
ar
X

iv
:c

on
d-

m
at

/0
51

12
60

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
0 

N
ov

 2
00

5

Do current-density nonlinearities cut off the glass transition?
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Extended mode coupling theories for dense fluids predict that nonlinear current-density couplings
cut off the singular ‘ideal glass transition’, present in the standard mode coupling theory where
such couplings are ignored. We suggest here that, rather than allowing for activated processes as
sometimes supposed, contributions from current-density couplings are always negligible close to a
glass transition. We discuss in schematic terms how activated processes can nonetheless cut off the
transition, by causing the memory function to become linear in correlators at late times.

PACS numbers: 64.70.Pf, 61.20.-p

Mode Coupling Theory (MCT) offers an approximate
but appealing account of the glass transition in simple liq-
uids, whose physical content has long been debated. Ju-
diciously used, particularly in colloidal liquids [1], MCT
yields experimentally validated, semiquantitative predic-
tions for the slowing down and then arrest of density fluc-
tuations; yet when applied to much simpler systems, such
as a single particle in an anharmonic trap, it yields wrong
results [2]. It is thus important to delineate what the ap-
proximations of MCT mean physically, so that these may
be improved upon, and/or eventually unified with other
theoretical approaches to glass formation.

In this Letter we take this forward by examining the
full or ‘extended’ versions of MCT (eMCT) in which non-
linear couplings of the density field to kinetic degrees
of freedom (currents) are considered. In two important
and technically substantial papers, Das and Mazenko [3]
and subsequently Goetze and Sjoegren [4] showed that,
within both a field-theoretic and a projection-based for-
mulation of eMCT (denoted eMCT1 and eMCT2 respec-
tively), such couplings cut off the dynamical singularity
corresponding to the glass transition. (Some subsequent
variants [5, 6], denoted eMCT3-5 are addressed below;
an up-to-date review is provided by Das [7].) This cut-
off is not present in the “standard” MCT (sMCT) which
neglects nonlinear coupling to currents [8–11].

This cutoff was argued by some to represent an acti-
vated hopping mechanism [12, 13]. The existence of such
a mechanism is physically plausible: the activation en-
ergy for relaxation should not exceed that required to
expand a volume of order ξ3 to a density low enough to
melt the glass. Here ξ is the smallest length large enough
that interactions across the boundary of such a melted
droplet do not force it to refreeze in the same local state
[14, 15]. Since sMCT predicts finite elastic moduli, this
energy is finite, and the ideal glass transition is cut off,
unless ξ is infinite throughout the glass phase.

In recent years, however, the hopping interpretation
of eMCT has seemed increasingly doubtful (see [7]).

From a field-theory viewpoint MCT is formally a re-
summed (one-loop selfconsistent) low temperature ex-
pansion [3, 5, 16, 17]. In such an expansion, activated
terms, which are exponential in β = 1/kBT , represent es-
sential singularities (“instantons”) and should not be ac-
cessible even after resummation [18]. Second, the physics
of eMCT should reduce to sMCT for interacting Brown-
ian particles, which conserve neither momentum nor en-
ergy [17, 19]. It would be surprising if there were no
hopping processes in that case; yet MCT predicts none.

Below we show that doubts about the physical basis
of eMCT are well-founded. Accepting for these purposes
that Refs.[3, 4] correctly implement their eMCTs, we ar-
gue that the resulting cutoffs likely stem from new ap-
proximations made in eMCT, beyond those of sMCT. We
show that eMCT forms for the memory function γk(t),
describing retarded friction, violate physical arguments
based on a formal separation of current-density terms.
We then discuss schematically how instantons [15, 20]
may nonetheless cut off the sMCT glass transition. Our
work may thus bring closer a unified description of col-
lective arrest [13] and activated dynamics [14, 15, 21].

