. We can thus discard the acceleration in (142) in favor of the viscous
damping term, solve for u in terms of concentration and director fields, and use this
solution in (137) and (143). This yields effective equations of motion for the coupled
dynamics of splay $ Æ dn^ and dc, leading to an eigenfrequency with imaginary part

CðhÞ 	 Bðc2 cos 2hþ 1Þ cos 2h ð145Þ
with |B| 	 f//a2g 	 v0//a, / being the volume fraction of active particles. Since the
C = 0 for h = p/4, it must be positive (i.e., unstable) just above or just below h = p/4,
depending on the sign of B. The frequency still has a nonzero real part 	 ± v0qcosh:
this is a convective instability, which is seen if one follows the traveling waves. Note
that C is independent of the magnitude of q, as a result of the long-ranged hydrody-
namic interaction in the Stokesian limit. Some algebra will show that for qa J /1/2,
diffusivities of particles and director restabilize the mode, so the instability exists for
Re � qa � /1/2. Thus, if the volume fraction is not too high, there should be a range
of length scales over which vectorial order can still exist in bacterial suspensions.
However, on scales of a few particle sizes, the instability should set in. It appears
likely that this instability has been seen in [55], but a quantitative analysis of their
experiment is awaited.



For discussions of the instability of active apolar nematic suspensions, and for the
statistics of number fluctuations, we refer the reader to [19]. Let us now move on to
the rheology of active suspensions.
6.3. Rheology of isotropic suspensions of active particles

There have been some measurements [56,57] of the dynamic elastic modulus of
living cells, which suggest that active processes do make a qualitative difference to
the mechanical response of matter. Although the processes taking place in a cell
are complicated, from the point of view of rheology their common feature is that
they involve self-generated internal forces, i.e., active stresses as discussed in the
preceding section. Among the agents carrying out such processes in the cell are
motor–microtubule complexes, which have successfully been modeled [61–63] using
equations of motion for microtubule orientation and motor concentration related to
those in [14–16] or [19]. The patterns formed in motor–microtubule extracts [61–63]
suggest a strong tendency towards orientational order, so that the rheology of living
cells should be describable using models such as those of the previous section on
active suspensions, in the isotropic phase but nearing orientational order. We present
only the simplest such approach.

Regardless of whether the particles involved are polar or apolar, the active stress,
as we saw, is proportional to the local apolar order parameter. Let us assume that
the proportionality constant is positive, i.e., the active stress ra = WQ, where the
constantW 	 f c0a, f being the typical force exerted by an active particle on the fluid,
c0 the mean concentration, and a the size of the active size, is primarily a single-par-
ticle property. This relation controls all the novel mechanical properties of active
suspensions. We see from it why an active suspension with long-range orientational
order is different from a passive system of the same symmetry. Both have Q „ 0, but
the passive (equilibrium) phase is an equilibrium liquid despite its orientational or-
der; Pascal�s Law applies to the equilibrium nematic, so that its mean stress is strictly
isotropic. An active suspension with orientational order has a nonzero mean devia-
toric stress, which is a totally nonequilibrium effect. Note: an equilibrium nemato-
genic suspension in the isotropic phase would have a piece of the stress
proportional to dF/dQ, where F is a Landau–deGennes free-energy functional. To
lowest order this goes as aQ where the phenomenological parameter a decreases
as the system nears the transition to orientational order. We include this contribu-
tion in the total deviatoric stress, as well as bare viscous stresses of the form �gA,
where A is the symmetrized strain-rate tensor.

Suppose our active system shows a tendency towards orientational ordering. The
relaxation time and correlation length for the nematic or polar order parameter
might start to grow, but there is no reason for W to vanish (or diverge) as the system
approaches an ordering transition. A plausible phenomenological equation of mo-
tion for Q is

oQ ¼ � 1
Qþ Dr2Qþ k0A; ð146Þ
ot s



where s is a relaxation time, D is a diffusivity proportional, at equilibrium, to the ra-
tio of a Frank constant to a friction constant, k0 is a flow-alignment, and A is the
symmetrized strain-rate tensor. From the preceding discussion, we see that this leads,
for sinusoidally oscillating stresses and strains � exp(�ixt), to

rxyðxÞ ¼ � g0 þ
ðaþ W Þk0
�ixþ s�1

� �
Axy � �G0ðxÞ � iG00ðxÞ

x
iAxy . ð147Þ

Eq. (147) predicts strong viscoelasticity as s increases. Note first that for passive
(equilibrium) systems, W = 0. Since a � s�1 decreases as the system approaches an
ordering transition, G 0 (xs � 1) decreases as k0g0/s. There is not much viscoelasticity
near an equilibrium isotropic–nematic transition. For active systems, as we said, W is
primarily a single-particle property, independent of s and of proximity to the tran-
sition. Thus, as s grows

G0ðxs � 1Þ ’ W ð148Þ
independent of s and, of course, the dynamic range over which elastic behavior is
seen increases. This is classic Maxwell viscoelasticity, normally expected at equilib-
rium near translational not orientational ordering. The ideas on rheology proposed
here have not been tested, although there has been one set of experiments [64] on
optically trapped beads in a bacterial suspension in which the strength of the trap-
ping potential was modulated. It is not obvious how to relate the theoretical devel-
opments in this section to that particular type of modulation, which is quite distinct
from the microrheological measurements of, e.g. [57].

