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Abstract. Non-exponential electron transfer kinetics in complex systems are often
analyzed in terms of a quenched, static disorder model. In this work we present an
alternative analysis in terms of a simple dynamic disorder model where the solvent is
characterized by highly non-exponential dynamics. We consider both low and high
barrier reactions. For the former, the main result is a simple analytical expression
for the survival probability of the reactant. In this case, electron transfer, in the long
time, is controlled by the solvent polarization relaxation—in agreement with the
analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is
also non-exponential, but for different reasons. The high barrier reactions, on the
other hand, show an interesting dynamic dependence on the electronic coupling
element, V,,.
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1. Introduction

Electron transfer reactions often show non-exponential kinetics. The probable cause
for this non-exponentiality has been a subject .of considerable discussion in the
literature in the recent past. For biological electron transfer reactions, this non-
exponentiality is usually atttributed to the existence of multiple configurations often
observed in the biosystems, each with different activation energy and solvent environ-
ment. Understanding of this non-exponentiality, therefore, is highly non-trivial and
requires the elucidation of reaction parameters for the different configurations. We
shall not discuss this any further. Electron transfer reactions can be strongly non-
exponential even in homogeneous phase, such as in liquids and glasses. Actually, the
Sumi-Marcus theory' was first formulated to explain such non-exponentiality ob-
served in low or zero barrier photo-electron transfer reactions. Now, the non-
exponentiality in Sumi-Marcus theory comes from the widening of the reaction zone
due to the participation of a low frequency intra-molecular vibration in the electron
transfer. The extent of this intrinsic non-exponentiality depends on the width of
the reaction window determined by the ratio of the re-organization energies of the
solvent and the vibrational modes and the degree of non-exponentiality is rather
limited. There can, however, be another source of non-exponentiality in homogeneous
systems. This is the non-Debye dielectric relaxation of the medium. In this article,
we briefly discuss this issue.
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The attention on the role of non-Debye dielectric relaxation in the dynamics of
electron transfer was triggered by an interesting article of McGuire and McLendon?
who found that electron transfer reaction in glassy glycerol was highly non-exponen-
tial. In particular, it was found that at short times, the electron transfer kinetics exhibits
an interesting fractional power-law dependence on the characteristic dielectric relax-
ation time of the medium. At long times, the usual linear dependence was observed.
These experimental results in turn motivated several interesting theoretical studies
aimed at understanding the kinetics of electron transfer in non-Debye medium.

Rips and Jortner* analysed the electron transfer reaction in the rigid glycerol by
assuming a continuous distribution of relaxation times. They considered a medium
characterized by the Davidson—Cole (DC) dielectric spectrum? with the frequency (w)
dependent complex dielectric susceptibility function (¢(w)) given by

8() = £ + (69 — £, )1 + ity ¥ 1)

where ¢, and ¢, are the zero and infinite frequency dielectric constants, respectively,
Tpc 18 the characteristic (Davidson—Cole) relaxation time and the exponent f is less
than unity. For glycerol, § has a nearly temperature independent value of about 0+6.
The Cole~Davidson expression provides a good fit for a large number of polar solvents,
particularly at low temperatures where collective effects give rise to a marked deviation
form the Debye spectrum.

There are clearly two ways of looking at the origin of the Davidson—Cole expression.
First, it arises from cooperativity in the collective orientational relaxation due to the
inter-molecular interactions. The second approach is to consider the DC expression

to arise from a distribution of relaxation times whose probability distribution is,
fortunately, known exactly and is given by

3 B
gDc(TDc)=Sm(n )< i ) (r<0),

T \Tpc—7T
=0 (x>0). @

Rips and Jortner evaluated the average rate by averaging the rate for a given 1, over
the above expression distribution function. Two important conclusions emerged from
their analysis. First, the average electron transfer rate display a fractional dependence
ofthe rate on g,,.—the exponent being equal to Bp—the same exponent that determines
the distribution of the inhomogeneously distributed relaxation times. Second, the
dependence of the adiabatic rate on the electronic coupling gets modified to V24,
Since =06, the dependence of the rate on V is considerably weaker than that in the
non-adiabatic limit.

