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In low-temperature-supercooled liquids, below the ideal mode-
coupling theory transition temperature, hopping and continuous
diffusion are seen to coexist. Here, we present a theory that shows
explicitly the interplay between the two processes and shows that
activated hopping facilitates continuous diffusion in the otherwise
frozen liquid. Several universal features arise from nonlinear inter-
actions between the continuous diffusive dynamics [described here
by the mode coupling theory (MCT)] and the activated hopping
(described here by the random first-order transition theory). We
apply the theory to a specific system, Salol, to show that the theory
correctly predicts the temperature dependence of the nonexponen-
tial stretching parameter, 8, and the primary o relaxation timescale,
1. The study explains why, even below the mean field ergodic to
nonergodic transition, the dynamics is well described by MCT. The
nonlinear coupling between the two dynamical processes modi-
fies the relaxation behavior of the structural relaxation from what
would be predicted by a theory with a complete static Gaussian
barrier distribution in a manner that may be described as a facilita-
tion effect. Furthermore, the theory correctly predicts the observed
variation of the stretching exponent g with the fragility parame-
ter, D. These two predictions also allow the complexity growth
to be predicted, in good agreement with the results of Capacci-
oli et al. [Capaccioli S, Ruocco G, Zamponi F (2008) J Phys Chem B
112:10652-10658].

complexity | glass transition | random first order

he glass transition is characterized by a number of interesting

kinetic phenomena. Very slow and simultaneously nonexpo-
nential relaxation of time correlation functions over large time
windows is one such important phenomenon. This relaxation is
often approximated by the stretched exponential, Kohlrausch—
William-Watts (KWW) formula, ¢(¢) = exp(—(¢/7))?, with both
B and 7 exhibiting nontrivial temperature dependence. The origin
of the stretching is usually attributed to the presence of dynamic
heterogeneity in the system (1, 2). The temperature dependence
of the typical relaxation time can be described by the the Vogel-
Fulcher-Tamman (VFT) expression, 7 = tygr exp(DT, /(T —T5,)),
where typr is the high-temperature relaxation time, 7, is the VFT
temperature, and D is the fragility index. The fragility index, D,
determines the degree of deviation from the Arrhenius law that
is appropriate for simple activated events. Experimental and the-
oretical model studies have shown that 8 and D are correlated
(3-5). The temperature dependence of 7 has also been described
by phenomenological mode coupling theory (MCT) expression,
T~ [(T — TiY/Tft]77, (y > 0), but this ultimately breaks down
at low temperature. T/t is referred to as the MCT transition tem-
perature. Above T/t, MCT is found to explain many experimental
results (6-9), and below Tcﬁ‘, the MCT picture of continuous diffu-
sion fails eventually. It is conjectured that this breakdown is due to
the ergodic to nonergodic transition in the dynamics and below T/t
activated dynamics becomes a dominant mode of transport. How-
ever in an elegant work, Brumer and Reichman (10) (BR) have
recently shown that the idealized MCT using microscopic input
breaks down at a much higher temperature, T, which corresponds
to the temperature, 77, where the landscape properties show
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a sharp change. Kob et al. (11) have shown that the structural
MCT predicts the proper dynamics till very close to T but needs
static inputs to be calculated at a higher effective temperature.
Stevenson et al. (12, 13) have shown that below the ergodic to
nonergodic transition but before the predicted crossover to the
activated dynamics, string or fractal excitations drive the dynam-
ics and that this qualitatively describes the crossover temperature
as occurring at a specific value of the configurational entropy.

Computer simulation studies seem to show the coexistence of
continuous diffusion and hopping as mechanism of mass trans-
port at temperatures much above T (14-17). These studies show
that individual hopping events are often followed by enhanced
continuous diffusion or more hops of the surrounding atoms or
molecules (14, 15, 18). Simulations have also shown that a single
hopping event relaxes the local stress (16), hence, it is expected
that hopping events are followed by continuous diffusive dynam-
ics. From BR study we know the temperature at which the ergodic
to nonergodic transition takes place (70 = T.) (10). However,
there is no clear theoretical understanding of the dynamics in the
range, Tf" <T < Tf.’ . Furthermore, we need to understand, why,
below T?, the MCT still seems to explain the form of the dynam-
ics rather well and, finally, what happens at T that leads to the
breakdown of the MCT as far as the temperature dependence is
concerned. In an earlier work it was shown that the full dynamics
is a synergetic effect of continuous diffusive motion and activated
dynamics (19). Here, we show how the coupling between these
two dynamical processes influences each other. The coupling leads
to hopping-induced diffusive motion below T° and thus explains
the validity of MCT below T?. The study also explains the ori-
gin of the apparent breakdown of MCT at Tgt. The crucial result
of the present study is that the coupling renormalizes the distri-
bution of hopping barriers which participates in the dynamics.
This provides a formal treatment of the facilitation effect dis-
cussed by Xia and Wolynes (4, 5) in their theory of the stretching
exponent.