Lastly, in the isotropic phase, in the absence of imposed shear, the active stress
can simply be thought of as an added noise in the momentum Eq. (138). The noise
temperature corresponding to the active stress can be estimated on dimensional
grounds: the variance of ra (k = 0,x = 0) is 	W2n3s, with W 	 gu0/n for active par-
ticles moving with typical speed u0, correlated over a scale n and time s. We can de-
fine the effective temperature by equating this stress variance to kBTeffg. If we take
g 	 gwater = 0.01 poise, u0 to be a bacterial swimming speed 	20 lm/s, and s 	 1 s
(an Escherichia coli run time) we get a noise temperature Teff 	 105–106 K. This is
consistent with the findings of [54]. More remarkably, it will will mean a thousand-
fold enhancement of the t�d/2 long-time tails [40] in the autocorrelation of tagged-
particle velocities.
7. Comparison with past experiments

7.1. Anomalous diffusion near the order–disorder transition

With a fair amount of information accumulating for the flocking models, it is nat-
ural to ask where one can test the predictions from the flocking models against
behaviors of real experimental systems. Even though the theory can be easily moti-
vated by macroscopic flocking systems, such as bird flocks and fish schools, the most
likely systems to test the flocking theory in a controllable fashion are probably



micro-organism where collective behaviors are often observed. In particular, it is
probably easiest to eliminate external aligning fields in bacterial systems, whereas
in fish or birds, ocean currents, winds, the earth�s magnetic field, the sun, etc., are
impossible to get rid of. Bacteria such as E. coli exhibit fascinating collective behav-
ior in liquid media. It has been observed that they form jets and swirls even in the
absence of any external stimulus. How can one characterize and explain such spatial
and temporal collective behavior? Recently, Wu and Libchaber (WL) [54] reported
on a fascinating experiment in which bacteria move freely within a fluid film seeded
with polystyrene beads whose motion was recorded. They studied the dynamics of
these beads as they are moved around by the bacteria, and found superdiffusive mo-
tion (Ær2æ 	 ta with a . 1.5) below some crossover scales tc, ‘c, beyond which normal
diffusion (a = 1) is recovered. For related work, in a three-dimensional geometry, see
[65]. WL interpreted these scales as characteristic of the structures (swirls, jets) that
emerge from the collective motion of the bacteria. A simple Langevin equation with
a force term correlated in time over the crossover scale tc was used to fit the exper-
imental data. Two problems arise from this description: first, the Langevin frame-
work predicts ballistic behavior (a = 2) at short scales, at odds with the nontrivial
exponents recorded in the experiment. Second, no attempt is made to explain the ori-
gin of the collective motion and how/why the crossover scales change with the bac-
teria density q.

In an alternative approach, Grégoire et al. [66] proposed to model the system by
using flocking model for describing the bacteria motion, complemented by a simple
model describing the motion of the passive (polystyrene) beads. In this model, bac-
teria move at discrete time steps with fixed-amplitude velocity v0 along a direction
reflecting the action of two forces: a noisy tendency to align with neighboring objects
within a radius R, and a two-body repulsive force giving them an effective size rb. A
small number of passive beads of radius rB is added. They interact with bacteria via
hard-core repulsion plus some level of entrainment within range R (i.e., they take
part of the neighboring bacteria velocity). The results from this ‘‘passive beads in
a active boids bath’’ model are shown in Fig. 14.

Increasing the bacteria density q, ordered collective motion appears at a value q*.
For q < q*, bacteria motion is characterized by scales which increase as q fi q* (Fig.
14A). The bead motion is directly related to the behavior of the bacteria, as shown
by their respective diffusive properties which both reveal superdiffusion crossing over
at the same timescale tc to normal diffusion (Figs. 14B and C). The characteristic
scales of bead motion are thus given by the collective scales of bacteria motion, as
foreseen by WL, but the short-time behavior of the beads in the flocking model is
superdiffusive, which is more consistent with the experimental data than the simple
Langevin Ansatz.

The density dependence of the crossover scales is also naturally explained by this
model: as q increases, the system is closer to the critical point q*, and the superdif-
fusive behavior persists longer. The range of variation of crossover scales recorded
by WL is small (e.g., the maximum value of ‘c is of the order of rB), this explains
why a linear variation was found to be a good approximation in [54], even though
the scales are expected to diverge at threshold (Fig. 14C). The physical picture



