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Abstract. In this paper, applications of the Monte Carlo technique to estimate the
static and dynamic properties of model spin systems are discussed. Finite-size effects
and choice of boundary conditions in simulating different types of real systems are
outlined. Various applications of the Monte Carlo simulations to one-, two- and
three-dimensional Ising models and Heisenberg models are dealt with in some detail.
Recent applications of the Monte Carlo method to spin glass systems and to estimate
renormalisation group critical exponents are reviewed.
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1. Introduction

Model systems are helpful in understanding the static and dynamic aspects of critical
phenomena. Unfortunately the model systems, excepting some one-dimensional
models and two-dimensional Ising models, are not solvable exactly. This necessitates
the use of approximate methods to deal with such systems. Often, such approximate
methods used in solving the models lead to spurious results. However, by a Monte
Carlo simulation, the approximations can be bypassed and the model can be studied
directly to obtain useful static and dynamic properties of the system. This apart,
the Monte Carlo method has the advantage of giving a good physical insight into
the model, by providing the detailed microstructure of the system at any stage of
the computation.

The drawbacks of a Monte Carlo simulation generally are the finite sample size
and the finite system size. However, a finite system size has the advantage of allowing
one to study finite size effects on the critical phenomena, an aspect which has been of
much recent theoretical interest. ;

In § 2 of this paper we shall discuss the basis of the Monte Carlo method and its
practical realisation. We shall also discuss methods of estimating static and dynamic
properties of a given system. Detailed discussions of these aspects can be found in
review articles by Binder (1974a, 1976). In § 3 we shall briefly review the results of
the Monte Carlo calculations carried out on Ising models, classical Heisenberg
models and spin glass models, in various dimensions. We shall also discuss recent
applications of the Monte Carlo method for obtaining critical exponents via the
renormalisation group approach.

*Communication No. 19 from the Solid State Structural Chemistry Unit.
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2. Monte Carlo method and thermodynamics of spin systems

2.1 Static properties

Equilibrium statistical mechanics is concerned with calculations of averages of the
type : "
‘ over all states over all states

(Fy= Y ep(—BE)F/ D ew(—BE), O

i

where E, is the energy of the state 7, F; is the value of the variable in state i and
B = 1/k,T. This sum is reduced to an integration over configuration space for
classical systems. We would, however, be concerned mostly with properties of the
system which depend only on spatial co-ordinates. Hence, the above sum can be
replaced by an integral of the form :

(Fy=[Fyoxp -BUCN &r [ fexp [-BU@1 dr, - @)

where U () is the potential energy of interaction among particles and » designates all
the space variables of the system.

In this paper since we would mostly be dealing with discrete energy states, we shall
use (1) for calculating expectation values. Equation (2) is used mostly in liquid state
calculations and the like.

For an Ising system of N spins, a straightforward evaluation of equation (1)
requires a summation over 2V terms in the numerator and the denominator, cor-
responding to 2¥ configurations in which the N spins can exist. This ¢ unmanageable *
problem can be overcome if we adopt a Monte Carlo method for estimating the sums.
We cannot use a simple Monte Carlo sampling where the probability P(i) for selecting
any configuration i is 27N, Such a sampling will require enormous computation
time since all the configurations are not equally probable at equilibrium. The
probability for any conﬁguratlon i at equilibrium is given by

over all statés

PO=op(—BE)/ Tep(pE.L @)

A better samphng techmque would be the ¢ 1mportance samphng techmque with the

probability for a configuration given by (3). This requires an understanding of the

denominator in (3). However, knowing the denominator is itself equivalent to
solving the problem since the denominator is the partition function of the system.
We set out to estimate thermodynamic properties by the Monte Carlo method since
exact determination of the partition function was not possible and we did not want
to solve the model by using any approximate method. It appeared as though we

had ended up in a vicious circle. A way out of this was devised by Metropolis et al -

(1953). They devised a Markov chain for generating the configurations of the
system. This Markov chain has all its states belonging to the same class i.e., any
state of the Markov chain is attainable from any. other state, and is also ergodic, The

o
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limiting probabilitiy of this Markov chain is the-same as -the‘-equilibrium,_probability
of the system. Thus the Monte Catlo estimate of equilibrium thermodynamic
propertles mvolves the followmg steps :

@) Generate the states of a Markov chain deﬁned by Judlcwusly chosen mmal
probability and one-step probabilities such that the Markov chain is ergodic
and the ergodic probabilities for the states of the chain are the same as the
equilibrium probabilities.

