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Abstract. This paper studies several issues that emerge naturally in the
hydrodynamic approach to suspensions of self-driven organisms or filaments
(Simha and Ramaswamy 2002Phys. Rev. Lett.89058101; Kruseet al2004Phys.
Rev. Lett.92 078101; Hatwalneet al 2004Phys. Rev. Lett.92 118101). These
include: a simple pictorial understanding of the instability of orientationally
ordered active suspensions; the effect of translational order as well as finite
geometries on these instabilities; the role of depolymerization on the possible
types of alignment of active polar particles in restricted geometries; and, lastly,
speculations on the relation between contractile active matter and jammed
granular matter.
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1. Introduction: background and results

1.1. Background

The equations of active hydrodynamics were initially formulated [1] to describe large-scale
ordered states of swimming organisms, such as fish shoals [2] or bacteria [3]. They extended, to
these self-driven systems, the broken-symmetry hydrodynamic approach applied so successfully
to liquid crystals [4, 5]. The same equations—perhaps unsurprisingly, in hindsight—turn out to
provide the theoretical framework for modelling patterns [6, 7] and mechanical response [8] in
suspensions of actively contracting filaments such as actomyosin or microtubules, and thus for
understanding the mechanics and statistics of the cytoskeleton [9] in particular and living matter
in general. The hydrodynamic approach taken in [1, 6] is amply justified by the derivation [10]
of the equations from a microscopic description involving motors and filaments. As is now
standard, we shall use the termactiveto characterize any object, whether an organism or simply
a cell component, that drives itself mechanically by the uptake of chemical energy [11]. A
review of the collective dynamics of active particles can be found in [12].

A useful distinction was made in [1, 8] between polar and apolar active particles, as well as
between ordered phases with and without macroscopic polarity. Apolar particles or phases, even
if orientable, are fore-aft symmetric, whereas polar particles lack this symmetry. In the approach
of [1, 8] it was noted that an active particle is an orientable force dipole, so that at a location
r a concentrationc(r) of such particles oriented along a locally defined axisN(r) implies a
local stressσ a(r) ∼ f bc(r)N(r)N(r) whereb and f are respectively the linear dimension of
the particle and the force exerted by the active particle on the fluid. Such stresses generate
flows in the fluid which in turn reorientN. The consequences of this interplay were shown in
[1], [6]–[8], [10] to be most dramatic for systems in or near an oriented state. Of the results
obtained in [1, 8], those of potential significance to cytoskeletal dynamics were as follows: (i)
A bulk active suspension with uniaxial orientational order—the analogue of a nematic liquid
crystal—was inevitably prone to a hydrodynamic instability involving splay or bend of the
orientation accompanied by fluid flow. We shall refer to this below as thegeneric instability.
In [13] it was shown that a sufficiently strong imposed shear flow suppresses the instability for
the contractile case. (ii) A suspension ofcontractilefilaments in the isotropic phase, but close to
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the threshold for spontaneous orientational order, should show ever stronger viscoelasticity as
the system is pushed closer to the ordering transition. Tensile filaments in a similar situation
were predicted to show unstable shear-thinning. (iii) Cytoplasmic streaming [11], seen in
the crawling of amoebae, emerged naturally in [8] as a particle current arising from activity
gradients. Elastotaxis [14] and active mechanosensing [15] are also simply described within our
framework.

1.2. Aims of this work; summary of results

In this paper, we address several issues that arise naturally from the findings of [1, 8]. (i) We offer
a simple pictorial understanding of the instability of ordered active filaments, whose essence is
seen in figures1 and2. The instability turns out to be very similar to Euler buckling. (ii) We
consider possible translationally ordered states of the filaments, and show that columnar and
lamellar translational ordering suppress the instabilities, respectively, of contractile and tensile
filaments. (iii) The authors of [1, 8] worked in an unbounded geometry. As expected, we find that
confining walls, if close enough, suppress the instability, allowing one to speak meaningfully
about the mechanical properties of a uniformly aligned phase of active filaments. (iv) We show
also that stationary states with polar filaments oriented with a component normal to the walls are
permissible, provided one allows for depolymerization. (v) We argue that the rigidity conferred
by the orientation field of an active medium related to that associated with force chains in fragile
jammed matter [16].

The remainder of this paper is organized as follows. In section2, we explain the generic
instability and its modification by partial translational ordering. In section3, we discuss
confining walls, boundary conditions, and the role of depolymerization for polar filaments, and
comment on the connection to fragile jammed systems.