Fig. 14. The flocking model for bacterial bath with passive beads with v0 = 0.3, r0 = 1.0, rb = 0.13, and
rB = 0.38 (for other details, see [66]). (A) Short-time (30 timesteps) trajectories of bacteria (thin lines) and
beads (thick lines) for q < q* in a system of size 32 · 32; (B) mean square displacement Ær2æ versus time for
bacteria (solid lines) and beads (dashed lines) for q = 2,3, 3.5 < q* . 4.2; (C) q-variation of tc (squares)
and ‘c (triangles) and diffusion constant D = limtfi1dÆr2æ/dt (s); (D) superdiffusion at q = q* with
exponent a. 1.65 ± 0.15.
emerging from the flocking model is rather simple. As the density of bacteria in-
creases, the aligning interaction between cell motion becomes stronger, and bacteria
form finite clusters that move coherently for a finite time before they dissolve into the
random background; the polystyrene beads join and leave these coherent dynamical
structures passively and, as a result, follow a motion composed of random steps of
various sizes (Levy flight), leading to a nontrivial superdiffusive behavior up to a
timescale set by the coherent structures of the bacteria cells.

Even though phenomenologically the results from the flocking model are consis-
tent with the superdiffusive scaling behavior and its density dependence, the mecha-
nism for the required velocity alignment interaction is totally unknown. To form
coherent structure, such as swirls and jets, there has to be intercellular interactions
between bacteria. Whether such interaction is mediated chemically (by bacterial



chemotaxis) or physically (through the fluid media) or both remains a very interest-
ing challenge in biology. The readers are reminded to check out the related discus-
sion in Section 5 in the context of a model [19] that includes the hydrodynamics of
the ambient fluid in which the bacteria move. Whether the anisotropic rod like shape
of the E. coli cell plays any role in the alignment of the cells is also an interesting
question. Only when the nature of the cell–cell interaction become clear, can we
know definitively whether flocking model is appropriate for describing the system.

7.2. Pattern formation in finite system: the vortex state

We have so far emphasized the bulk properties of the flocking system. In reality,
however, flocks are finite and boundary effects can be important. One natural ques-
tion is whether interesting spatial patterns, such as the beautiful rings formed by fish
schools, could be explained by the same type of flocking model with finite number
of self propelled particles. We shall focus in this section of the work of [3,4] which
investigates this question both experimentally and theoretically in D. discoideum, the
cellular slime mould. Vortices (concentric circles), asters (radial spokes), and spirals
(a combination of the two) were also displayed in the experiments of Nédélec et al.
[67] on cell extracts containing molecular motors, the microtubules on which they
walk, and ATP to fuel them. Lee and Kardar [61], inspired by the experiments of
[67], formulated a model similar to those of [14,16], for the coupled dynamics of mo-
tor concentration and microtubule orientation. This was extended and crucially im-
proved by Sankararaman et al. [62], who included in particular the pressure term we
discuss in the present paper. Kruse et al. [63] analyze the experiments of [67] in a
framework which includes the hydrodynamic flow of the ambient fluid in the cell,
using a model closely related to that of [19,20], and find that spirals in their model,
as in the experimental systems of [67], are always accompanied by a circulation of
the fluid flow.

We restrict our attention here to [3,4], where Dictyostelium cells were first grown
in liquid media and then placed onto a glass surface with an additional layer of aga-
rose overlaid on the cells, which restrict the cell motion to the plane. It was found
that the cells aggregate and form a two-dimensional round structure (‘‘pancake’’)
in which the cells have organized into a coordinated vortex state rotating around
the center of the pancake. More interestingly, the same behavior was also observed
in a nonsignaling strain of Dictyostelium, in which long-range communication
through cyclic adenosine 3 0–5 0 monophosphate (cAMP) is absent. Thus guidance
through a global variable, such as cAMP, is ruled out as the cause for the organized
rotational motion. Instead the vortex state is most likely the result of self-organiza-
tion due to local cell–cell interactions, analogous to the alignment interaction in the
flocking models.

Indeed, in the accompanying and subsequent theoretical works by the same
group[3,4], the system was modeled as a group of self-propelled cells, whose propul-
sive and adhesive forces both depend on the interactions with neighboring cells. With
proper choice of parameters, the same type of vortex state was observed without the
enforcement of any physical boundary. In the simpler model proposed in their



second paper [4], the model is almost the same as the continuum equations studied in
[14,16] with the pressure term determined by summing over all pairwise boid–boid
interactions of a specific form. The resulting structure is a self-organized annulus,
with a specific density profile, where the boid density drops abruptly to zero at both
the inner and outer boundary of the annulus. The velocity profile is featureless with
its value almost fixed at its preferred value determined by the amplitude of the pro-
pulsion and the friction coefficient.

