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In low-temperature-supercooled liquids, below the ideal mode-
coupling theory transition temperature, hopping and continuous
diffusion are seen to coexist. Here, we present a theory that shows
explicitly the interplay between the two processes and shows that
activated hopping facilitates continuous diffusion in the otherwise
frozen liquid. Several universal features arise from nonlinear inter-
actions between the continuous diffusive dynamics [described here
by the mode coupling theory (MCT)] and the activated hopping
(described here by the random first-order transition theory). We
apply the theory to a specific system, Salol, to show that the theory
correctly predicts the temperature dependence of the nonexponen-
tial stretching parameter, β, and the primary α relaxation timescale,
τ. The study explains why, even below the mean field ergodic to
nonergodic transition, the dynamics is well described by MCT. The
nonlinear coupling between the two dynamical processes modi-
fies the relaxation behavior of the structural relaxation from what
would be predicted by a theory with a complete static Gaussian
barrier distribution in a manner that may be described as a facilita-
tion effect. Furthermore, the theory correctly predicts the observed
variation of the stretching exponent β with the fragility parame-
ter, D. These two predictions also allow the complexity growth
to be predicted, in good agreement with the results of Capacci-
oli et al. [Capaccioli S, Ruocco G, Zamponi F (2008) J Phys Chem B
112:10652-10658].
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T he glass transition is characterized by a number of interesting
kinetic phenomena. Very slow and simultaneously nonexpo-

nential relaxation of time correlation functions over large time
windows is one such important phenomenon. This relaxation is
often approximated by the stretched exponential, Kohlrausch–
William–Watts (KWW) formula, φ(t) = exp(−(t/τ ))β , with both
β and τ exhibiting nontrivial temperature dependence. The origin
of the stretching is usually attributed to the presence of dynamic
heterogeneity in the system (1, 2). The temperature dependence
of the typical relaxation time can be described by the the Vogel–
Fulcher–Tamman (VFT) expression, τ = τVFT exp(DTo/(T−To)),
where τVFT is the high-temperature relaxation time, To is the VFT
temperature, and D is the fragility index. The fragility index, D,
determines the degree of deviation from the Arrhenius law that
is appropriate for simple activated events. Experimental and the-
oretical model studies have shown that β and D are correlated
(3–5). The temperature dependence of τ has also been described
by phenomenological mode coupling theory (MCT) expression,
τ ∼ [(T − Tfit

c )/Tfit
c ]−γ , (γ > 0), but this ultimately breaks down

at low temperature. Tfit
c is referred to as the MCT transition tem-

perature. Above Tfit
c , MCT is found to explain many experimental

results (6–9), and below Tfit
c , the MCT picture of continuous diffu-

sion fails eventually. It is conjectured that this breakdown is due to
the ergodic to nonergodic transition in the dynamics and below Tfit

c
activated dynamics becomes a dominant mode of transport. How-
ever in an elegant work, Brumer and Reichman (10) (BR) have
recently shown that the idealized MCT using microscopic input
breaks down at a much higher temperature, T0

c , which corresponds
to the temperature, TL, where the landscape properties show

a sharp change. Kob et al. (11) have shown that the structural
MCT predicts the proper dynamics till very close to Tfit

c but needs
static inputs to be calculated at a higher effective temperature.
Stevenson et al. (12, 13) have shown that below the ergodic to
nonergodic transition but before the predicted crossover to the
activated dynamics, string or fractal excitations drive the dynam-
ics and that this qualitatively describes the crossover temperature
as occurring at a specific value of the configurational entropy.

Computer simulation studies seem to show the coexistence of
continuous diffusion and hopping as mechanism of mass trans-
port at temperatures much above Tfit

c (14–17). These studies show
that individual hopping events are often followed by enhanced
continuous diffusion or more hops of the surrounding atoms or
molecules (14, 15, 18). Simulations have also shown that a single
hopping event relaxes the local stress (16), hence, it is expected
that hopping events are followed by continuous diffusive dynam-
ics. From BR study we know the temperature at which the ergodic
to nonergodic transition takes place (T0

c = TL) (10). However,
there is no clear theoretical understanding of the dynamics in the
range, Tfit

c < T < T0
c . Furthermore, we need to understand, why,

below T0
c , the MCT still seems to explain the form of the dynam-

ics rather well and, finally, what happens at Tfit
c that leads to the

breakdown of the MCT as far as the temperature dependence is
concerned. In an earlier work it was shown that the full dynamics
is a synergetic effect of continuous diffusive motion and activated
dynamics (19). Here, we show how the coupling between these
two dynamical processes influences each other. The coupling leads
to hopping-induced diffusive motion below T0

c and thus explains
the validity of MCT below T0

c . The study also explains the ori-
gin of the apparent breakdown of MCT at Tfit

0 . The crucial result
of the present study is that the coupling renormalizes the distri-
bution of hopping barriers which participates in the dynamics.
This provides a formal treatment of the facilitation effect dis-
cussed by Xia and Wolynes (4, 5) in their theory of the stretching
exponent.