(i) Allow the Markov chain to make a reasonable number of transitions 50 that
the Markov chain has reached the limiting behaviour.

(iti) ‘Average the desired property over a large number of configurations starting
- from the time it has reached a atlsfactory llm1tmg behavmur

Thus the Monte Carlo estimate of a property Fis

a1l N+ M :
<F>"]\T[ i=N+1 L0 @)

where N is the number of steps required to reach the ergodic limit and M is the
number of configurations over which the property is averaged so as to obtain the
desired accuracy. Discussion of error estimates due to choice of finite N and M
is postponed to the next subsection as it requires understanding the dynamics of
approach of the system to equilibrium and the time correlation of equilibrium fluctua-
tions of the desired property.

For a Markov chain with states belonging to the same class to be ergodic, the
one-step probabilities and the limiting probabilities should satisfy the following
conditions:

over all states

S PP =1, forallj R - (52)
k. . .

and m P =m PR, S | | (5b)

where P{} are the one-step probab111t1es for gomg from state k to state j and m; is the

limiting probability for the state j. Since m; should be the cqulhbrlum probability
we have =, oc exp (—BE)) where E; is the energy of the configuration j. One way
of satisfying the ahove conditions would be the following (Wood & Parker 1957):

PY = Ay, for E; < Ey, :
PW = Ay exp [— (B, — ) Bl for ;> By, S ®
PY=1-F,., P

The initial probability P, of the chain is chosen such that PO is 1 for some specific

state i and zero for all the rest, or, Pi(o’ is 2~N for all the 2§ conﬁguratlons of the
chain. ‘ =
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In this paper we will concentrate on two types of spin systems viz., the spin-half
Ising systems and the classical Heisenberg systems. ‘

The spin-half Ising system is described by spins arranged either up =413
or down (8% = — }) at lattice points and interacting via a Hamiltonian of the form

H = zi>j Ju'S‘z sz — IIext zl Siz, (7)

where J,, is the exchange interaction between the spins at sites i and j and H®* is
the applied field. The practical realisation of the Monte Carlo averaging of thermo-
dynamic properties of an Ising chain involves, firstly, generation of the system on a
computer in the given (ordered or disordered) initial state. The sequence of con-
figurations of the system are then generated by locating a site at random and calcu-
lating the probability for flipping the spin at that site using (6) and (7). This probabi-
lity is compared with a random number generated between 0 and 1. If the calculated
probability is larger than the random number, the spin at the site is flipped to obtain
a new configuration. Otherwise the eatlier configuration itself is considered as the
new configuration. This mechanism of generating the states of the Markov chain
is known as the single spin-flip mechanism and has been found to be very efficient in
general. After a reasonable number of steps we begin computing the desired thermo-
dynamic properties of each generated configuration and at the end of the computation
the averages of these properties are calculated and taken as the Monte Carlo estimates
(equation (4)). '

The Hamiltonian of a classical Heisenberg model in an external field is given by

H=Y ., JuSi"S,—H™}, S, ®)

where S; and S, are unit vectors at sites i and j. Jj; is the strength of exchange
interaction and H®*, the applied field. Monte Carlo realisation of this model in-
volves starting from a random or fixed orientation of unit vectors at the lattice sites
depending upon whether the initial state is a random or an ordered state. Different
states of the Markov chain are then generated by choosing a site at random and
selecting a new orientation of the spin at that site randomly using three random
numbers £,, &, and £, between 0 and 1 such that the components of the new orienta-
tion are given by