Rips and Jortner did not investigate the time dependence of the reactant population.
Such a calculation was carried out by Nadler and Marcus®. The decay is non-
exponential, particularly at the short times where the rate of Nadler and Marcus agrees
with that of Rips and Jortner and predicts the same fractional power-law dependence
on tpc. In contrast, a different behavior holds for the long time rate which is
proportional to 7,,... The long time decay is also non-exponential, but markedly less
than that at shorter times.

It 1s interesting to note that one can formulate a dynamical disorder model® of the
above ?roblfzm7 where one need not assume a static inhomogeneous distribution of
relaxation times, although the dielectric function can still be given by a highly
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non-Debye form like Davidson-Cole. This model is particularly simple for low barrier
reactions. Here the equation of motion is given by the one dimensional version of
Sumi-Marcus theory but with a time dependent diffusion coefficient the latter is
determined by the solvation dynamics time correlation function, as discussed elegantly
by Hynes®. Note that here the diffusion constant is time dependent because of the
non-Debye dielectric function. In a barrierless photoelectron transfer reaction, the
short time dynamics is controlled by the time dependence of D(t). Since the latter is
determined by the solvation time correlation function, we have a simple way to
determine the short time dynamics. In the following we make the above discussion
quantitative.

The organization of the rest of the paper is as follows. In the next section we discuss
the theoretical formulation. In section I1I, we discuss the results. Section IV concludes
with a brief discussion.

2. Theoretical formulation

The potential energy surfaces of the reactant and the product are assumed to be given
by the following quadratic forms

XZ
W =4 ®
non =82y @
X

Here X denotes the solvent coordinate, A is the solvent reorganizationenergy’ and AG
is the free energy change of the reaction. A simple schematic representation of the
diabatic surfaces, Vx(X) and V,(X), is shown in the figure 1. For low barrier reactions,
we shall follow the Sumi-Marcus prescription to include the solvent effects. The
reaction coordinate X is the usual Marcus polarization coordinate.

2.1a. Low barrier reactions

The time-evolution of the probability distribution of the system on the locally excited
surface (P, (X, 7)) is assumed to be given by the following master equation
LD (1 SCOP,X, 0+ SCOP,(K, ®
The first term simulates the diffusion in a potential well V,(X). The second and the
third terms take into account the actual transfer and the back transfer along the sink
curve. (X) is the position dependent sink function which describes the path along
which the electron transfer takes place between the LE and the CT surfaces. In the
Sumi-Marcus picture, this sink function describes a wide reaction window when the
reorganization energy of the intra-molecular vibrational mode is comparable to that
from the solvent polarization and vice versa. The above equation with P, and
P, interchanged describes the motion on the CT state in the potential energy surface
V()
When the dielectric relaxation is strongly non-Debye, the solvation time correlation
function is often biphasic with a large difference between the initial and final time
constants. In such a situation the operator % is a non-Markovian time dependent
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Figure 1. A schematic two surface representation of the free energy surfaces of_ an
electron transfer reaction. The abcissae is the conventional Marcus solvent reaction

coordinate, denoted by X in the text. The reorganization energy (A) and the free
energy of reaction (AG) are indicated in the figure.

operator. It is assumed to be given by a generalized Smoluchowski operator which is
given by the following form

# 1 a[anx :
“x X()(6X2+kBTaX[ ix D
where D(f) is the time dependent diffusion coefficient of motion along the reaction
coordinate. D(t) is given by the relation’

D(t) = — k, TdlnA(z)/dt, N

where A(t) is the solvation time correlation function. Since the liquid is non Debye,

A(t) is also non-exponential and, as shown below, may be fitted to a Kohlrausch—
William-Watt (K WW) stretched exponential form?

A@) =exp(~t/zg), t)
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where the solvation time 75 and « are determined by many factors, including the
Davidson—Cole exponent, . These two exponents (x and f) need not be equal,
although they may sometimes be close to each other in value.

Equations (5-7) describe the dynamic disorder model. In contrast to the static
disorder model, here the solvent relaxation is not quenched.