The present work uses a scheme of calculation similar to the
one presented earlier (19) with a few modifications. For describ-
ing the diffusive motion we use the schematic Fj; model of the
MCT (20-22) but the activated hopping dynamics now have a sta-
tic barrier height distribution (4, 5). The equation of motion for
the total intermediate scattering function is written as,

(1) = PrcT(1)ppas(0). (1
In describing the activated dynamics we consider that there is a

distribution of the hopping barriers in the system arising from the
entropy fluctuation (4, 5). Thus, the total contribution from the
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multiple-barrier hopping events is written as,
B0 = [ GpOP (AP
= / ¢ Khop(AF) psiatic (AFYGAF, [2]

where Pt AF) is taken to be Gaussian,
PstatiC( AF) = e—(AF—AF,,)/z(aAF)Z_ [3]

1

2m (8AF)?
We call this distribution, the static barrier height distribution.
Here, ¢;,,(1) = e nopF) gegeribes the activated hopping
dynamics for a single hopping barrier. Knop (AF) = F(q)Pnop(AF).
The expression for F(q) is given by F(q) = :—2(1 —G(q))." For
the present work the g dependence of F(q) will be neglected and
F(q) will be set to unity. Pyop(AF) is the average hopping rate,
which is a function of the free-energy barrier height, AF, and is
given by Phop(AF) = LO exp(—AF/kgT) (23).

The equation of motion for the MCT part of the intermediate
scattering function, ¢mcr(?), is written as,

dumer(t) + ydmer(t) + Lomer(t)

t
a8 [ At oucr B Oducr@ 1)
0

t . .
+ )»2525/0 dt/[¢MCT(t/)¢1S1t(§1;C(t/)]zd’MCT(t —1)
=0 [4]

Now, the MCT part of the intermediate scattering function,
omcr(2) is self-consistently calculated with the full scattering func-
tion, ¢(¢). In describing the dynamics with schematic MCT the
coupling between the different wave vectors is neglected and the
contribution from the static and dynamic quantities is calculated
at a single wavenumber g = gy, (g, is the wave number where the
peak of the structure factor appears) which is known to provide the
dominant contribution. In the present formalism it is assumed that
hopping opens up multiple relaxation channels for the otherwise
frozen MCT dynamics.

Eqgs. 1 and 4 together describe the full dynamics, which is similar
in spirit to the extended MCT (21) and other recent approaches
(24). The similarity of the present scheme to the extended MCT
of Gotze and Sjogren was elaborately analyzed in our earlier
work (19).

As in our earlier work (19), the values of €, and y are kept
fixed at unity, neglecting their temperature dependence, and the

. . . _ (@1 A
scaling time is taken as 1 ps. 41 = =3~ + ¢ a0
A(1-2)

M= 5+ €Grassyy (21 22). The MCT formalism predicts a
relationship between A and Bucr as Bmcr = — log(2)/log(1 — A)
(22). € is a measure of the distance from the ergodic to nonergodic

and

0_
transition temperature of the ideal MCT, T, thus € = TCTOT. To
c

calculate the MCT part of the relaxation we need to estimate A
and T?. These quantities can be calculated for systems where the
static quantities (like static structure factor) are known, but for
realistic systems, because of the unavailability of the static quan-
tities, the estimation becomes difficult. We thus use the following
methods to estimate % and T°. The ergodic to nonergodic tran-
sition is found to take place at 7; where the energy landscape
properties first change (10), thus we set 70 = Ty. Ty is also the

Tin the previous article (19) there was a mistake in the derivation of the hopping kernel.
The correct expression is presented here.