(87 =(S7 + §,A‘) / z (S.z")’vn (8" + &A) [ Z,

(82 = (87 + &8) [ Z, Z =[S + (8 + (ST, ©)

where S/%, S and S7 are the components of the old orientation and A is a para-
meter chosen so as to improve convergence. This new orientation is accepted with a
probability calculated from (6) and (8). By repeating this procedure the Markov
chain sequence is generated and as in the Ising case the estimates of various thermo-
dynamic properties of the Heisenberg model are carried out. v

The static properties that are generally computed are the total energy { E),
the net magnetisation { M ), given by »

My =3, 8 | | (10)
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and the spatial correlation function g(n), given by
g = ) ST St (1

These are calculated for various values of the parameters of the model, as a function
of temperature. The specific heat of the system can be estimated as the slope of the
( E > vs T plot, and similarly, magnetic susceptibility, as the slope of { M > vs
H*'plot at H*** = 0. One can also estimate the specific heats and magnetic
susceptibilities from fluctuations in internal energy and the magnetisation respectively.
The relations are

C, o 11,5 ( E*S — (YY), (12)

and X (MY = (MO, o D g (13

The studies on model spin systems are carried out mainly to understand the phase
transitions exhibited by these systems. The phase transitions of the second order
are generally characterised by a set of exponents known as the critical exponents and
these critical exponents describe the variations of thermodynamic properties near the
phase transition. Some common critical exponents that one comes across in the
study of phase transitions are a, o', f, v, v, 8, v and 1. These are defined by the
relations

C ~(— &% e < 0,

C ~ (&)@ >0, (9
M~ (— &P e <0, (15)
% N(“"’G)-y’ €<05

~(7" - e>0, (o
H™ ~ M6 € =0, (17
£ ~(— o €<,

~ (6)“1’ € > 0’ (18)
g (r) ~ | r ""(d-—Z'*‘"I) ¢ =0, B (19)

Here, ¢ is the correlation length, d is the dimensionality and e is the temperature
variable defined by

€ =(T"" Tc)/.Tm ‘ (20)

where T is the critical temperature, All these relations are defined in the neighbour-
hood of T,, whenever the defining relation assumes a non-zero e.




34 8 Ramasesha.. . ..

One of the major aims of the Monte Carlo method in the. study of model spin
systems is to accurately estimate these critical exponents We shall come back to a
discussion of these aspects in § 3. -

,2‘_2 Dynamic properties -

The dynamical interpretation of the Monte Carlo method is based on the concept that
with each Monte Carlo step one can associate a time scale = such that when the chain
has gone through N Monte Carlo steps, we can say that the chain has evolved over
a time N+. From the probability prescription we have used in the previous sub-
section we can see that the evolution of the chain is governed by the master equation*,

d z z z — N-. zZ_g z
aP@““”&,"qun_u—zkﬂwwr+—&)

X 'P(Slz v Stzs vees ]z\,”; t) + zil W(_Siz"';' Siz)
X P(Sf‘, trey T Siza cery S1zv's t)a (21)

where P(Sy%, ..., S ..., Sy, t) is the probability that. the system is in the state
(SY% ooy 8% .., SY) at time ¢ and. W(S? - — S)) is the single spin-flip probability
per unit time for flipping the ith spin. Since the Markov chain chosen for our
study is ergodic,.the probabilities satisfy the detailed balance condition of (5b).
With this condition the master equation (21) becomes equivalent to the master
equation of the single spin-flip kinetic Ising model proposed by Glauber (1963).
Glauber’s kinetic Ising model has been solved exactly in one-dimension and only
approximately in higher dimensions. Thus Monte Carlo simulation provides a way
of estimating time-dependent properties of the system without recourse to the
approximate methods. The dynamic propertles of interest in the study of phase
transitions are the following,.
(i) The time-dependent correlation functions, ¢ 5455 (1), estimated as

(t) = N 1 t—t ar' , ,
by O = o [ o TG~ B+ —CBY],
o (22)

where X355 is proportional to 1/T'X [(AB) — {4 and { B}] and ¢, corresponds to

the time when the Markov chain has reached the limiting behaviour. The upper
hmlt of the integration is based on the desired accuracy.