For the simple Vicsek model with nearest neighbor cohesive force, such a self-
organized vortex state has also been observed [37]. However, it only exists at
parameters near the moving–nonmoving phase boundary, and the rotational direc-
tion of the vortex state only persists for finite time before it changes to the opposite
direction. Several differences between the discrete model used in [4] and the simple
Vicsek model are worth noticing. In [4], the boids have inertia and they do not
change their direction of motion completely according to their neighbor�s moving
directions, whereas the model by Vicsek et al. is overdamped. Perhaps a more
important difference is that the length scale (la) for the specific body forces used
in [4] is much larger than the actual distance between two nearest neighbor boids;
in fact, the thickness of the annulus in the simulation shown in [4] is comparable to
la, which means that essentially all the boids in the system interact with each other.
It would be interesting to understand if and how any of these differences are rel-
evant for the stability of the vortex state. As far as an understanding of the pat-
terns and behavior of finite flocks in concerned, one key challenge, clearly, is
how to formulate the (free) moving boundary problem. In particular, it is crucial
to understand the coexistence of boid-rich and boid-poor regions, the nature of the
interface between them, i.e., the free surface of the flock, and the nonequilibrium
analog of surface tension.
8. Suggestions for future experiments

In this section, we discuss how our theory can be tested in simulations and direct
observations of real flocks. The ‘‘real’’ flocks may include, e.g., artificial self-pro-
pelled particles such as those suggested in [10] or [68] which it should be possible
to build in the laboratory as well as aggregates of genuinely living organisms.

We begin with a few suggestions about the best boundary conditions and param-
eter values for simulations or experiments, and then describe how the correlation
functions and scaling exponents v, z, and f predicted by our theory can be measured.
The most useful boundary conditions are ‘‘torus’’ conditions; that is, reflecting walls
in d � 1 directions, and periodic boundary conditions in the remaining direction, call
it y (see Fig. 15). The advantage of these conditions is that one knows a priori that, if
the flock does spontaneously order, its mean velocity will necessarily be in the peri-
odic (y) direction.

It might be objected that imposing such anisotropic boundary conditions breaks
the rotation invariance our model requires, but this is not, in fact, the case. A ‘‘bird’’
deep inside the box moves with no special direction picked out a priori; it can only



Fig. 15. Illustration of the optimal boundary conditions for simulations and experiments to test our
predictions. The top and bottomwalls are reflecting, while periodic boundary conditions apply at the left and
right walls (i.e., a bird that flies out to the right instantly reappears at the same height on the left). The mean
direction of spontaneous flock motion, if any occurs, is clearly forced to be horizontal by these boundary
conditions. In spatial dimensions d > 2, one should choose reflecting boundary conditions in d � 1
directions, and periodic in the remaining direction, thereby forcing h~vi to point along that periodic direction.
find out about the breaking of rotation invariance on the boundary if the bulk of the
flock spontaneously develops long range order. This is precisely analogous to the
way one speaks of a ferromagnet as spontaneously breaking a continuous symmetry
even if it orders in the presence of ordered boundary conditions.

So, by imposing these boundary conditions, we know the direction of the flock
motion (the y direction in the simulation), and, therefore, have oriented the simula-
tion axes with the axes used in our theoretical discussion; i.e., our i axis equals the
simulation�s periodic direction.

Alternative boundary conditions add the additional complication of having to
first determine the direction of mean flock motion before calculating correlation
functions. This complication is even worse for a finite flock (as any simulation must
treat), since the mean direction of motion will wander, executing essentially a ran-

dom walk that will explore the full circle in a time of order T Flock ¼ 2p
ffiffiffi
N
D

q
. Our re-

sults, which assume a constant direction of flock motion, will only apply for
timescales t � TFlock. Even drifts of the mean flock direction through angles �2p
can cause problems, however, since most of the interesting scaling behavior is con-
centrated in a narrow window of angles qk 	 qf? � q?; i.e., near the direction of
mean flock motion. So this drift greatly complicates the experimental analysis, and
is best avoided by using the toroidal boundary conditions just described.

Of course, it is considerably harder to produce these boundary conditions in a real
experiment. Ants walking around a cylinder may come close, although gravity will
always break rotation invariance on a real cylinder. Perhaps the experiment could
be done on the space shuttle, or with a rapidly spinning cylinder producing artificial
gravity that swamps real gravity, or by using neutrally buoyant organisms in a fluid.
Alternatively, one could use a ‘‘track’’ such as that shown in Fig. 16, and take data



Fig. 16. More practical ‘‘track’’ geometry for experiments on real flocks. Data should only be taken from
the cross-hatched region centered on the middle of the ‘‘straightaway.’’
only from the cross-hatched region, chosen to be in the middle of the straight section
of the track, far from the curves.

Other, more ingenious ways to pre-pick the direction of mean motion through
boundary conditions may also be dreamed up by experimentalists more clever than
we are.

We strongly caution anyone attempting to test our results, however, that it is only
through boundary conditions that one may pre-pick the direction of mean motion.
Any approach that pre-picks this direction in the bulk of the flock, such as giving
each bird a compass, letting them be blown by a wind, or run downhill, or follow
a chemical scent, etc., will lead to a model outside the universality class of our isotro-
pic model, since the starting model does not have any rotation invariance to be spon-
taneously broken (unless the anisotropy leaves an ‘‘easy plane’’ in which all
directions are equivalent, in which case our anisotropic model of Section 3 applies).
Indeed, such flocks of ‘‘birds with compasses’’ will be less interesting than the models
we have studied here, since the ‘‘compass’’ will introduce a ‘‘mass’’ that makes any
fluctuation away from the pre-picked direction of flock motion decay rapidly (i.e.,
nonhydrodynamically) with time. In such a model, it is easy to show that the non-
linearities are irrelevant, and there are no interesting fluctuations left at long dis-
tances and times.