Our approach closely follows Zaccarelli et al. [22, 23].
We start with j = 1...N Newtonian particles of mass
m interacting via a nonsingular pair potential v(r) in
volume V , at mean density ρo = N/V . The density is
ρk(t) =

∑
j eik.rj(t) and (1− ρock)−1 = Sk = 〈ρ−kρk〉/N

is the static structure factor. By standard arguments
[22], an equilibrium memory function γk(t) exists so that

ρ̈k(t) + Ω2
kρk(t) + Yk(t) = fk(t) (1)

where Yk =
∫ t

0 γk(t − t′)ρ̇k(t′)dt′; fk is a noise of mean
zero; and Ω2

k = k2/βmSk. Moreover, one may show from
Newton’s laws [22] that the memory function obeys

γk(t) = (βm/Nk2)〈F−k(0)(Fk(t) + Yk(t))〉 (2)

with Fk = Ω2
kρk +Tk +Qk; Tk = −

∑
j(k.ṙj(t))

2eik.rj(t);
and mV Qk = −

∑
k′ vk′(k.k′)ρk−k′(t)ρk′(t). Suppose

now that the particle velocities in T relax, on some finite
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timescale τ that does not diverge near any glass transi-
tion (below denoted ‘rapid’ relaxation), towards a global
Boltzmann distribution, for which 〈ṙlα ṙlβ〉 = δαβ/βm
[22]. If so, then for t ≫ τ , Tk(t) can safely be replaced by
−k2ρk(t)/βm. With this replacement (but noting that
their Eq.11 fails without it) one recovers in combination
Eqs.11 and 12 of [22]: that is, γk(t) = γs

k(t) where

γs
k(t) = (βm/Nk2)[(k2ρock/βm)2〈ρ−k(0)ρk(t)〉 (3)

−(k2ρock/βm){〈ρ−k(0)Qk(t)〉 + 〈Q−k(0)ρk(t)〉

+〈ρ−k(0)Yk(t)〉} + 〈Q−k(0)Yk(t)〉 + 〈Q−k(0)Qk(t)〉]

By treating momentum fluctuations as fast and inde-
pendent of density, γs

k(t) neglects all the collective fluid
modes responsible for current-density couplings; but, for
t ≫ τ , nothing else of consequence seems neglected from
(3) as derived in Refs.[22, 23]. As shown there, γs

k(t) fur-
ther reduces to the well known sMCT memory function
γsMCT

k (t), if one treats ρk(t) as a Gaussian random pro-
cess, and assumes that ζ ≡ βvk+ck = 0. We discuss such
steps below, but without making either of them write

γk(t) = γs
k(t) + ∆γk(t) (4)

where all “current-density couplings” reside solely in the
second term. By this we mean that, although γs

k(t) still
formally depends on ρ̇ (via Y (t)), it describes a system
in which currents and densities are explicitly decoupled,
in the sense that instantaneous equipartition holds for all
averages of equal-time products of particle velocity pairs
in (2). The coupling term, ∆γk(t), whose explicit form
follows by subtracting (3) from (2), then contains various
correlators involving ∆Tk = Tk +k2ρk/βm. In real space
this is ∆T (r, t) = ∇α∇β

∑
l[ ˙rlα ˙rlβ −δαβ/βm]δ(r−rl(t)).

Remarkably, both the eMCT1 of [3] and the eMCT2
of [4] yield approximations for the memory function that
depart from the additive structure shown in (4). In the
relevant regime (at low frequencies ω, with k around the
peak in Sk, and in the glassy regime where γk(t) decays
very slowly), the results are [3, 4, 24]

γeMCT1
k (ω) = (1 + iAk/ω)γsMCT

k (ω) (5)

γeMCT2
k (ω) =

γsMCT
k (ω)

1 − iBkγsMCT
k (ω)

(6)

Such results seemingly require that at low frequency the
kinetic correction ∆γk(ω) either becomes larger than the
standard contribution γs

k(ω) (in the case of (5)), or re-
mains comparable to it (in the case of (6)). We now argue
that such behavior cannot be a physical consequence of
the current-density couplings as defined above, because
∆γk(t) must remain negligible near a glass transition,
even when the velocity and temperature fields of the fluid
(the only significant physics omitted from γs

k(t)), are ac-
counted for.

To see this, we define ρ(r, t),v(r, t) and T (r, t) =
T + δT as hydrodynamic number density, velocity and

temperature fields, formed by local averaging over re-
gions δV (r) of volume λ3 containing ν(r, t) > 1 par-
ticles [25]. The collective velocity field is v(r) =∑

j∈δV (r) ṙj/ν(r) and the density field is ρ(r) = ν(r)/λ3.