The experimental observable is the reactant survival probability, P(z), defined by

Pt)= r dXP(X,1). 9

e ]

22b. High barrier reactions

The situation is quite different for the high barrier adiabatic reactions. Here a formula-
tion following Hynes can be used to obtain the long time rate of electron transfer. This
scheme, interestingly however, provides a rate not too different from that of Rips and
Jortner. For non-exponential A(f) the rate shows fractional dependence on ¢ pc- In the
present model, the solvent dependent rate of electron transfer of an adiabatic reaction is
obtained by solving the well-known Grote~Hynes formulae

k, = (i,/wb)kTST, (10)
__ 9
b=y (
1
A(z)= m, (12)

where k57 is the transition state rate of the bi-stable (double well) system with a barrier
frequency w,, reactant well frequency wg and an activation energy which is determined
by the Marcus theory. In the above equation, 4, is the reactive frequency, {(z) is the
frequency dependent reactive friction and A (z) is the Laplace transform of the solvation
time correlation function A(z) = [ dtexp(— zt)A(z). The solvent dependence is deter-
mined by the curvature of the adiabatic surface near the barrier top. This curvature is
determined by w, which is turn is determined by the electronic coupling V,, between the
two surfaces. For harmonic diabatic surfaces, this relation between the barrier curva-
ture (w,) and the electronic coupling is given by the following simple relation

wf =wd [1+1/V,]. (13)

The above equation shows that we have a cusp-like barrier for a weakly adiabatic
reaction and a broad barrier for an adiabatic reaction. It is curious to note that in this
model, the dynamic solvent effects also depend on the solvent reorganization energy (4)
through the ratio 4/V,,. We shall show below that this has an important role to play in
determining the dynamic solvent effect and is in fact connected to a previous observa-
tion of Rips and Jortner.

We next present the results.

3. Results and discussion

In order to obtain the time dependent reactant survival probability, we first need to
calculate the solvation time correlation function, A(f). We have calculated this A(t) for
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Figure 2. The calculated normalized solvation time correlation function, Alr) is
plotted against time (¢) for solvation of a spherical solute probein solvent glycerol at
temperature T=233 K. The solute probe is chosen to be of the same size as the
well-known dye molecule Coumarin 103. This solvation time correlation function
has been calculated by using the theory described in references 10 and 11.

glycerol at low temperature (T= 233K ) where the dielectric relaxation can be fitted to
the Davidson—Cole form with & = 60-5, 5, =42, 7,, = 1-1510~5s and = 0-608. The
normalized solvation time correlation function (A()) has been obtained by using the
molecular theory which has been discussed elsewhere in detail’® and which has been

remarkably successful in describing solvation dynamics in both simple and complex
systems. The results of the calculation of A(¢) are shown in figure 2. The decay is clearly
non-exponential.
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Figure 3. The time dependence of the stretched exponential exponent (the KWW
exponent)a(t)is plotted against the scaled time t/1,,c. a(t) has been calculated using
(14) of the text. The inset depicts the same for a very short time.

In order to make connection with the work of Rips and Jortner, we need to
investigate the nature of the non-exponentiality by calculating the time dependence of
the stretched-exponential exponent «, defined by

d
a(t) = —=In(— InA(t)). : (14)

dt
The result of this calculation is shown in figure 3. In the same figure very short time
behavior is depicted in the inset. There are two points to note. First, in the long time we
find a good stretched-exponential behavior of A(f) with the KWW exponent’ o having
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a value close to 0-38. In the short time, however, we find a different behavior. Here we
find a stretched exponential behavior with the value of the KWW exponent equal to
0-6. The above results have the following consequence in electron transfer.

When the electron transfer reaction is strongly coupled to solvation dynamics, then
in the short time one may expect a non-exponential reaction dynamics which is
controlled largely by the time dependent diffusion coefficient, D(t), related to the
solvation time correlation function A(z) by (7). When A(2) is stretched exponential, D ()
has a fractional dependence on the relaxation time constant which is here proportional
to the Davidson—Cole relaxation time, 7. This part agrees with the prediction of Rips
and Jortner. However, the present results seem to differ in detail from the prediction of
Nadler and Marcus in the sense that N-M predicts an exponential rate in the long-
time that seems unlikely unless the intersystem crossing rate is much slower than the
solvation dynamics which is doubtful in slow liquids like glycerol.