The present work uses a scheme of calculation similar to the
one presented earlier (19) with a few modifications. For describ-
ing the diffusive motion we use the schematic F12 model of the
MCT (20–22) but the activated hopping dynamics now have a sta-
tic barrier height distribution (4, 5). The equation of motion for
the total intermediate scattering function is written as,

φ(t) # φMCT(t)φstatic
hop (t). [1]

In describing the activated dynamics we consider that there is a
distribution of the hopping barriers in the system arising from the
entropy fluctuation (4, 5). Thus, the total contribution from the
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multiple-barrier hopping events is written as,

φstatic
hop (t) =

∫
φs

hop(t)P static(%F)d%F

=
∫

e−tKhop(%F)P static(%F)d%F, [2]

where P static(%F) is taken to be Gaussian,

P static(%F) = 1
√

2π(δ%F)2
e−(%F−%Fo)/2(δ%F)2

. [3]

We call this distribution, the static barrier height distribution.
Here, φs

hop(t) = e−tKhop(%F) describes the activated hopping
dynamics for a single hopping barrier. Khop(%F) = F(q)Phop(%F).
The expression for F(q) is given by F(q) = v0

vP
(1 − G(q)).¶ For

the present work the q dependence of F(q) will be neglected and
F(q) will be set to unity. Phop(%F) is the average hopping rate,
which is a function of the free-energy barrier height, %F, and is
given by Phop(%F) = 1

τ0
exp(−%F/kBT) (23).

The equation of motion for the MCT part of the intermediate
scattering function, φMCT(t), is written as,

φ̈MCT(t) + γ φ̇MCT(t) + (2
0φMCT(t)

+ λ1(
2
0

∫ t

0
dt′φMCT(t′)φstatic

hop (t′)φ̇MCT(t − t′)

+ λ2(
2
0

∫ t

0
dt′[φMCT(t′)φstatic

hop (t′)]2φ̇MCT(t − t′)

= 0 [4]

Now, the MCT part of the intermediate scattering function,
φMCT(t) is self-consistently calculated with the full scattering func-
tion, φ(t). In describing the dynamics with schematic MCT the
coupling between the different wave vectors is neglected and the
contribution from the static and dynamic quantities is calculated
at a single wavenumber q = qm (qm is the wave number where the
peak of the structure factor appears) which is known to provide the
dominant contribution. In the present formalism it is assumed that
hopping opens up multiple relaxation channels for the otherwise
frozen MCT dynamics.

Eqs. 1 and 4 together describe the full dynamics, which is similar
in spirit to the extended MCT (21) and other recent approaches
(24). The similarity of the present scheme to the extended MCT
of Gotze and Sjogren was elaborately analyzed in our earlier
work (19).

As in our earlier work (19), the values of (o and γ are kept
fixed at unity, neglecting their temperature dependence, and the
scaling time is taken as 1 ps. λ1 = (2λ−1)

λ2 + ε λ

(1+(1−λ)2)
and

λ2 = 1
λ2 + ε

λ(1−λ)
(1+(1−λ)2)

(21, 22). The MCT formalism predicts a
relationship between λ and βMCT as βMCT = − log(2)/ log(1 − λ)
(22). ε is a measure of the distance from the ergodic to nonergodic
transition temperature of the ideal MCT, T0

C, thus ε = T0
c −T
T0

c
. To

calculate the MCT part of the relaxation we need to estimate λ
and T0

c . These quantities can be calculated for systems where the
static quantities (like static structure factor) are known, but for
realistic systems, because of the unavailability of the static quan-
tities, the estimation becomes difficult. We thus use the following
methods to estimate λ and T0

c . The ergodic to nonergodic tran-
sition is found to take place at TL where the energy landscape
properties first change (10), thus we set T0

c = TL. TL is also the

¶In the previous article (19) there was a mistake in the derivation of the hopping kernel.
The correct expression is presented here.