16078 www.pnas.org/cgi/doi/ 10.1073/pnas.0808375105

temperature where the stretching parameter starts falling (25).
From experimental studies we know that for the Salol system the
stretching parameter starts falling at 7 = 278 K (7). Thus, we esti-
mate that 70 = T; = 278 K. Now, to estimate A in this schematic
MCT equation, we again make use of experimental results. MCT
is expected to explain the dynamics above T?; thus, the stretching
parameter above T should be equal to Bucrt = 0.84 (7). We have
also mentioned that A and Bycr are related. Thus, A is fixed in
such a way that, above Tf, we get the correct Sycr-

Next, we discuss the hopping dynamics for the Salol system
as predicted from random first-order transition (RFOT) theory.
According to the RFOT theory, the free-energy cost, F(r), which is
used to calculate the mean barrier height, can be written as F(r) =

TROTAC) _ 4x
Tg)+T40) 3
terms at Tx (Kauzmann temperature) and T4 (temperature where
hopping barrier disappears), respectively (19, 23). The tempera-
ture dependence of the configurational entropy can also be given
by an empirical formula (26), s. = ss(1 — Tx/T), where sg is a
system dependent parameter which is also related to the specific
heat jump at the Kauzmann temperature (Ac,(T) = s (Tx /T)).
For the Salol system sg; = 2.65, Tx = 175 Kand T4 = 333 K.
With these values of the parameters the mean barrier height and
the critical nucleus radius are calculated. We find that at 7 = 280
K, the size of the critical nucleus is above unity. Thus, although
T4 = 333 K, for all practical purposes 7 = 280 K should be con-
sidered as the temperature where activated events start, which, as
found in simulations, is close to T? (17). The value of 1, is fixed
in such a way that at 7 = 280 K, both the MCT and the hopping
dynamics together predict a relaxation time that is close to that
obtained in the experiment (8). Thus, for Salol the fitting gives
79 = 2400 ps. A more microscopic treatment of the barrier height
can be found by treating the shape of the nucleating region as a
fuzzy sphere (12). The distribution of barrier heights arises due
to the fluctuation in entropy density, which can be related to the
specific heat according to the Landau formula, ((AS)?) = kgC,
(27), where AS is the entropy fluctuation and Cp is the specific
heat. This expression can be rewritten in terms of configurational
entropy fluctuation per bead ds. and heat capacity jump per bead
A kgAcp(T) Sse 3kgTT]

Ay (T) as, bse = %”(r*p/aﬁ &1 = T e
r* is the droplet radius determined by using F(r*) = 0. a is the
length of the bead. We can also relate the entropy fluctuation to

8¢

the width of the barrier height distribution, % ~ (‘Y? —, and thus
0 T 149%

r*T5.,where Tk (r) and T4 (r) are the surface energy

Here,

(sc)
define the width of the static barrier height distribution in terms
of entropy fluctuation and specific heat.

Combining the static RFOT and MCT, we solve Eqgs. 1 and
4 numerically.! We use a numerical method presented ear-
lier (28) with a minor modification (29). The total relaxation
time, T, and the stretching parameter, B, are obtained
from the coupled dynamics by fitting the long time part of ¢(¢)
(obtained from Eq. 1) to a KWW stretched exponential function,
¢(t) = A exp(—(t/Tiotal))Protal. Similarly from ¢mcr(f) we obtain
the MCT relaxation time, tycr, and the corresponding stretching
parameter, Buvcr.

Hopping-Induced Continuous Diffusion

The plot for the relaxation time 7, is given in Fig. 1, where we
have also shown the experimental results (for Salol) and the fit to
the MCT phenomenological expression. Already the temperature
dependence of T reveals several interesting physics. The tiotal
compares well with the experimental results (8) and predicts the
correct glass transition temperature, 7, = 220 K. Recall that in

I The results converge properly for the total time step N = 510 and the initial timestep for
the integration is taken to be 10~9 ps.