Experiments to date on strictly apolar nematic phases of active particles have been
rather limited. The studies in [9] on nematic phases of melanocytes do not ask ques-
tions about fluctuation statistics. The work of Kudrolli and co-workers [22,44], on
agitated layers of granular rods, mentions a nematic phase but does not attempt
to obtain macroscopic aligned domains. It focuses instead on the state where the
rods tilt out of the plane, thus turning into polar particles. Unpublished studies
showing unambiguously nematic states in granular-rod systems include recent work
by Fraden et al. [24] and Narayan et al. [23]. Until recently, however, no tests had
even been attempted of the predictions we summarized in section of giant number
fluctuations (far larger than those in the ferromagnetic flocks) and 1/t long-time tails
in two dimensions of [21]. The work of [23] does show indications of anomalously
large concentration fluctuations. This is, however, preliminary, and awaits confirma-



tion by detailed quantitative analysis. Such analysis is currently in progress. Another
promising system on which to look for orientational order in active systems would be
a layer of actin filaments on a flat substrate on which actin had been grafted or dis-
tributed, in the presence of ATP [69]. At large enough actin concentration, mesopha-
ses (apolar or polar?) should form, whose properties should be governed by our
equations in Sections 2 or 5.

Testing the properties of hydrodynamically interacting ordered active suspensions
requires an obliging school of fish or flock of bacteria. The former would in principle
be the right system to test the rather complicated propagating mode structure pre-
dicted in Section 6 and [19]. Probably more feasible is to enter the Stokesian regime:
start with a a collection of bacteria such as those in [54] or [55], at high enough con-
centration to form a polar ordered state. Prepare the system in the presence of an
imposed flow or chemical gradient to enforce an initial ordered state, then switch
off the imposed field and see if the ordered state breaks up in accordance with the
predictions of [19] and Section 6, with an instability wavevector just above or just
below 45� to the ordering direction. More effective would be a detailed test in a
numerical simulation of Stokesian swimming hard rods with Brownian motion
[70]. The flagella could be deliberately so designed as to make polar or apolar par-
ticles (‘‘movers’’ or ‘‘shakers’’). Such systems could be prepared in an initial state
in which the flagellar motion or the force-densities imitating such motion was
switched off, and excluded volume interactions resulted in an equilibrium nematic
phase. Upon switching on the swimming, the instability (of either the apolar or
the polar suspension, depending on how the flagellar motion had been put in) should
set in and its entire dynamical evolution can be examined in detail and compared to
the theory in [19].

The predictions of strong viscoelasticity in active isotropic suspensions should be
testable in rheometry on bacterial or motor–microtubule suspensions at large en-
ough concentration to be near the onset of an ordered phase.

And now a few words about parameter choices. For definiteness, we will discuss
in what follows the Vicsek model, whose parameters are v0 = S/R0, where S is the
distance the birds travel on each time step and R0 is the radius of the circle of neigh-
bors, the mean number density q0 in units of 1

Rd
0

where d is the dimension of the sys-
tem, and the noise strength D, which is the mean squared angular error. Since the
interesting nonlinear effects in our model come from terms proportional to v20, those
effects will become important at shorter length scales in a faster moving flock. That
is, in, e.g., the Vicsek model, should we chose the dimensionless velocity as large as
possible, consistent with the flock ordering. However, if we take v0 too big, i.e.,
v0 � 1, then, on each time step, each bird is likely to have a completely different
set of neighbors. It is difficult to see how order can develop in such a model. So,
to take v0 as big as possible without violating v0 � 1, we should chose v0 	 1. The
simulations of Vicsek et al. [5] took v0 � 1, and, hence, probably never explored
(in their finite flocks) the long length scale regime in which our nonlinear effects be-
come important.

Now to the mean density q0, which is, of course, just determined by the total num-
ber of birds N and the volume V of the box via q0 = N/V. We clearly want this to be



large enough that each bird usually finds some neighbors in its neighbor sphere: This
means we want q0R

d
0 P Oð1Þ. However, if we make q0 too large, each bird has so

many neighbors that a simulation is considerable slowed down, since the ‘‘direction
picking’’ step of the Vicsek algorithm takes a time proportional to the number of
neighbors (because we have got to average their directions). Thus, for simulations,
one wishes to choose q0 as small as possible, consistent, again, with getting good or-
der.

Finally, we consider the noise D. Here again, to see our fluctuation effects, we
want D as big as possible. However, if D is too big, the flock would not order. Fur-
thermore, even if D is small enough that the flock it does order, we want also to be
sure that we are well below the critical value Dc of D at which the flock disorders.
Otherwise, for distances smaller than the correlation length n associated with the or-
der–disorder transition, the scaling properties of the flock will be controlled by the
fixed point that controls the order–disorder transition, not the low temperature fixed
point we have studied here.