2. Understanding and suppressing the generic instability

2.1. Physical picture of the instability

The long-wavelength instability [1] of orientationally ordered active suspensions depends
only on the existence of contractility (or tensility) and the hydrodynamic interaction, and is
unaffected by liquid-crystalline elasticity. Such a robust effect should surely admit a simple
physical explanation, as indeed our colleagues have frequently remarked. We provide one in this
section. As background, however, a mini-review of the equations [1] of active hydrodynamics
and the elementary mathematics leading to the instability is unavoidable. An active suspension
is described on large time- and length-scales by three fields: the hydrodynamic velocity field
u of the active suspension, the concentrationc of active particles, and the traceless symmetric
second-rank orientation tensorQ, as functions of positionx and timet . For apolar ordering,
the velocity of the active filaments relative to the solvent does not enter the hydrodynamic
description, since it is neither a conserved nor a broken-symmetry variable in the sense of [4].
For the purpose of understanding the instability in an unbounded system it is enough to consider
apolar ordering, which is completely characterized byQ. As shown in [1], the only difference in
the polar case as far as the generic instability is concerned is that the unstable mode should travel
at a fixed speed as it grows; the growth rate has the same form as in the apolar case. Interesting
complications are thus posed by the polar case only when bounding walls are present, as we
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shall discuss later. Conservation of the number of active particles is expressed as

∂tc = −∇ · J (1)

with a current

J = cu + D0∇c+ D1Q · ∇c+ W1c∇ · Q +ξ (2)

arising, from left to right on the right-hand side of (2), from advection, isotropic (D0) and
anisotropic (D1) diffusion, the activity of the particles, characterized byW1, and noise (ξ ) of
thermal and nonthermal origin.

The orientation tensorQ evolves by equations familiar from liquid-crystal hydrodynamics
[4, 5]:

(∂t + u · ∇)Q − (Ω · Q − Q ·Ω) =

[
λ0A +λ1A · Q − 0

δF

δQ

]
ST

, (3)

where the subscript ‘ST’ means we must take the symmetric traceless part of the entire right-
hand side of (3), A andΩ are the symmetric and skew parts of the velocity gradient tensor
∇u, λ0 andλ1 are positive reversible kinetic coefficients related to flow-alignment,F [Q, c] is
a free-energy functional favouring a steady state with a nonzeroQ, imposing costs for spatial
gradients inQ, and containing permitted coupling betweenc andQ. The hydrodynamic velocity
field, ignoring inertia, obeys the Stokes equation of force balance∇ ·σ = 0. The total stress
σ comprises contributions from viscosityη, pressurep, and the orientation tensorQ. The
first two are familiar from ordinary fluid mechanics. The contribution fromQ is the sum of
terms standard to nematic hydrodynamics [4, 5], and a crucialactiveterm W2cQ whereW2 is
a phenomenological parameter characterizing the strength of the force dipole carried by each
active particle. What this means is that in an active system a state withQ 6= 0 has a nonzero
deviatoric stress. If we associate the principal axis ofQ with the orientation of the underlying
filaments, then positive and negativeW2 correspond respectively to tensile and contractile
filaments. In what follows we shall treat both cases for generality; while the contractile case is
of relevance to cytoskeletal filaments, many swimming organisms are macroscopically tensile.
The Stokes equation thus reads

−η∇
2u = ∇ ·

[(
λ0

δF

δQ
− λ1Q ·

δF

δQ

)
ST

− W2cQ

]
− ∇ p. (4)

To see the instability, assume the system is in a quiescent (u = 0) state of uniform orientational
order with filaments pointing alonĝz, Q = diag(−Q/3, −Q/3, 2Q/3). The concentrationc
plays no role here so we set it to its mean valuec0. Consider a long-wavelength perturbation with
filaments tilting slightly along±x, i.e., a smallQxz. Two cases are easiest to analyse: (i) splay:
variation only alongx andu = u(x)ẑ; (ii) bend: variation only alongz (bend) andu = u(z)x̂.
Project out the pressure and work to lowest order in wavenumberq: (4) then becomes a balance
between active and viscous stresses only. Solving foru and inserting it in (3) yields, to lowest
order inq,

∂t Qxz = −
αc0W2

η
Qxz (5)

for splay and

∂t Qxz = +
αc0W2

η
Qxz (6)
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Figure 1. Understanding the splay instability of contractile filaments: splayed
sets of filaments pumps fluid out their open ends, shearing the filaments in
between so they tilt further.

for bend, whereα > 0 depends onQ, λ0 andλ1, and the finite timescales in theq → 0 limit
are a consequence of the long-ranged nature of the Stokesian hydrodynamic interaction. As
promised, there is a linear instability of the splay mode for contractile filamentsW2 < 0 and the
bend mode for tensile filamentsW2 > 0. Let us use the remarkably simple forms (5), (6) to see
what is going on physically.