temperature where the stretching parameter starts falling (25).
From experimental studies we know that for the Salol system the
stretching parameter starts falling at T = 278 K (7). Thus, we esti-
mate that T0

c = TL = 278 K. Now, to estimate λ in this schematic
MCT equation, we again make use of experimental results. MCT
is expected to explain the dynamics above T0

c ; thus, the stretching
parameter above T0

c should be equal to βMCT = 0.84 (7). We have
also mentioned that λ and βMCT are related. Thus, λ is fixed in
such a way that, above T0

c , we get the correct βMCT.
Next, we discuss the hopping dynamics for the Salol system

as predicted from random first-order transition (RFOT) theory.
According to the RFOT theory, the free-energy cost, F(r), which is
used to calculate the mean barrier height, can be written as F(r) =
+K (r)+A(r)

+K (r)++A(r) − 4π
3 r3Tsc, where +K (r) and +A(r) are the surface energy

terms at TK (Kauzmann temperature) and TA (temperature where
hopping barrier disappears), respectively (19, 23). The tempera-
ture dependence of the configurational entropy can also be given
by an empirical formula (26), sc = sfit(1 − TK/T), where sfit is a
system dependent parameter which is also related to the specific
heat jump at the Kauzmann temperature (%̄cp(T) = sfit(TK/T)).
For the Salol system sfit = 2.65, TK = 175 K and TA = 333 K.
With these values of the parameters the mean barrier height and
the critical nucleus radius are calculated. We find that at T = 280
K, the size of the critical nucleus is above unity. Thus, although
TA = 333 K, for all practical purposes T = 280 K should be con-
sidered as the temperature where activated events start, which, as
found in simulations, is close to T0

c (17). The value of τo is fixed
in such a way that at T = 280 K, both the MCT and the hopping
dynamics together predict a relaxation time that is close to that
obtained in the experiment (8). Thus, for Salol the fitting gives
τ0 = 2400 ps. A more microscopic treatment of the barrier height
can be found by treating the shape of the nucleating region as a
fuzzy sphere (12). The distribution of barrier heights arises due
to the fluctuation in entropy density, which can be related to the
specific heat according to the Landau formula, 〈(%S)2〉 = kBCp
(27), where %S is the entropy fluctuation and CP is the specific
heat. This expression can be rewritten in terms of configurational
entropy fluctuation per bead δsc and heat capacity jump per bead

%̄cp(T) as, δsc =
√

kB%̄cp(T)
4π
3 (r,/a)3 and δsc

〈sc〉 =
√

3kBTTK
4πsfit(T−TK )2(r,/a)3 . Here,

r, is the droplet radius determined by using F(r,) = 0. a is the
length of the bead. We can also relate the entropy fluctuation to

the width of the barrier height distribution, δ%F
%Fo

#
δsc
〈sc〉

1+ δsc
〈sc〉

, and thus

define the width of the static barrier height distribution in terms
of entropy fluctuation and specific heat.

Combining the static RFOT and MCT, we solve Eqs. 1 and
4 numerically.‖ We use a numerical method presented ear-
lier (28) with a minor modification (29). The total relaxation
time, τtotal, and the stretching parameter, βtotal, are obtained
from the coupled dynamics by fitting the long time part of φ(t)
(obtained from Eq. 1) to a KWW stretched exponential function,
φ(t) = A exp(−(t/τtotal))βtotal . Similarly from φMCT(t) we obtain
the MCT relaxation time, τMCT, and the corresponding stretching
parameter, βMCT.

Hopping-Induced Continuous Diffusion
The plot for the relaxation time τtotal is given in Fig. 1, where we
have also shown the experimental results (for Salol) and the fit to
the MCT phenomenological expression. Already the temperature
dependence of τtotal reveals several interesting physics. The τtotal
compares well with the experimental results (8) and predicts the
correct glass transition temperature, Tg = 220 K. Recall that in

‖The results converge properly for the total time step N = 510 and the initial timestep for
the integration is taken to be 10−9 ps.
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Fig. 1. Temperature dependence of the α relaxation timescale for Salol–
hopping-induced diffusive dynamics. The timescale for the longtime part of
the total structural relaxation, φ(t), obtained from experiments (8) (black
circles) and that calculated from the present coupled theory, τtotal (red dia-
monds) are plotted against temperature. We fit the τtotal to the MCT phenom-
enological expression, τtotal ∼ [(T − T fit

c )/T fit
c ]−γ (blue dashed line), we obtain

T fit
c = 258 K. (Inset) We plot (τMCT − τtotal)/τtotal as obtained from the theory