If this transition is continuous, as it appears to be in Vicsek�s simulations [5],
this correlation length diverges as D ! D�

c . Thus, to observe scaling behavior we
predict over as many decades of length scale as possible, we want to choose D
substantially less than Dc, but as big as possible consistent with this (to maximize
fluctuation effects). Choosing D to be a little below the point at which the mean
velocity h~vi starts to ‘‘saturate’’ seems like a fairly good compromise between
these two competing effects. Similar considerations apply for choosing the optimal
q0, and v0, which we want to be as small or big, respectively, as they can be with-
out substantially suppressing long-ranged order. The best choices will probably
lead to all three parameters q0, v0, and D begin, in suitably dimensionless units,
0 (1).

Having chosen the appropriate parameter values and boundary conditions, what
should an experimentalist or simulator measure to test our theory?

We have already discussed a number of such measurements in Section 1; namely,
the spatially Fourier transformed equal-time and spatio-temporally Fourier trans-
formed unequal time density–density correlation functions Cqqð~qÞ and Cqqð~q;xÞ,
respectively. Experimentally, or in simulations, Cqð~q;xÞ can easily be calculated
from a knowledge of the bird trajectories~riðtnÞ, which could by, e.g., image analysis
of a film of a moving flock (here the index i labels the individual birds and tn are a set
of discrete times (presumably, though not necessarily, uniformly spaced) at which
the bird positions are observed). The spatially Fourier transformed density qð~q; tÞ
is then simply given by

qð~q; tnÞ �
X
i

ei~q�~riðtnÞ. ð149Þ

Cqqð~qÞ is then simply given by the time average of the squared magnitude (in the
complex sense) of qð~q; tnÞ

Cqqð~qÞ � hjqð~q; tnÞj2i �
XNt

n¼1

jqð~q; tnÞj2=Nt; ð150Þ



where Nt is the total number of time steps averaged over. With qð~q; tÞ in hand,
Cqqð~q;xÞ can also be obtained in a real experiment by by first calculating the spat-
io-temporally Fourier transformed density

qnð~q;xÞ ¼
Xðnþ1Þs

t¼ns

qnð~q; tÞe�ixt; n ¼ 0; 1; 2; . . . ð151Þ

over a set of long ‘‘bins’’ of time intervals of length s � t0 (the ‘‘microscopic’’ time
step), and then averaging the squared magnitude jqð~q;xÞj2 over bins

Cqqð~q;xÞ �
Xnmax

n¼0

jqð~q;xÞj2

nmax

. ð152Þ

Our predictions for these correlation functions are given in Eqs. (73) and (32).
One additional correlation function that can be measured quite easily is the mean

squared lateral displacement of a bird

w2ðtÞ � hj~x?i ðtÞ �~x?i ð0Þj
2i ð153Þ

perpendicular to the mean direction of motion of the flock. This can easily be mea-
sured as a function of time in a simulation or experiment simply by labeling a set of n
birds in a ‘‘strip’’ near the center of the channel with its long axis running parallel to
the mean direction of bird motion (see Fig. 17), and then following their subsequent
motion. It is best to center the strip in the channel so as to postpone the birds reach-
ing the reflecting walls as long as possible. Once they do reach the walls, of course
w2 (t fi 1) saturates at 	 L2

?, L^ being the width of the channel. We will deal in
Fig. 17. Illustration of the experiment to measure the mean squared lateral wandering w2 (t). One labels all
of the birds some central stripe (of width�L, the channel width), and then measures the evolution of their
mean displacements ~x?ðtÞ perpendicular to the mean direction of motion (which mean direction is
horizontal in this figure).



the following discussion with times much smaller than that required for a bird at the
center of the channel to wander out to its edge.

As shown in [16], we need to distinguish two cases:

[Case (1): 2vf > �1.] In this case, which holds in d = 2, where v = �1/5 and f = 3/5,

w2ðtÞ / t2ð1þ
v
fÞ ¼ t4=3;

2v
f
> �1 ð154Þ

the last equality holding in d = 2. Note that this behavior is ‘‘hyperdiffusive’’: the
mean squared displacement w2 (t) grows faster than it would in a simple random
walk; i.e., faster than linearly with time t.

[Case (2): 2v
f < �1.] In this case, which certainly holds for d > 4 (where

v ¼ 1� d
2
< �1 and f = 1), we get

w2ðtÞ / t;
2v
f
< �1. ð155Þ

Unfortunately, the analogous calculation for the anisotropic model shows that this
random ‘‘transverse walk’’ is much less interesting: for d < 5/2, which of course ex-
cludes the physically interesting case d = 3, there is no hyperdiffusive behavior;
rather, we expect w2 (t) � t. For the only other physically interesting case, namely
d = 2, the anisotropic model is the same as the isotropic model. This negative predic-
tion could be checked experimentally, although its confirmation, while a nontrivial
check of our theory, would clearly be less exciting than verification of our hyperdif-
fusive prediction w2 (t) � t4/3 for the isotropic d = 2 model.