(11) The autocorrelation functions, z{as 48 (1), estimated as

JCEN S O — (AN B )~ By
In—t—1y Z___l Ji:l [Ai(tl)_;{A>;[ [B,i(f,): <B>] ar’
o ‘ (23)

%ASB @ =

*For the sake of simplicity we shall henceforth consider the 'dynazﬁics of . the Ising models only.
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Computations are carried out generally for 4 and B representing magnetisation and
magnetisation, internal energy and internal energy or magnetisation and internal
energy.

Assomated with these correlation functions are the relaxation times .

ty—1Iy !
Toasn = [ " $sasm () dt, 24)
and s = | e () dr. | 25)

The variation of the quantities Tsasp A0d 1-8 5 Vith temperature, near the critical
point T, are governed by exponent relations of the type

Tyasp ~ (— ) Dsass for T< T,
~ ()" Asaspfor T> T, | (26)
and SASB ~ ("‘ E)(ASASB y T < Tc, | (27)

~ (B, T>T,. |

As.in the case of static properties, dynamic properties are estimated by the Monte
Carlo method to arrive at the dynamic critical exponents. .

- So far, we were concerned with the equilibrium relaxation functions. We can also
study by using the Monte Carlo method the approach to equilibrium by estlmatmg
the non-equilibrium relaxation functions, defined by the relatxon

¢AT AH _ <A(t)~—A( 00)>

= O —A()) @8

The non-equilibrium relaxation function ¢ describes the approach of the system
to equilibrium, if at ¢ = 0, the temperature and the magnetic field were changed from
Tto T+ AT and Hto H+ AH respectively. The a.ssocla.ted relaxation times and
critical exponent are designated respectively by

AT AH

T, AH
Ly ,AAA-

-

~ The estimation of equilibrium and non-equilibrium relaxation times are also
- impo1tant in estimating the error involved in Monte Carlo calculations. The error
in Monte Carlo calculations stems from two -sources—(i)..insufficient number of
Monte Carlo steps excluded (from averaging) to get rid of the effect of initial configura-
tion and (ii) statistical error in estimates because of the finite sample size. Miiller-
Krumbhaar & Binder (1973) showed that the number of Monte Carlo steps/spin
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An that should be excluded from the averaging, in order to eliminate the effects of
initial configuration, should satisfy the inequality

Amr, AT
An>> 70 (29)

They further showed that error in estimates due to finite sample-siz€ 7 is given by
— 1 ; |
(AP ~ = (42— 4H] (1+2TSA8A , forn >> TsApA” (30)

N is the system size (number of spins considered). Since TSAAH’ AT, 75454 and

[{4%)— (A)*%] all show critical divergence, near a critical point, the number of
Monte Carlo steps A7 to be excluded becomes prohibitively large as also the
sample-size n for a given (s4)%. Thus it is not possible to estimate the thermody-
namic properties, with any accuracy, arbitrarily close to the critical point by the
Monte Carlo method. Hence studies only as close to T, as T, 0-02 T, have been
carried out employing the Monte Carlo method.

2.3 Boundary conditions and finite size effects

In the practical realisation of the Monte Carlo method, we are constrained to deal
with systems of finite sizes i.e., systems with a finite number of spins. Consequently,
the surface of the system gains importance, unlike in the experimental study of bulk
behaviour. Apart from the surface, the finite-size behaviour of the system itself
leads to important consequences. While surface effects can be eliminated by judicious
choice of boundary conditions, finite-size effects cannot be eliminated in our simula-
tions. :

The commonly used boundary conditions in the Monte Carlo simulations are (i)
free boundary conditions (ii) periodic boundary conditions (iii) anti-periodic boundary
conditions and (iv) self-consistent effective field condition. In the free boundary
condition,