Bhattacharyya et al.
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Fig. 1. Temperature dependence of the « relaxation timescale for Salol-
hopping-induced diffusive dynamics. The timescale for the longtime part of
the total structural relaxation, ¢(t), obtained from experiments (8) (black
circles) and that calculated from the present coupled theory, tiotal (red dia-
monds) are plotted against temperature. We fit the tyot, to the MCT phenom-
enological expression, tiotal ~ [(T — Tcﬁt)/Tcﬁt]*V (blue dashed line), we obtain
Tfit = 258 K. (Inset) We plot (tmct — Trotal )/ Ttotal @s Obtained from the theory
(red stars). The black dashed line is a guide to the eye. The function shows a
jump at approximately T = 258 K. We find that across this temperature the
hopping dynamics changes its role and below Tfit = 258 K it plays a direct
role in the dynamics. The scaling times is 1 ps.

our calculation the ergodic to nonergodic transition takes place
at TV = 278 K where the activated dynamics also becomes signif-
icant. Thus, we know that the idealized MCT prediction breaks
down at T = 278 K and below this temperature, its validity as
such is unclear. However, when we fit the relaxation time to MCT
expression (t ~ [(T—TH)/T]77) we obtain avalue, Tft = 258K,
which is in excellent agreement with the experimental fits (6, 8, 9).

The advantage of the present scheme of calculation is that, in
addition to addressing the coupling between the continuous dif-
fusion and the hopping motion, we can separately analyze their
relative contributions to the total dynamics and explore the origin
of the apparent validity of the MCT below T?. Due to the nonlin-
ear coupling in Egs. 1 and 4, the activated dynamics plays both a
“direct” and a “hidden” role in the total relaxation. The direct role
is the direct relaxation of ¢ via ¢;§‘gi°. However, if we analyze the

structure of Eq. 4, we find that the activated dynamics also acts
to soften the growth of the longitudinal viscosity, which finally

leads to the relaxation of the otherwise frozen ¢ycr. Thus ¢§§‘|§i°

plays a hidden role in the relaxation by helping ¢mcr to relax. Ear-
lier simulation studies of Bhattacharyya and Bagchi have already
observed this hidden role of hopping in relaxing the local stress
(16). We now analyze these two different roles of the hopping
dynamics and their effect on the total relaxation.

The present study shows that both continuous and activated
dynamics change continuously across Tfit. However, when we plot
(T™McT — Tiotal)/Trotar against T (in Fig. 1 Inset) this quantity is
seen to undergo a rapid increase in the temperature range of the
phenomenological MCT transition temperature T/*. This implies
that although below Tt the continuous diffusion still remains the
dominant mode of relaxation, there is an increased contribution
from the activated dynamics. This plot suggests that in the range,
Tit < T < T, where direct hopping contribution is small, the
activated dynamics plays only an important hidden role, whereas
below T/, it also plays a direct role in the relaxation process.

One important observation is that although idealized MCT
breaks down at T? = 278 K, the functional form of MCT con-
tinues to describe the dynamical characteristics until 258 K. The

Bhattacharyya et al.

latter is a widely known result, usually obtained from fitting the
MCT functional forms to the experimental data (6, 8, 9). Thus, our
study provides an explanation of this intriguing result in terms of
the interaction between the MCT and activated dynamics, which
leads to hopping-induced continuous diffusive motion. This also
quantitatively explains the observations reported by Kob et al.
(11). The authors find that until close to T the dynamics can
be described via MCT, although the static inputs need to be calcu-
lated at a higher effective temperature. The present study further
shows that as we progressively lower the temperature below T,
although the continuous diffusive dynamics continues to play an
important role in the relaxation, the increased contribution from
the activated dynamics finally leads to the breakdown of the MCT
predictions.

Renormalized Barrier Height Distribution

In Fig. 2 we plot the calculated temperature dependence of the
stretching parameter Bio. In the same figure we also plot Bucr

and i as predicted by the MCT and the static RFOT theory™

(by using static barrier height distribution), respectively. The
experimental results on Salol are also plotted in the same figure
(6, 7). It is clear that neither the MCT nor the static RFOT distri-
bution can alone describe the proper temperature dependence of
the stretching parameter. However, the coupled theory predicts a
temperature dependence of B Which is qualitatively similar to
that found in experiments. The stretching parameter is known to
provide a measure of the heterogeneity in the system. In our study
the heterogeneity arises from the distribution of hopping barriers.
However, below T2, Brota is larger than ﬂ;‘g‘;‘c, which means that
the barrier height distribution that participates in the dynamics
(dynamic barrier height distribution) is narrower than the initial
assumption of distribution (static barrier height distribution). This
modification of the barrier height distribution (or heterogeneity)
takes place because of the coupling between the diffusive and the
activated dynamics. The timescale analysis reveals that the smaller
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Fig.2. Temperature dependence of the stretching parameter for Salol. The
stretching parameter for the longtime part of the total structural relaxation,
¢(t), obtained from experiments (6) (black squares) and (7) (black circle) and
that calculated from the present coupled theory, Biotal (red diamonds), are
plotted against temperature. In the same plot we also present the stretching
parameter predicted by the RFOT theory by using the static barrier height
distribution, g5t (blue dashed-dot line) and the MCT, Bucr (green dashed

hop
line) (which shows no temperature dependence).