Some of the numerical tests discussed in this section have been carried out, par-
ticularly on the d = 2 model, and good agreement with our prediction has been
found, as described in Section 3 and [15].
9. Future directions

It should be obvious that the theoretical work we have reviewed in this paper is just
the tip of an enormous iceberg.As described in Section 1, there is every reason to expect
the behavior of flocks to be as rich as that of equilibrium condensedmatter systems. In
particular, this means that virtually every one of the dozens of phases known in equi-
librium systems probably has an analog in flocks. Indeed, virtually every question one
can ask about any equilibrium system can be asked about flocks. Here wewill present a
very abbreviated list of a fewof the interestingquestions andproblems that remainwide
open. Anyone can easily add to this list by substituting one�s favorite phenomenon or
phase from equilibrium systems and asking what is the analog in flocks.

9.1. Other phases of flocks

As we have seen in this review, only two phases of flocks (the ferromagnetic and
the nematic) have been extensively studied so far. There is every reason to expect that



it every phase known in equilibrium condensed matter systems has an analog in
flocks. Furthermore, for every one of these, there are at least two distinct models
to be considered, depending on whether or not one needs to include the dynamics
of the background fluid.

Here we will list just a few examples of such new phases of flocks, and discuss
briefly some of the interesting and totally un-investigated questions that immediately
arise about them.

The first of these is the analog of the crystalline solid phase in equilibrium sys-
tems; or the ‘‘flying crystal’’ as described in Section 3. It would be very interesting
to test numerically whether this apparent ‘‘crystallinity’’ of these systems reflects true
long-range translational order, by looking for a nonzero expectation value of the
translational order parameters.

q~GðtÞ ¼
X
i

ei
~G�~riðtÞ

* ,
N

+
ð156Þ

which will become nonzero in the thermodynamic (N fi 1) limit at a set of recipro-
cal lattice vectors ~G if such long-ranged order actually develops. It will also be extre-
mely interesting to include the possibility of such long-ranged order in our analytic
model, and study the interplay between this translational order and the anomalous
hydrodynamics that we have found here for ‘‘fluid’’ flocks. Will anomalous hydro-
dynamics suppress the ‘‘Mermin–Wagner’’ fluctuations of translational order, just
as it does those of orientational order, and lead to true long-ranged translational or-
der, even in d = 2? Will the crystallization suppress orientational fluctuations, and
thereby slow down the anomalous diffusion that we found in the fluid case? And
in any case, what are the temporal fluctuations of q~GðtÞ?

It should be noted that this problem potentially has all the richness of liquid crys-
tal physics: in addition to ‘‘crystalline’’ phases, in which the set f~Gg of reciprocal lat-
tice vectors in (156) spans all d dimensions of space, one could imagine ‘‘smectic’’
phases in which all the ~G’s lay in the same direction; and ‘‘discotic’’ phases in
d = 3, in which the ~G’s only spanned a two-dimensional subspace of this three-di-
mensional space. We should point out here that these models differ considerably
from recently considered models of moving flux lattices [71] and transversely driven
charge density waves [72] in that here, the direction of motion of the lattice is not
picked out by an external driving force, but, rather, represents a spontaneously bro-
ken continuous symmetry.

9.2. Phase transitions in flocks

Once we recognize that many different phases of flocks exist, the next obvious
question after one determines the properties of those phases, is: ‘‘What is the nature
of the transitions between them?’’. Two such transitions are already ripe for investi-
gation, namely that from from the ferromagnetic (ordered, moving) to disordered
(stationary, on average) phase of the flock. The latter remains to be studied theoret-
ically even at the simplest level, although there is clearly potential for experiments on



it in [22]. The ferromagnetic to disordered transition can be studied by analyzing the
(unstable) fixed point at which the renormalized a of our original model (6) is zero.
The dynamical RG analysis of this point would be technically similar to the one we
have presented here for the low temperature phase, with a few crucial differences:

1. All components of ~v, not just the ^ components, become massless at the
transition.

2. The fixed point will be isotropic, since no special directions are picked out by h~vi,
since h~vi still = 0 at the transition.

3. The bj~vj2~v term becomes another relevant vertex. We know, by power counting,
that at the transition, this vertex becomes relevant in d = 4. Indeed, if we ignore
the k vertices, our model simply reduces to a purely relaxational time-dependent
Ginsburg Landau (TDGL) model for a spin system with the number of compo-
nents n of the spin equal to the dimension d of the space those spins live in.

We have convinced ourselves by power counting that at the transition, for d < 4,
the k vertices are a relevant perturbation to the Gaussian critical point. Whether they
constitute a relevant perturbation to the 4 � � TDGL fixed point, thereby changing
its critical properties, can only be answered by a full-blown dynamical renormaliza-
tion group analysis.

Obviously, a similar analysis could also be done for the anisotropic model.
There is numerical evidence [37] that this order–disorder transition may be first

order. In these simulations, the nature of the phase separation between the ordered
and disordered states appears very different from that in equilibrium systems: there
appears to be a continuous variation of density across the interface, extending deep
into the ordered region, in contrast to the sharp phase boundary found in, e.g., equi-
librium fluid–vapor interfaces. Can such behavior be understood in the context of
our model for ferromagnetic flocking Eq. (6)?