(red stars). The black dashed line is a guide to the eye. The function shows a
jump at approximately T = 258 K. We find that across this temperature the
hopping dynamics changes its role and below T fit

c = 258 K it plays a direct
role in the dynamics. The scaling times is 1 ps.

our calculation the ergodic to nonergodic transition takes place
at T0

c = 278 K where the activated dynamics also becomes signif-
icant. Thus, we know that the idealized MCT prediction breaks
down at T = 278 K and below this temperature, its validity as
such is unclear. However, when we fit the relaxation time to MCT
expression (τ ∼ [(T−Tfit

c )/Tfit
c ]−γ ) we obtain a value, Tfit

c = 258 K,
which is in excellent agreement with the experimental fits (6, 8, 9).

The advantage of the present scheme of calculation is that, in
addition to addressing the coupling between the continuous dif-
fusion and the hopping motion, we can separately analyze their
relative contributions to the total dynamics and explore the origin
of the apparent validity of the MCT below T0

c . Due to the nonlin-
ear coupling in Eqs. 1 and 4, the activated dynamics plays both a
“direct” and a “hidden” role in the total relaxation. The direct role
is the direct relaxation of φ via φstatic

hop . However, if we analyze the
structure of Eq. 4, we find that the activated dynamics also acts
to soften the growth of the longitudinal viscosity, which finally
leads to the relaxation of the otherwise frozen φMCT. Thus φstatic

hop
plays a hidden role in the relaxation by helping φMCT to relax. Ear-
lier simulation studies of Bhattacharyya and Bagchi have already
observed this hidden role of hopping in relaxing the local stress
(16). We now analyze these two different roles of the hopping
dynamics and their effect on the total relaxation.

The present study shows that both continuous and activated
dynamics change continuously across Tfit

c . However, when we plot
(τMCT − τtotal)/τtotal against T (in Fig. 1 Inset) this quantity is
seen to undergo a rapid increase in the temperature range of the
phenomenological MCT transition temperature Tfit

c . This implies
that although below Tfit

c the continuous diffusion still remains the
dominant mode of relaxation, there is an increased contribution
from the activated dynamics. This plot suggests that in the range,
Tfit

c < T < T0
c , where direct hopping contribution is small, the

activated dynamics plays only an important hidden role, whereas
below Tfit

c , it also plays a direct role in the relaxation process.
One important observation is that although idealized MCT

breaks down at T0
c = 278 K, the functional form of MCT con-

tinues to describe the dynamical characteristics until 258 K. The

latter is a widely known result, usually obtained from fitting the
MCT functional forms to the experimental data (6, 8, 9). Thus, our
study provides an explanation of this intriguing result in terms of
the interaction between the MCT and activated dynamics, which
leads to hopping-induced continuous diffusive motion. This also
quantitatively explains the observations reported by Kob et al.
(11). The authors find that until close to Tfit

c the dynamics can
be described via MCT, although the static inputs need to be calcu-
lated at a higher effective temperature. The present study further
shows that as we progressively lower the temperature below Tfit

c ,
although the continuous diffusive dynamics continues to play an
important role in the relaxation, the increased contribution from
the activated dynamics finally leads to the breakdown of the MCT
predictions.

Renormalized Barrier Height Distribution
In Fig. 2 we plot the calculated temperature dependence of the
stretching parameter βtotal. In the same figure we also plot βMCT
and βstatic

hop as predicted by the MCT and the static RFOT theory††

(by using static barrier height distribution), respectively. The
experimental results on Salol are also plotted in the same figure
(6, 7). It is clear that neither the MCT nor the static RFOT distri-
bution can alone describe the proper temperature dependence of
the stretching parameter. However, the coupled theory predicts a
temperature dependence of βtotal which is qualitatively similar to
that found in experiments. The stretching parameter is known to
provide a measure of the heterogeneity in the system. In our study
the heterogeneity arises from the distribution of hopping barriers.
However, below T0

c , βtotal is larger than βstatic
hop , which means that

the barrier height distribution that participates in the dynamics
(dynamic barrier height distribution) is narrower than the initial
assumption of distribution (static barrier height distribution). This
modification of the barrier height distribution (or heterogeneity)
takes place because of the coupling between the diffusive and the
activated dynamics. The timescale analysis reveals that the smaller