tTWhen the full static barrier height distribution is considered we can write ﬁ;t:;ic =
[1+ (SAF/kgT)21=/2 (4, 30).
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Fig. 3. Temperature dependence of the probability distribution of barrier

heights which participate in the dynamics, P¥"Mi(AF). In this figure we
plot the static barrier height distribution, P5t(AF), which is used in the
calculation of the total dynamics (black solid curve). From the total dynamics
we again estimate the barrier height distribution that actually participates
in the dynamics (colored dashed line). This has been done for different MCT
relaxation time scale by changing the temperature of the MCT part of the
dynamics (T = 240 K, 230 K, 200 K, and 175 K). As the temperature is lowered,
the barrier height distribution becomes broader.

barriers contribute to the dynamics, which implies that, in the pres-
ence of the quasi-static dynamic heterogeneity, the coupling leads
to a facilitation effect. Regions that would be slow are relaxed by
their neighbors.

To quantify these points, we carry out the following analysis.
Nonexponential relaxation in the system can be considered as
arising from superposition of exponentials,

oo
e—(t/rtmal)/stotal :[ e—t/rrpdynamiC(.L.)dT [5]
0

It is now possible to find an effective distribution function of the
relaxation times PYami¢() by Laplace inverting the stretched
exponential. Once we obtain the distribution of relaxation times
we can convert it into the distribution of barrier heights by using,
pdynmamic(AFYJAF = PYnamic(7)dz, provided T can be expressed
interms of AF. The details are presented in Materials and Methods.
Note that it is possible to find an analytical relation between t and
AF only when the individual dynamics are exponential. Hence, we
do this analysis considering only exponential MCT relaxation (i.e.,
for this analysis we choose A such that Sycr = 1.0). We now ana-
lyze the dependence of P¥Mami¢(AF) on the MCT relaxation time
and show that P¥Mmi¢(AF) not only depends on P*4(AF), but
also depends on the MCT relaxation time tvcr = K1\711CT- We fix the
pstatic(AF) and change the tycr by calculating the MCT dynam-
ics [which is coupled to Pt AF)] at different temperatures. The
results are presented in Fig. 3.

At high temperatures, where MCT dynamics is fast,
pdynamic( AF) is narrow (Broral is large), and the position of the max-
imum, AFp,,x, is shifted to smaller AF (Fig. 3). We also find that, as
the MCT dynamics slows down, the distribution becomes broader
and more non-Gaussian (Biota; also becomes smaller), larger bar-
riers contribute to the dynamics, and AFp,, shifts to higher values
(though it always remains smaller than AF,). Thus, we find, in
accord with the literature, that as the temperature is lowered (or
the dynamics becomes slower) there is a growth in dynamic het-
erogeneity. We may say that P&mamic(AF) provides a mean field

16080 | www.pnas.org/cgi/doi/ 10.1073/pnas.0808375105

estimation of the dynamic heterogeneity. Note that PUnamic(AF)
is always narrower than P%¢( AF) and overlaps with it only in the
low barrier side. Xia and Wolynes (4) have given a physical inter-
pretation of this exclusion of the higher barriers from the dynamics
by using the picture of dynamic mosaic structure. Because the
exclusion of higher barriers hastens the hopping dynamics this
can be described as a “facilitation effect.” The present theoretical
model does not explicitly treat the spatial structure of the dynam-
ical mosaic. However, we find that the presence of the continuous
dynamics and its coupling to the activated dynamics does lead
to such a facilitation effect. Note that the facilitation is strongest
when the MCT dynamics is exponential and should be weaker
when we have stretching in the MCT dynamics.