Setting ṙl(t)−v(rl, t) = δvl(t), we next insist that relax-
ation of the peculiar velocities δvl(t) is rapid: local equi-

librium alone allows the replacement m〈δvlα(t)δvlβ(t)〉 ≃
(1 − 1/ν(r, t))δαβkBT (rl, t) [26]. At temporal and spa-
tial scales relevant to collective modes, we can then sub-
stitute in (2) T (r, t) ≃ ∇α∇β [ρ(r, t)vα(r, t)vβ(r, t) +
(ρ(r, t) − λ−3)kBT (r, t)/m]. This in turn can be writ-

ten
∑3

i=1 Ti(r, t), where mT1 = m∇α∇β(ρvαvβ); mT2 =
kBT∇2ρ; and mT3 = kB [δT∇2ρ + (ρ − λ−3)∇2δT +
(∇δT )∇ρ]. These describe respectively gradients of hy-
drodynamic inertial stress; gradients of ideal gas kinetic
pressure; and a non-isothermal correction to the latter.

We finally argue that heat conduction is rapid (δT ≃ 0)
in the relevant k-range. This isothermal approximation
is standard, even within eMCT [3–7], although it fails
at lower k, where T3 causes sound-speed renormalization
[27]. Using it, we find that ∆T (r, t) is merely T1(r, t) =
∇α∇βρvαvβ , so that ∆γk(t) contains only correlators
of T1(r, t) with ∇2ρ(r, t); with Q(r, t); and with itself.
The first of these terms, 〈∇2ρ(0, 0)∇α∇βρvαvβ(r, t)〉
in real space, cross-correlates gradients of density and
inertial stress. But regardless of ∇2ρ(0, 0), the iner-
tial stress term ρvαvβ(r, t) ≡

∑
i,j∈δV (r) ṙiα ṙjβ/ν(r)λ3

rapidly decays (on time scale τ1, say) to its equipar-
tition value kBTδαβ/mλ3; this is ρ-independent [25],
hence uniform, and killed off by ∇α∇β . Accordingly
〈∇2ρ(0, 0)T1(r, t)〉 ≃ 0 for t ≫ τ1. The only alternative
is if relaxation of ρvαvα is not rapid, but remains contin-
gent on that of ρ itself, causing τ1 to become very large in
the glassy regime. Remarkably, a mode-coupling ansatz
〈∇2ρ(0, 0)T1(r, t)〉 ≃ 〈∇2ρ(0, 0)∇2ρ(r, t)〉〈v2(r, t)〉 says
exactly this. But such a result is wrong: it implies
that, e.g., in window-glass, where atomic positions re-
main unrelaxed for centuries, the atomic momenta (of
which v is a local average) fail to reach equipartition,
even on that time scale. The same reasoning gives
〈T1(0, 0)Q(r, t)〉 ≃ 0. It also gives 〈T1(0, 0)T1(r, t)〉 ≃ 0,
with one caveat; this contains a product of squares of two
velocities at unequal times. It might therefore show alge-
braic, rather than exponential, decay [28]. But such long-
time-tails should play no role in the physics of glasses.
(Indeed they are explicitly neglected in eMCT2 [4].)

The above arguments complete our case that ∆γk(t) in
(4), containing formally all current-density couplings, can
be safely neglected anywhere near a glass transition. The
results (5,6), which seemingly require ∆γk(t) to become
large, must then result from one of two things. Either
these theories make injudicious approximations to ∆γk(t)
and should be rejected; or they deal with the averages in
(3) in a different manner from sMCT, so that (5,6) stem
not from current-density couplings (as defined above) but
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from different handling of the “standard” piece of the
memory function, γs

k(t). Recall that to reduce γs
k(t) to

γsMCT
k (t), two further approximations are made in [22].

The first is to set ζ = 0, which amounts to adopting
dynamically the Ramakrishnan Yussouff (RY) free en-
ergy functional [7, 29]. The second is that ρk 6=0(t) may
be “treated as gaussian” (a practice we below call “trag-
ging”) in the specific sense that its three-point correlators
are set to zero, and its four-point correlators factored into
sums of products of two-point correlators. A change to
either assumption might give a cutoff, in principle.