A single contractile filament pulls fluid in from both ends of its long axis, and ejects fluid
in the plane normal to it, and a single tensile filament does precisely the opposite. Now consider
long-wavelength splay imposed on an initially parallel collection of contractile filaments. In
figure1 the filaments in the left half of the figure are more spread apart at the top end than at
the bottom, and those in the right half are the other way around. Fluid is thus pulled in more
strongly at the bottom in the left half and at the top in the right half. This results in a shear
flow over the central portion, with extensional axis oriented in such a way as to tilt the filaments
further in the direction in which they were already perturbed. Similarly, a single tensile filament
pushes fluid out at both ends along its long axis, and thus sucks fluid radially inward in the
perpendicular plane. Figure2 shows a configuration of tensile elements with long-wavelength
bend. The curvature now means that the fluid is sucked in more from the right in the top half
and from the left in the bottom half of the picture. Thus the mid-section is sheared in such a way
as to increase its tilt. This completes our admittedlyex post factorationalization of the generic
instability of ordered active filaments in suspension. It should be noted that by assuming that the
fluid flow due to a given configuration of filaments sets in everywhere at once, the arguments
were implicitly using the Stokesian approximation. It should be added that the instability of
tensile filaments to bend is very similar to the buckling instability of a column [17].
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Figure 2. Understanding the bend instability of tensile filaments: bent sets of
filaments shear the filaments in between so they tilt further.

2.2. Effect of translational ordering

Elongated particles can form translationally ordered phases as well at large concentration.
Start with an ordered phase with active filaments with orientation given by the director field
N̂ = ẑ+ δN⊥ where the mean orientation is taken alongẑ and the transverse directionsx and
y are collectively labelled⊥. This phase is subject to the instability we just discussed in
section2.1. Now change conditions so that the system undergoes a transition to (a) a columnar
hexagonal (hereafter H) phase, for example, with 2-dimensional translational (2D) order in the
plane perpendicular to the filaments, or (b) a lamellar (hereafter L) phase with 1D translational
order along the filaments. Case (a) is of particular relevance for biofilaments because of
their tendency to bundle. Translational order introduces new broken-symmetry variables and
corresponding elastic restoring forces [5]. The H phase is endowed with a two-component
displacement fieldu = (ux, uy) and the L phase with a one-component displacement fieldu.
The preferred intercolumn or interlayer spacing slaves the director deviation [5]: δN⊥ ' −∂zu
in the H phase andδN⊥ ' −∇⊥u in the L phase. Thus, a splay deformation in the H phase will
thus dilate or compress the intercolumn spacing, and a bend in the L phase will do likewise
to the interlayer spacing. In the absence of active stresses, for a system with viscosityη and
typical elastic moduliB, the displacement fields, in the viscosity-dominated regime, have an
exponential relaxation rateB/η. Hence, by the slaving principle just mentioned, so do splay
in the H and bend in the L phase. Recall from (5) and (6) that the instability growth rates in
the absence of translational order are proportional toW2c0/η whereW2 is a measure of the
activity. Elastic and active stresses thus compete here. If the elastic moduliB, which encode
interfilament interactions (whether energetic or entropic), are large enough, the presence of
translation ordering will suppress the splay instability of contractile filaments, in the H phase,
and the bend instability of tensile filaments, in the L phase. Note that contractile filaments
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with L order, or tensile filaments with 2D translational order, are not saved from their generic
instability.

Generalizing the preceding arguments, it is clear that asingle, active, fluid membrane
[18]–[21] with contractile or tensile proteins of forceW and 2D concentrationφ disposed
normal to it is like a membrane under in-plane tension of magnitudeWφ, negative for the
contractile and positive for the tensile case. Undulations of such a membrane should thus
have a characteristic relaxation or growth rateWφq/η at 2D wavenumberq, as one can
see by imitating the calculation of the dynamics of a tense membrane with hydrodynamic
interaction [22]. Relaxational or unstable modes of this form do not arise in earlier analyses
of active membranes [18, 19, 21] because the dependence of the active stress on the membrane
orientation was not included.