S (h k, 1) =0, | (31)

for h, k, I lying outside the system. Thus this boundary condition treats the surface
as a free surface. In the periodic boundary condition '

Sk, 1) =S (h 4 ny, k, D,
= S (ks k :E nz, l): V (32)
=S (h kI 4 ny,

where n;, 1, and n, are the system dimensions of a cubic lattice.  This boundary
condition eliminates the surface effects while the finite-size effects still persist. The
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antiperiodic boundary conditions are used to study interfaces of two domains with
opposite magnetisation. Thus,

Stk 1)=S0+n,k ),

=—Shktml, ' - (33)
=—S(h9k9l:i:n3)’

simulates an interface on the YZ plane. Similarly we can simulate thin films us1ng
free boundary condition in one direction and periodic boundary condition in the
other two directions. Using free boundary condition and different shapes for the
system we can study rough surfaces.

The self-consistent effective field ‘condition (Miller-Krumbhaar & Binder 1972)
is not really a boundary condition but it provides a method of treating surfaces.
In this method, the Hamiltonian of the infinite system is approximated by the
Hamiltonian of a finite system and an effective field acting on the surface. The
effective field on the surface is adjusted self-consistently so as to have the magneti-
sation in the bulk and the surface the same. This method leads to quicker conver-
gence of the finite-size properties to the infinite-size values than the other boundary
conditions.

Thermodynamic behaviour of finite-size systems has been dlscussed by Flsher &
Barber (1972) in terms of the critical exponents of the corresponding infinite system.
This finite-size scaling theory predicts that the shift in T, of a finite-size system is
governed by an exponent through the relation ,

- _Tc(N) -A - 00°* | B A
T. [1 m]aN as N—oo; (34

A was shown to be equal to 1/v (equation (18)) by Fisher. Similar relations for the
behaviour of magnetisation, susceptibility, specific heat etc., near T, of finite systems
with and without surface, have been predicted by the finite-size scaling theory. Some
of these predictions are confirmed by Monte Carlo simulation of finite systems of
different sizes, with and without free surfaces.

3. Applications to model spin systems

3.1 Ising Models

Monte Carlo simulation has been extensively employed to understand the static and
dynamic behaviour of Ising models. Studies have been carried out on one-, two- and
three-dimensional Ising models. In two- and three-dimensions studies have been
carried out on different types of lattices. We shall deal Wlth these studles starting from
the one- dlmensxonal Ising model. :

P. (C)—3
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3.1a One-dimensional Ising models

1t is known that one-dimensional Ising models with only short-range interactions do
not exhibit any critical behaviour. However, when the interaction between spins is
of infinite-range and Kac form viz.

Jy=ayexp (—y|i—j|)y—>0, (3%

the chain exhibits a phase transition. Ising chains with competing short-range and
infinite-range interactions have been studied by Nagle (1970) and Theumann &
Héye (1971). Particularly interesting is the Theumann-H¢ye Ising chain, which
exhibits several first-order phase transitions in the ground state. The Hamiltonian
of Theumann-H¢ye Ising chain is given by

H=—7 % SiSi,— KD SiSin— > ¢(—))5iS;,
i i i>]
J<0,K <0, (36)
and p(i—j)=avyexp(—vy|i—j|)a>0,y—>0 37

In the limit y ~ 0, the last term in (36) can be replaced by an equivalent neighbour
interaction term viz.

ax y 885
i)

The T=0 phase diagram of this system is shown in figure 1. The present author has
carried out a Monte Carlo simulation of this Ising chain to understand the finite-

I [ w
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Figure 1. ' Phase diagram of Theumann and Héye. j, k£ and g refe

Ig : ann _ ar . 2  refer to the nea
neighbour, next nearest neighbour and infinite-range interaction strengths respectivg?;t
Roman numerals define the division of the diagram into regions. Arabic numbers
give the number of phase transitions in the respective region at 0, X
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temperature critical behaviour (Ramasesha 1977). Several phase transitions have been
observed, the number depending on the region of the phase diagram, as a function
of temperature. These phase transitions are generally of a higher order, except in
region I (where the transition is first order and is accompanied by a change in short-
range order), and are characterised by a change in long-range ordering of the spins
from one type of sublattice spin structure to another. For instance in region II, the
long-range order of chain changes from a four sublattice spin structure (144) to a
three sublattice spin structure (44{) at the first transition and at the second transition
the chain becomes a paramagnet. The asymptotic correlation functions indicating
this behaviour are shown in figure 2.