The MCT modification of the static barrier height distribution,
as predicted by the present theory, plays a key role in describing the
proper relationship between the fragility index, D, and the stretch-
ing parameter, 8. The study of Bohmer et al. (3) finds a relationship
between the fragility index, D, and the stretching parameter, 8, at
T = T,. As discussed in ref. 4, ﬂffg‘c is related to the width of the

static Gaussian distribution of the barrier heights SAF.§ AF canbe

1 SAF . 1 stati
related to the fragility, D, A = 3Up Thus, B; ;pm can be related

to the fragility (4), Byt = [1 + (AF,/2kgT~/D)*]""/>. However,
it was found that this expression alone (with the full static bar-
rier height distribution) does not describe the correct relationship
between 8 and D (4).

The details of the calculation are presented in Materials and
Methods. In Fig. 4 we plot the relationship between By and
D as predicted by the present calculation. In the same plot we
also show the experimental results (3). We find that the present
theory captures the correct trend. This is to be contrasted with
the predictions obtained from the static distribution of barrier

heights. Note that, in all the cases, Biotar > ﬁﬁt(';‘;ic, which implies

that PYamic( AF) is always narrower than P32 AF). Earlier we
showed that PYnamic(AF) overlaps with PS%(AF) only on the
low barrier side. Thus, the higher barriers do not participate in the
dynamics leading to facilitation effect. Hence, for a wide range of
systems the theory predicts a proper modification of the barrier

T T
0.8 1
0.6 -
Q.
04 -
[ ] PR @® Expt
I e - — theory
ozl /// =+ from P\mm(AF)
-,
. | . ! . !
0 5 10 15
e 12
Fragility index, (D)
Fig. 4. Fragility dependence of the stretching parameter. The stretching

parameter for the total structural relaxation, ¢(t), obtained from experiments
Bexpt (3) (black circles) and that calculated from the present coupled theory,
Brotal (red solid line) are plotted against the square root of fragility index D.
As D decreases, the fragility of the system increases. In the same plot we also
present the stretching parameter predicted by the full static barrier height
distribution (blue dashed line). The experimental and the theoretical values
are at the glass transition temperature T = T,.
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dynamically reconfiguring regions. ocgg calculated from the present theory
(see footnote tt) (red squares) is plotted against 10944 (ttotal/70) for Salol by
using the analysis of Capaccioli et al. (31). This o is the relaxation time at
high temperature and different from the 7y used to describe the activated
dynamics. We also plot the results presented by Capaccioli et al. (31) that they
obtained from experimental data (black circles).

height distribution. Note that Xia and Wolynes (4) showed that the
static barrier height distribution should have a cutoff to describe
the relationship between g and D. The authors gave a physical
explanation of this “cutoff” by using the picture of dynamic mosaic
structure.

The combination of distributed activated hopping and mode
coupling facilitation also explains some recent exciting experimen-
tal observations of Capaccioliet al. (31). These authors recognized
that, in those theories of glassy dynamics based on an underlying
entropy crisis, the complexity of a dynamically correlated region
is a key quantity. They also used earlier insights (32, 33) to show
how this quantity can be roughly inferred from experiment. This
inference is independent of chemical details, such as bead count,
which have previously been used for comparisons of RFOT theory
with experiment.

The complexity, ocrr (the logarithm of the number of acces-
sible states in a cooperatively rearranging region) is obtained
by combining the configurational entropy density, S., inferred
from calorimetry, with the temperature dependence of dynam-
ics as reflected in the alpha relaxation time, 7,(T), and stretching
exponent of dielectric relaxation or viscosity, 8(T) (31).

S. B(T) (dln Ty )2

ACp 2 dinT [6]

ocrr(T) =

In those purely kinetic models of the glass transition that are
based on the facilitation concept but have trivial underlying ther-
modynamics (34), one would not expect this inferred complexity to
be a universal function of the relaxation time. However, accord-
ing to the Adam-Gibbs argument, the complexity should be a
constant for all values of the relaxation time but could depend
on substance. The static RFOT theory predicts that the logarithm
of the relaxation timescales should be a universal function of the
complexity of the dynamically reconfiguring regions for all glass
formers. In contrast to the expectations from thermodynamically
trivial kinetic models, Capaccioli et al. (31) showed a very strong
data collapse of this complexity, ocrr versus log;,(7,) for many
substances. The Adam—Gibbs prediction of a constant value is not
borne out, however. In contrast also to static RFOT, which pre-
dicts an asymptotically linear relation, the experimental data show
a distinct curvature.