We argue next that eMCT1 stems from injudicious ap-
proximation to ∆γk(t) rather than from an altered treat-
ment of γs

k(t). This is because eMCT1 trags not only
ρk, but also vk and the momentum density gk: indeed it
aims to determine selfconsistently the covariance matrix
of these tragged variables by an optimized resummation
of nonlinearities. But if one believes RY is adequate [7],
and ∆γk(t) is negligible, then the tragging of the density
is sufficient to show via [22] that γk(t) = γsMCT

k (t). If so,
then since the density remains tragged in eMCT1 (trag-
ging additional variables does not untrag existing ones),
this theory can only give results different from sMCT by
making additional approximations that sMCT avoids.

Let us now consider how (5) actually arises. Within the
formalism of Ref.[3] the renormalized equation of motions
are

∑
y G−1

x̂y y = fx, where the fluctuating (and tragged)
variables y comprise ρ,v and g. Gx̂y is the propagator
calculated in Ref.[3]. The hatted variables are auxiliary
fields used to treat the noise terms fx (with variances set
by G−1

x̂x̂ , and cross-correlations by G−1
x̂ŷ ), and also to treat

a constraint described below. Omitting noise terms for
clarity, eMCT1’s equations of motion are [3]

−iωρk(ω) + ik.gk(ω) = 0 (7)

−iωgk(ω) − ikc2ρk(ω) + ηk(ω)k2vk(ω) = 0 (8)

gk(ω) − ρovk(ω) + iαkρk(ω) = 0 (9)

where α = Ak/k2 is a constant, and we have set m = 1
so that ρ is now the mass density. These are linearized
effective equations arising from a complicated nonlinear
model; nonetheless one would normally expect them to
have the usual hydrodynamic form, with renormalized
coefficients. In this sense, Eqs. (7,8) are the expected
equations of motion (with c a sound speed, which is k-
independent in eMCT1); but Eq.(9) is not as expected.
To understand it, note that in Ref.[3], a field v̂ is deployed
to maintain, as a nonlinear constraint, the defining equa-
tion g(r, t) = ρ(r, t)v(r, t) of the fluid velocity v. Despite
this, the bare constraint g = ρov, instead of renormaliz-
ing into the nonlinear one, g = ρv, becomes (9), which
in real space reads g = ρov − α∇ρ. Combining with (7)
(i.e. ρ̇ = −∇.g) we obtain

ρ̇ = −ρo∇.v + α∇2ρ (10)

instead of the continuity equation ρ̇ = −∇.(ρv). Elimi-

nating g,v from (7–9), one obtains

−ω2ρk + c2ρk− i(ωk2/ρo)ηk(ω)[1+ iAk/ω]ρk = fk (11)

which confirms (5). Note we find no algebraic error in
Ref.[3]. The fault appears intrinsic to the whole program
of extending MCT, which neglects vertex corrections [17],
to currents. Here, instead of giving the vertex correction
required to convert g = ρov into g = ρv, eMCT1 creates
a new (self-energy) term in α which, at least at the level of
effective equations of motion, violates the constraint that
v̂ was supposed to enforce. The result (9) thereby intro-
duces a parallel diffusion channel which requires, physi-
cally, a momentum sink. While it might be tempting to
associate the resulting ‘motion’ with activated hopping
[4], the end result (5) of eMCT1 is incompatible with the
physical content of (4) above, and we reject it.

An alternative to eMCT1 (call this eMCT3) in Ref.[5]
likewise violates continuity; the authors ‘justify’ this on
the grounds that eMCT3 also violates Galilean invari-
ance. (An adequate theory should do neither.) The cut-
offs predicted by eMCT1 and eMCT3 are almost identical
[7, 30]. Ref.[6] offers two further variants. In eMCT4, the
constraint differs by a Jacobian from eMCT1; the results
are unaffected. In eMCT5, the constraint is replaced by a
series expansion in δρ(r). The resulting equation of mo-
tion for g is that found by substituting (9) in (8). Thus,
so long as (8) is true, (9) is implied by eMCT5: the ex-
pansion in δρ breaks the constraint g = ρv in exactly the
same sense as eMCT1, with the same consequences.