Fig. 2. Temperature dependence of the stretching parameter for Salol. The
stretching parameter for the longtime part of the total structural relaxation,
φ(t), obtained from experiments (6) (black squares) and (7) (black circle) and
that calculated from the present coupled theory, βtotal (red diamonds), are
plotted against temperature. In the same plot we also present the stretching
parameter predicted by the RFOT theory by using the static barrier height
distribution, βstatic

hop (blue dashed-dot line) and the MCT, βMCT (green dashed
line) (which shows no temperature dependence).

††When the full static barrier height distribution is considered we can write βstatic
hop =

[1 + (δ%F/kBT )2]−1/2 (4, 30).

Bhattacharyya et al. PNAS October 21, 2008 vol. 105 no. 42 16079



Fig. 3. Temperature dependence of the probability distribution of barrier
heights which participate in the dynamics, Pdynamics(%F). In this figure we
plot the static barrier height distribution, P static(%F), which is used in the
calculation of the total dynamics (black solid curve). From the total dynamics
we again estimate the barrier height distribution that actually participates
in the dynamics (colored dashed line). This has been done for different MCT
relaxation time scale by changing the temperature of the MCT part of the
dynamics (T = 240 K, 230 K, 200 K, and 175 K). As the temperature is lowered,
the barrier height distribution becomes broader.

barriers contribute to the dynamics, which implies that, in the pres-
ence of the quasi-static dynamic heterogeneity, the coupling leads
to a facilitation effect. Regions that would be slow are relaxed by
their neighbors.

To quantify these points, we carry out the following analysis.
Nonexponential relaxation in the system can be considered as
arising from superposition of exponentials,

e−(t/τtotal)
βtotal =

∫ ∞

0
e−t/τPdynamic(τ )dτ [5]

It is now possible to find an effective distribution function of the
relaxation times Pdynamic(τ ) by Laplace inverting the stretched
exponential. Once we obtain the distribution of relaxation times
we can convert it into the distribution of barrier heights by using,
Pdynamic(%F)d%F = Pdynamic(τ )dτ , provided τ can be expressed
in terms of %F. The details are presented in Materials and Methods.
Note that it is possible to find an analytical relation between τ and
%F only when the individual dynamics are exponential. Hence, we
do this analysis considering only exponential MCT relaxation (i.e.,
for this analysis we choose λ such that βMCT = 1.0). We now ana-
lyze the dependence of Pdynamic(%F) on the MCT relaxation time
and show that Pdynamic(%F) not only depends on P static(%F), but
also depends on the MCT relaxation time τMCT = K−1

MCT. We fix the
P static(%F) and change the τMCT by calculating the MCT dynam-
ics [which is coupled to P static(%F)] at different temperatures. The
results are presented in Fig. 3.

At high temperatures, where MCT dynamics is fast,
Pdynamic(%F) is narrow (βtotal is large), and the position of the max-
imum, %Fmax, is shifted to smaller %F (Fig. 3). We also find that, as
the MCT dynamics slows down, the distribution becomes broader
and more non-Gaussian (βtotal also becomes smaller), larger bar-
riers contribute to the dynamics, and %Fmax shifts to higher values
(though it always remains smaller than %Fo). Thus, we find, in
accord with the literature, that as the temperature is lowered (or
the dynamics becomes slower) there is a growth in dynamic het-
erogeneity. We may say that Pdynamic(%F) provides a mean field

estimation of the dynamic heterogeneity. Note that Pdynamic(%F)
is always narrower than P static(%F) and overlaps with it only in the
low barrier side. Xia and Wolynes (4) have given a physical inter-
pretation of this exclusion of the higher barriers from the dynamics
by using the picture of dynamic mosaic structure. Because the
exclusion of higher barriers hastens the hopping dynamics this
can be described as a “facilitation effect.” The present theoretical
model does not explicitly treat the spatial structure of the dynam-
ical mosaic. However, we find that the presence of the continuous
dynamics and its coupling to the activated dynamics does lead
to such a facilitation effect. Note that the facilitation is strongest
when the MCT dynamics is exponential and should be weaker
when we have stretching in the MCT dynamics.