3. The mechanics of confined active filaments

3.1. Confinement suppresses the generic instability

It was shown in [8] that active suspensions with homogeneous long-range orientational order
have a nonzero deviatoric stress, and that a contractile suspension approaching such an ordered
state behaves like a passive systems neartranslational freezing. However, reference [8],
unlike [10], was conservative about identifying active ordered suspensions as a kind of yield
stress material, because of the generic instability [1] discussed in section2. To be able to
measure the novel viscoelastic properties of a homogeneously ordered active suspension, one
must suppress the instability. One way is to impose shear [13], which does stabilize the filaments
at an angle to the flow, but only past a threshold shear-rate. Instead, confine the suspension to a
film of thicknessb in thez-direction, and assume the system size in thexy =⊥ plane is much
larger thanb. This is different from [7] where the important boundary condition is imposed
on walls in thexy plane. The two standard boundary conditions on the filaments at the walls
are homeotropic (normal to the walls) and homogeneous (parallel to the walls but otherwise
unconstrained). Neither of these picks out a direction in the⊥ plane. The velocity field obeys no
slip at the walls, so the slowest velocity mode hasz component of its wavevector equal toπ/d.
The effective viscous damping for a mode with in-plane wavevectorq⊥ is nowη(q2

⊥
+ (π/d)2.

If we repeat the hydrodynamic analysis of section2 for splay modes, and now include the usual
contribution to the relaxation from director elasticity, with Frank constantK , equation (5) is
replaced by

∂t Qxz = −

[
αc0W2

q2
x + (π/b)2

+ K

]
q2

x

η
Qxz. (7)

Forqx → 0, asb is changed from large to small values, the director diffusivity(K +αc0W2b2)/η

goes from negative (unstable) to positive (stable) for the contractile caseW2 < 0. Thus, a
sufficiently closely confined sample of an active nematic suspension is stable and one can talk
meaningfully about its mechanically response to small perturbations.

A similar analysis can of course be repeated for tensile filaments and the bend instability. In
either case, liquid-crystal physicists will note the close analogy to the undulational instability [5]
of a smectic under tension. The difference here is that the tension is internally generated by the
activity.
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3.2. Filament orientation, forces at a wall, and an analogy to granular matter

Filaments at a wall, whether polar or apolar, in general are expected to lie normal to or parallel
to the wall, corresponding to the two standard boundary conditions of liquid crystal physics
discussed above. It is interesting to note that these have an important consequence in the present
context: they correspond to two types of active force centres at a boundary. Such forces can
thus push or pull on boundaries, or transport material actively along the boundary. The normal
forces are those which enter, for instance, in motility based on actin polymerization [23], while
the parallel forces have received less attention.

Let us turn to the special issues arising in the case of polar filaments in a finite geometry. On
general grounds of symmetry [24], a polar object under nonequilibrium conditions should have
a nonzero drift velocity. Passive filaments in a shear flow, if parameters are in the right range,
will align in the bulk at an angle to the flow. Switching on activity and polarity, we see that the
filaments will now try to move. Since they cannot penetrate the wall they must lie parallel to
it. Two possibilities present themselves: the filament configuration in the plane of the walls can
be isotropic, like the actin meshwork in the cortex of a cell, or more ordered, like microtubules.
However, the filaments could move in the bulk of the sample, and lose their motility at the walls
simply by depolymerizing. Letc andm be the volume fractions of polymeric filaments and
monomers, with a simple reaction betweenn monomers and one filament, with forward and
backward reaction rate constantsk+ andk−. Let the filaments have a velocityv in the bulk of the
sample cell and zero at the walls, and let us say the monomers have only diffusive, not directed,
motion, with diffusivity D. Ignore filament diffusion. Then the balance between monomer and
filament reads

∂tc = −k−c+ k+mnc− ∇ · (cv); (8)

∂tm = nk−c− nk+mnc+ D∇
2m. (9)

It is straightforward to see from these equations that a steady state can be found with a return
flux of monomer balancing the forward flux of filaments decreasing to zero as it reaches a wall.
The rheological consequences of depolymerization remain to be investigated.

3.2.1. Analogy to fragile jammed granular matter.Lastly, the formσ a
∼ NN for the active

stress of filaments with macroscopic orientationN, as discussed in [1, 8] and at the start of
this paper is strongly reminiscent of the constitutive equation proposed for fragile jammed
matter [16] with force chains, if we identify the filament axisN with the force-chain director
in [16]. Consider an ordered suspension of contractile filaments, with sample size small enough
to evade the generic instability. Impose a small shear; it will orient at the flow-alignment angle
for that shear geometry. If the shear is switched off, it will then display solid-like elasticity
provide static shear is applied with the same principal axes as before. If now the sample is
sheared in a different direction, it willflow and rearrange and jam once again with angle
consistent with the new shear, and will then support static stresses with respect to this new
direction. This appears to us to be completely analogous to the behaviour outlined in [16]. Of
course, the stress in granular jams is externally imposed whereas here it is generated by the
particles. Moreover, contractile filaments align with their axes in the extensional direction of an
imposed stress, while in granular matter the chains are along the compressional axis.
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