This leads us naturally to the next possible area of investigation.

9.3. Shapes and cohesion of a finite flocks

We have thus far focussed on flocks in closed or periodic boundary conditions.
Real flocks are usually surrounded by open space. How do they stay together under
these circumstances? Is there anything like surface tension in a flock? What shape
does the flock take? How does this shape fluctuate, and is it stable?

This issue is somewhat similar to the problems of the shapes of equilibrium and
growing crystals (e.g., facetting, dendritic growth). In those problems, it was impor-
tant to first understand bulk processes (e.g., thermal diffusion in the case of dendritic
growth) before one could address surface questions (e.g., dendritic growth). The
nontrivial aspects of the bulk processes in flocks (e.g., anomalous diffusion) will pre-
sumably radically alter the shapes and their fluctuations.

Obviously, the presence of boundaries in a real, finite flock affect the internal
structure of the flock as well, as seen in the experiments on Dictyostelia [3,4]
described earlier.



9.4. Long-range order and phase separation in two-dimensional active nematics?

The problem of active nematics on a substrate raises several intriguing issues of
principle. Foremost, from the point of view of a theoretical physicist, is whether
nematic order in two-dimensional active-particle systems is long-ranged or only qua-
si-long-ranged. Answering this requires calculating the renormalized stiffnesses (the
coefficients of the diffusive terms in the equation of motion for the angle field). If
they grow in a singular manner (no matter how weakly) as wavenumber goes to zero,
the variance of the angle field will be rendered finite, and we will have true long-range
nematic order in two dimensions. The renormalization group calculation which will
decide this issue is in progress [49]. Further, the question whether the giant number
fluctuations predicted in [21] and Section 5 are to be thought of as just that, i.e., fluc-
tuations, or are an indication of macroscopic phase separation as in [50] is a crucial
issue in nonequilibrium statistical mechanics. Preliminary simulations on this aspect
[74] are in progress.

9.5. Instabilities of ordered active suspension

The instability of Stokesian polar-ordered suspensions discussed in Section 6 and
[19] raises the question of what phase, if any, such suspensions order into, i.e., what
is the ultimate fate of the instability? Calculations to decide this and to study the effect
of imposed shear flows on active suspensions near the ordering transition, are in pro-
gress [73]. The problem remains an attractive one for large-scale numerical simulations.

9.6. Multi-component flocks

The models we have discussed so far have treated all of the birds as identical. In
particular, this means that all of the birds fly at the same speed, ignoring fluctua-
tions. In a real flock, of course, some birds will be fitter, and hence faster, than oth-
ers. One could imagine modeling this in a Vicsek-style simulation by having two (or
many) types of birds, all flying together, each with different mean speeds vk0, where
the index k labels the ‘‘types.’’ What would the bulk dynamics of such a flock be?
Would there be large scale spatial segregation, with fast birds moving to the front
of the flock, and slow birds moving to the back? If so, how would such segregation
affect the shape of the flock? Would it elongate along the mean direction of motion?
Would this elongation eventually split the flock into fast and slow moving flocks?

9.7. Reproduction and death

One could relax the constraint on conservation of bird number, by allowing birds
to be born, and die, ‘‘on the wing.’’ Numerical studies of such models, which may be
appropriate to bacteria colonies, where reproduction and death are rapid, as well as
the migration of, e.g., huge herds of caribou over thousands of miles and many
months, have already been undertaken [75]; it should be straightforward to modify
our equations by adding a source term to the bird number conservation equation.



9.8. Growth of order in flocks

Flocks frequently start in a disordered state, and take some time to develop fer-
romagnetic order. This is a phenomenon we have all seen every time we walk onto a
field full of geese: eventually, our approach startles the geese, and they take off en
masse. Initially, they fly in random directions, but quickly the flock orders, and flies
away coherently.

A similar process also occurs in Vicsek�s simulation, where the initial velocities of
the birds in the flock are completely random, but order over time.

The dynamics of this process is clearly in many ways similar to, e.g., the growth of
ferromagnetic order after a rapid quench from an initial high temperature Ti > Tc,
the Curie temperature, to a final temperature Tf < Tc, a problem that has long been
studied [76] and proven to be very rich and intriguing. In flocks, where, as we have
seen, even the dynamics of the completely ordered state is very nontrivial, the growth
of order seems likely to be even richer.
9.9. Valedictory conclusion

Even this list of potential future problems, representing, as it does, probably an-
other ten years of research for several groups, clearly represents only a narrow selec-
tion of the possible directions in which this embryonic field can go. We have not even
mentioned, for example, the intriguing problem of one-dimensional flocking, with its
applications to traffic flow (and traffic jams), a topic clearly of interest. This problem
has recently been studied [77] and found to also show a nontrivial phase transition
between moving and nonmoving states.

We expect flocking to be a fascinating and fruitful topic of research for biologists,
computer scientists, and both experimental and theoretical physicists (at least these
three!) for many years to come. We hope this review will encourage other researchers
to study this fascinating set of problems.
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