The MCT modification of the static barrier height distribution,
as predicted by the present theory, plays a key role in describing the
proper relationship between the fragility index, D, and the stretch-
ing parameter, β. The study of Bohmer et al. (3) finds a relationship
between the fragility index, D, and the stretching parameter, β, at
T = Tg . As discussed in ref. 4, βstatic

hop is related to the width of the
static Gaussian distribution of the barrier heights δ%F. δ%F can be
related to the fragility, D, δ%F

%Fo
# 1

2
√

D
. Thus, βstatic

hop can be related
to the fragility (4), βstatic

hop = [1 + (%Fo/2kBT
√

D)2]−1/2. However,
it was found that this expression alone (with the full static bar-
rier height distribution) does not describe the correct relationship
between β and D (4).

The details of the calculation are presented in Materials and
Methods. In Fig. 4 we plot the relationship between βtotal and
D as predicted by the present calculation. In the same plot we
also show the experimental results (3). We find that the present
theory captures the correct trend. This is to be contrasted with
the predictions obtained from the static distribution of barrier
heights. Note that, in all the cases, βtotal > βstatic

hop , which implies
that Pdynamic(%F) is always narrower than P static(%F). Earlier we
showed that Pdynamic(%F) overlaps with P static(%F) only on the
low barrier side. Thus, the higher barriers do not participate in the
dynamics leading to facilitation effect. Hence, for a wide range of
systems the theory predicts a proper modification of the barrier

Fig. 4. Fragility dependence of the stretching parameter. The stretching
parameter for the total structural relaxation, φ(t), obtained from experiments
βexpt (3) (black circles) and that calculated from the present coupled theory,
βtotal (red solid line) are plotted against the square root of fragility index D.
As D decreases, the fragility of the system increases. In the same plot we also
present the stretching parameter predicted by the full static barrier height
distribution (blue dashed line). The experimental and the theoretical values
are at the glass transition temperature T = Tg.

16080 www.pnas.org / cgi / doi / 10.1073 / pnas.0808375105 Bhattacharyya et al.
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Fig. 5. Relation between alpha relaxation timescale and complexity of
dynamically reconfiguring regions. σCRR calculated from the present theory
(see footnote ‡‡) (red squares) is plotted against log10(τtotal/τ0) for Salol by
using the analysis of Capaccioli et al. (31). This τ0 is the relaxation time at
high temperature and different from the τ0 used to describe the activated
dynamics. We also plot the results presented by Capaccioli et al. (31) that they
obtained from experimental data (black circles).

height distribution. Note that Xia and Wolynes (4) showed that the
static barrier height distribution should have a cutoff to describe
the relationship between β and D. The authors gave a physical
explanation of this “cutoff” by using the picture of dynamic mosaic
structure.

The combination of distributed activated hopping and mode
coupling facilitation also explains some recent exciting experimen-
tal observations of Capaccioli et al. (31). These authors recognized
that, in those theories of glassy dynamics based on an underlying
entropy crisis, the complexity of a dynamically correlated region
is a key quantity. They also used earlier insights (32, 33) to show
how this quantity can be roughly inferred from experiment. This
inference is independent of chemical details, such as bead count,
which have previously been used for comparisons of RFOT theory
with experiment.

The complexity, σCRR (the logarithm of the number of acces-
sible states in a cooperatively rearranging region) is obtained
by combining the configurational entropy density, Sc, inferred
from calorimetry, with the temperature dependence of dynam-
ics as reflected in the alpha relaxation time, τα(T), and stretching
exponent of dielectric relaxation or viscosity, β(T) (31).

σCRR(T) = Sc

%CP

β(T)
e2

(
d ln τα

d ln T

)2

[6]

In those purely kinetic models of the glass transition that are
based on the facilitation concept but have trivial underlying ther-
modynamics (34), one would not expect this inferred complexity to
be a universal function of the relaxation time. However, accord-
ing to the Adam–Gibbs argument, the complexity should be a
constant for all values of the relaxation time but could depend
on substance. The static RFOT theory predicts that the logarithm
of the relaxation timescales should be a universal function of the
complexity of the dynamically reconfiguring regions for all glass
formers. In contrast to the expectations from thermodynamically
trivial kinetic models, Capaccioli et al. (31) showed a very strong
data collapse of this complexity, σCRR versus log10(τα) for many
substances. The Adam–Gibbs prediction of a constant value is not
borne out, however. In contrast also to static RFOT, which pre-
dicts an asymptotically linear relation, the experimental data show
a distinct curvature.