Bhattacharyya et al.

In Fig. 5 we show the prediction of ocrr versus 10g;,(Tiotal /7o)
that is obtained from the present calculation™ for Salol using the
analysis of Capaccioli et al. along with their results (31). In har-
mony with the experimental observation we see that the combined
MCT/activated RFOT mechanism does give a curvature. The uni-
versal curve obtained experimentally was fit by an assumed scaling
form containing several adjustable exponents. The present calcu-
lations suggest that the true asymptotic region may not yet have
been reached experimentally. At the same time, we must be clear
that the present calculation is still a low-order one. It is conceiv-
able that a renormalization group treatment, in which the static
RFOT barriers themselves are modified by the MCT effects that
occur on shorter-length scales, could ultimately give anomalous
scaling even in the ultimate asymptotic regime.

The present study enriches our understanding of the dynam-
ics below the ergodic to nonergodic transition temperature, 7.
It predicts the presence of hopping-induced diffusive dynamics
below T?. It also predicts that this diffusive dynamics continues
to exist even below T/t and provides a dominant contribution to
the total dynamics. However, in this temperature range there is
an increased contribution from the activated dynamics that leads
to the breakdown of the MCT. The diffusive dynamics is found
to modify the activated dynamics by redefining the barrier height
distribution of the hopping events in a way such that the higher
barriers are excluded from the total dynamics. Thus, we find that
in this unified theory the two dynamical processes do not just act
as parallel channels of relaxation, but they interact with each other
and modify each other’s behavior, which leads to the facilitation
of the total dynamics.

Materials and Methods
Relationship Between tyota and AF. According to the present theory, Tiotal =
, where Kpop = Tio exp(—AF/kgT). Even for the simple exponen-

KMCF+Khop
tial MCT relaxation the relationship between Kycr and AF is nontrivial (29).
. L . 2K,
However, in the low-temperature limit we can write Kycr = % =
MAZ20,A1

aKhop, Where o = . A is the Debye-Waller factor or the form

2
1AZ4 21, A1

factor (height of the plateau), thus, tiota = . AF,, is calcu-

1
(o + 1)Khop

lated at T = T, by using Salol parameters. SAF is related to ﬁ;t:;ic [by

piatic — [14+ (5AF/keT)?1-'/2 (4, 30)] and it is taken in such a way that it
gives ﬂﬁt:p“c = 0.5. We calculate the total relaxation and fit it to a stretched

exponential. From the fitting we obtain tiotal and Biotal. This is now fed into
Eq. 5 to obtain Pdynamic(AF).

Fragility Dependence of Biota- The mean barrier height depends on the con-
figurational entropy and is almost independent of the system; thus, for all the
systems (12), we calculate AF, by using Salol parameters (st = 2.65, Tx = 175
K, TC0 = 278 K). SAF is fixed according to the value of D, which is taken from
Bohmer et al. (3). For the Salol system 1z, is used as a fitting parameter to
describe the proper timescale of the dynamics. In this calculation we also
vary 7, for each system in such a way that at 7 = T, the relaxation time is of
the order of 100 s. We find that, for a more fragile system, we need a larger
value of 7.

Above Tfit, the dynamics is expected to be described completely by the
MCT. Thus, the Biotal above T2 should be equal to the Bucr value. For the
systems like Salol (6), Glycerol (35), and Silica [Silica is known to be a strong
liquid with B ~ 1.] where the value of Beypt at high temperatures is known,
we use these values to define Bucr. For the systems where Beypt at high tem-
peratures are not known, we use a reasonable value [definitely larger than
Bexpt(T = Tg)l and also vary it in small amounts along with 7, to get the proper
relaxation timescale at Ty. TO is kept same as that for the Salol system. So,
our only constraint is that the timescale should be of the order of 100s at T.
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* 5crr is calculated from Eq. 6. In the calculation, the temperature dependence of S¢ and
ACp are calculated by using the empirical forms (for details, see text) (26). The temper-
ature dependence of 7y, is obtained from the theory (Fig. 1). In our theory, although
we predict a temperature dependence of 8(T), to compare our results with Capaccioli
et al. (31) we have considered, following those authors, g(T) to be independent of T.
We fixed it to its value at T = Tg. For this plot we take 7o = 1039 ps (31).
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