We next turn to calculate the rate and for this we need to specify the coupling
between the two surfaces and the nature of the sink, S(X). One can derive a close form,
useful expression in the limit when the coupling is strong (the adiabatic limit) and the
sink is narrow. Here for an arbitrary initial distribution, P, (X), the reactant population
is given by the following expression

P(t)= erf(F(X,1)). (15)
The function F(X, 1) is given by the following expression

1
F(X,t) = —m———e=exp[— (X — X, A(1)*]/[2(1 — A2(&))]. 16
T A70) p[—( oA[®)*1/12( ®)] (16)
Several interesting predictions follow straightaway. First, in the long time, the
electron transfer kinetics is determined by the solvation time correlation function, A(z).
Second, in the short time, the reaction is even slower than A(t)

When the initial distribution is an equilibrium distribution on the reactant surface,
then the following simple expression is obtained

P(t)=(2/n)Sin~ Y(A(F)). (17

Note that this simple expression holds even when the solvent relaxation is non-
exponential-earlier derivations, for example by Sumi and Marcus?, were restricted to
exponential A(t) only.

The time dependence of the reactant population given by the above equation is
shoyvn in the figure 4 calculated with the A(2) for glycerol which has already been
depxcte.d in figure 2. In order to compare and understand the correlation with solvation
dynamics we also show the solvation time correlation function itself. Note the slaving
of the electron transfer reaction to the solvation dynamics in the long time. But the two
can be rather different at the very short time which, however, may not be noticeable.
Thesg results are in qualitative agreement with the earlier studies*?, except that (17)
predicts strongly non-exponential dynamics even in the long time. This is a direct
consequence of assuming an absorbing barrier at the minimum (“the pinhole sink™). In
general, sink function is much more complex. If can be wide because of the participa-
tion of the non-reactive vibrational modes? and will have a finite rate. Thus, the decay
of the reactant probability would be less slaved to solvation dynamics than predicted in

the ﬁgure 4. Unfortunately, for the general case, no simple solution is available and the
solution needs to be obtained numerically.
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Figure 4. The reactant survival probability function P(t) given by (17) is plotted
against time for an adiabatic electron transfer reaction (the solid line). For compari-
son, we have also plotted the normalized solvation time correlation function, A(f) in
the same figure (the dashed line). In the inset, we show the two functions in the limit
of a very short time.

or high barrier reactions, the barrier frequency could be rather large in the weakly
batic limit. In this limit, solvent dynamics will have little effect on the electron
sfer rate which will be given by the transition state theory result, that is, by
Marxcus expression. In the adiabatic limit, on the other hand, the rate can be
tapntiallylower than the TST prediction and the extent of the decrease will certainly
etermined by the coupling element V.., for a given value of the Marcus reorganiz-
1e12€18Y, 4. An interesting consequence of (13) is that the barrier frequency w, of an
ba tiC reactionvariesas [1+ 1/V,,1%5. This observation may be useful for a weakly
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adiabatic reaction where w, is predicted to vary as V;%5. Because solvent dielectric
frictional retardation increases as w, decreases, rate of a weakly adiabatic electron transfer
reaction will show complex dependence on the electronic coupling parameter, vV, In
general, the dependence will be weaker than V2, as already observed by Rips and Jortner.
In addition, the dynamic solvent effect will introduce a coupling between the non-
exponentiality parameter (2) of the solvation time correlation function, A(f) and the
electron transfer rate. Another intersting point is that the extent of this coupling depends on
the reorganization energy A. While this is expected on physical grounds, we are not aware of
any theoretical study addressing this point which deserves to be studied further.

4. Conclusion

Broadly, there are two different causes of marked non-exponentiality in electron
transfer kinetics. The existence of the reaction system in multiple static configurations
is the common explanation and this is certainly valid in many cases, especially in
biological systems. This is also the Rips—Jortner—Nadler~Marcus scenario where the
reaction occurs in a system characterized by a distribution of dielectric relaxation times
which are uncorrelated among themselves (quenched disorder model). The second
explanation is presented here where we have a dynamic disorder but with a high degree
of non-exponentiality. We have shown here that in this case one can calculate the
solvation time correlation function from the non-Debye dielectric relaxation data. The
resulting non-exponential solvation time correlation function defines a time dependent
diffusion constant for the motion on the solvent reaction energy surface. It is shown
that many of the results of Rips—Jortner—Nadler~Marcus analysis can be recovered in
this dynamic disorder model. These are, however, some notable differences. The most
important is that the present treatment predicts larger non-exponentiality in the long

time. In a future publication we shall address the details of the difference between the
static and the dynamic disorder models!?!.
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