In Fig. 5 we show the prediction of σCRR versus log10(τtotal/τ0)
that is obtained from the present calculation‡‡ for Salol using the
analysis of Capaccioli et al. along with their results (31). In har-
mony with the experimental observation we see that the combined
MCT/activated RFOT mechanism does give a curvature. The uni-
versal curve obtained experimentally was fit by an assumed scaling
form containing several adjustable exponents. The present calcu-
lations suggest that the true asymptotic region may not yet have
been reached experimentally. At the same time, we must be clear
that the present calculation is still a low-order one. It is conceiv-
able that a renormalization group treatment, in which the static
RFOT barriers themselves are modified by the MCT effects that
occur on shorter-length scales, could ultimately give anomalous
scaling even in the ultimate asymptotic regime.

The present study enriches our understanding of the dynam-
ics below the ergodic to nonergodic transition temperature, T0

c .
It predicts the presence of hopping-induced diffusive dynamics
below T0

c . It also predicts that this diffusive dynamics continues
to exist even below Tfit

c and provides a dominant contribution to
the total dynamics. However, in this temperature range there is
an increased contribution from the activated dynamics that leads
to the breakdown of the MCT. The diffusive dynamics is found
to modify the activated dynamics by redefining the barrier height
distribution of the hopping events in a way such that the higher
barriers are excluded from the total dynamics. Thus, we find that
in this unified theory the two dynamical processes do not just act
as parallel channels of relaxation, but they interact with each other
and modify each other’s behavior, which leads to the facilitation
of the total dynamics.

Materials and Methods
Relationship Between τtotal and $F . According to the present theory, τtotal =

1
KMCT+Khop

, where Khop = 1
τ 0

exp(−%F/kBT ). Even for the simple exponen-

tial MCT relaxation the relationship between KMCT and %F is nontrivial (29).

However, in the low-temperature limit we can write KMCT = 2Khop

λ2A2+2λ1A−1
=

αKhop, where α = 2
λ2A2+2λ1A−1

. A is the Debye–Waller factor or the form

factor (height of the plateau), thus, τ total = 1
(α + 1)Khop

. %Fo, is calcu-

lated at T = Tg, by using Salol parameters. δ%F is related to βstatic
hop [by

βstatic
hop = [1 + (δ%F/kBT )2]−1/2 (4, 30)] and it is taken in such a way that it

gives βstatic
hop = 0.5. We calculate the total relaxation and fit it to a stretched

exponential. From the fitting we obtain τtotal and βtotal. This is now fed into
Eq. 5 to obtain Pdynamic(%F).

Fragility Dependence of βtotal. The mean barrier height depends on the con-
figurational entropy and is almost independent of the system; thus, for all the
systems (12), we calculate %Fo by using Salol parameters (sfit = 2.65, TK = 175
K, T 0

c = 278 K). δ%F is fixed according to the value of D, which is taken from
Bohmer et al. (3). For the Salol system τo is used as a fitting parameter to
describe the proper timescale of the dynamics. In this calculation we also
vary τo for each system in such a way that at T = Tg the relaxation time is of
the order of 100 s. We find that, for a more fragile system, we need a larger
value of τo.

Above T fit
c , the dynamics is expected to be described completely by the

MCT. Thus, the βtotal above T 0
c should be equal to the βMCT value. For the

systems like Salol (6), Glycerol (35), and Silica [Silica is known to be a strong
liquid with β # 1.] where the value of βexpt at high temperatures is known,
we use these values to define βMCT. For the systems where βexpt at high tem-
peratures are not known, we use a reasonable value [definitely larger than
βexpt(T = Tg)] and also vary it in small amounts along with τo to get the proper
relaxation timescale at Tg. T 0

c is kept same as that for the Salol system. So,
our only constraint is that the timescale should be of the order of 100s at Tg.
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‡‡σCRR is calculated from Eq. 6. In the calculation, the temperature dependence of Sc and
%CP are calculated by using the empirical forms (for details, see text) (26). The temper-
ature dependence of τtotal is obtained from the theory (Fig. 1). In our theory, although
we predict a temperature dependence of β(T ), to compare our results with Capaccioli
et al. (31) we have considered, following those authors, β(T ) to be independent of T .
We fixed it to its value at T = Tg . For this plot we take τo = 10−3.9 ps (31).
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