We now turn to eMCT2. Here tragged variables are
less easily identified [4, 31, 32], but an authoritative re-
view [33] seems to suggest that the phase space density
ρ̃k(p, t) (with p particle momentum) is tragged. If so,
since ρk(t) =

∑
p ρ̃k(p, t), and any sum of tragged vari-

ables is de facto tragged, ρk is tragged also in eMCT2. If
this is true, then the cutoff (6) must either: (a) like (5),
stem from injudicious treatment of ∆γk(t) that sMCT
bypasses; or (b) stem from avoiding use of ζ = 0 within
the standard part of the memory function, γs

k(t). In case
(b), eMCT2 should be equivalent to Eq.13 of [22], found
by tragging the density in (3): this looks highly unlikely.
The only remaining case is (c): that tragging of the den-
sity is avoided, or partially avoided, in eMCT2. Result
(6) might then remain a physical one; but, at least by our
definition, one unrelated to current-density couplings.

Our own view is that ∆γk(t) is always negligible; RY
(hence ζ = 0) generally sufficient; and the cutoffs in all
forms of eMCT likely approximation-induced. Suppose
one accepts this case: by what physical mechanism can
the glass transition instead be cut off? Our results show
that any cutoff mechanism must specifically invalidate the
tragging of the density. We argue now that instanton-like
activated processes (‘hopping’) do exactly this.

When hopping occurs in a system that would other-
wise be fully arrested, the generic relaxation process seen
by any local neighborhood is as follows. First, wait a
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long, stochastic time interval; then a locally large and
rapid change occurs which reconfigures the density field
nonperturbatively (an instanton). This is very unlike a
Gaussian process, in which relaxations occurs in tempo-
rally uniform small increments; tragging is appropriate
only for relaxation by such gradual events. In the limit
of pure instanton relaxation, the product of two fluctu-
ating densities, ρ(0, 0)ρ(r, t), becomes suddenly random-
ized after a long period of being constant; and crucially,
ρ2(0, 0)ρ2(r, t) decorrelates at exactly the same instant.
Under these conditions, the (normalized) four-point cor-
relator 〈ρ2(0, 0)ρ2(r, t)〉, which is almost but not quite
the one needed in (3), is equal to the two-point correla-
tor, not its square, in maximal violation of tragging.

This suggests a schematic route by which sMCT might
be cut off by hopping. (For more complete approaches
along similar lines, see [15, 18, 20].) For t ≪ τI (an in-
stanton time) the minimal sMCT schematic model, called
F12, is applied. This has a single correlator Φ(t) with
memory function m(t) = λ1Φ(t) + λ2Φ(t)2 and λ1,2 ≥ 0.
On increasing λ1 this has [4], for λ2 < 1, an unrealistic
‘type A’ transition at λc

1 = 1; for 1 < λ2 < 4, a realistic

transition at λc
1 = 2λ

1/2
2 −λ2; and for λ2 > 4, the system

is always in the glass. Suppose we generalise this to

m(t) = λ1(u)Φ(t) + λ2(u)Φ(t)2 (12)

with u = t/τI . This defines parametrically some curve
on the λ1, λ2 plane; if this starts in the glass phase and
ends in the fluid, one can expect behavior appropriate
to a cut-off glass (with details dependent on the curve
chosen, and on the form of λ1(u)). However, treating the
argument of the preceding paragraph literally would lead
not only to λ2(∞) = 0, but also to λ1(∞) = λ1(0)+λ2(0);
this cannot give a trajectory of the required character [4].
This objection is perhaps not fatal since, in the ‘scheme’
that links F12 with fully k-dependent sMCT, the λ’s are
proxies for certain k-integrals, whose crossover algebra in
the instanton regime need not be as simple as assumed
above. We leave detailed study of (12), and its possible
relation to non-schematic models, for future work.

On nearing completion of this work, a preprint [34]
appeared giving more grounds to doubt the eMCT cutoff.
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