Glauber’s kinetic Ising model (§ 2.2) is exactly solvable in one-dimension. Thus
in one-dimension, Glauber’s model provides a true testing ground for the Monte
Carlo estimates of dynamical properties. Figure 3 shows time-dependence of various
time-dependent pair correlation functions calculated exactly and estimated from
Monte Carlo method (Stoll ef al 1973). The agreement is excellent and thus one can
have reliable estimates of dynamical properties by employing the Monte Carlo method.

3.1b Two-dimensional Ising models

The partition function of a two-dimensional square Ising model was exactly

120 |
60

T=325
A A PN

0&
- -80

120

g ([e=¢'])

T=5
120 -

: iw/\\[‘\umwf\

-120

23 32 35 38
fr=ri

Figure 2. Plots of correlation functions‘vs distance, starting from the 23rd neigh-
bour, for region II in zero field at different temperatures.
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Figure 3. Calculated time-dependence of various pair correlation functions
at kpT/J=1 in the one-dimensional kinetic Ising model (N=220) with nearest neigh~

bour interactions and periodic boundary conditions compared with exact results.
After Bmder (1976)

calculated by Onsager (1 9114) and he showed that the model exhibits a second-order
phase transition. Since this is an exact result, most of the Monte Carlo calculations
on two-dimensional square Ising models are carried out to check the accuracy of the
calculations. We shall confine ourselves in the rest of this subsection to a square
Ising lattice although there has been some recent work on order in a triangular Ising
lattice (Meijer & Cunningham 1977).

Figures4and 5 give the variation of specific heat and magnetisation, with temper-
ature for a 55X 55 square lattice computed by Stoll et a/ (1973) and Binder (1974a, b).
Also given for comparison are the exact results of Onsager (1944). We see from the
figures that the fit with the exact results is excellent, for | (T—T,)/T. | >0-03. Suscep-
tibility and correlation lengths also agree very well with the exact results. As men-
tioned in the previous section, close to the critical point, the errors in the Monte Carlo
estimates diverge. In two-dimensional Ising models, (y + ASM s») 18 much larger

than in three dimensions and hence the error should be far more critical in two
dimensions than in three dimensions. The good fit observed with the exact results,
in spite of this drawback, shows the power of the Monte Carlo techmque

Several predlctlons about Fisher’s droplet model, finite-size effects, site-dilute
Ising models etc., have been tested in the case of two-d1mens1onal Ising models through
Monte Carlo estimates.

Fisher (1967) proposed the droplet model asa seml-phenomenologlcal description
of critical phenomena in Ismg spin systems According to this-model, the free
energy per spin is-given by. " : v =

Lrr el
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—— Ferdinand and Fisher

o (64x64)
2 ¥ =~ infinite system
O Ccomputer experiment
Cy (55x355)
1
I
o

T/Te

Figure 4. Specific heat of the Ising square 55 x 55 lattice, plotted vs reduced tempe-
rature. Full curve is the result of Ferdinand & Fisher for a 64 x 64 system, the
dashed curve is the result of Onsager for an infinite system, and open cnrcIes are
computer results of Stoll. After Binder (1976).

03l ‘ ®| 55x55=3025
O 16xX16 X16 = 4096

02—

01 L1 I 1 L1 |

00l 002003005 O 0203 05 1

Figure 5. Log-log plot of the magnetisation of Ismg lattice vs relative temperature
1-T|T.. Crosses denote Monte Carlo results of a square (d=2) lattices and open
circles the Monte Carlo results of a simple cubic (d=3) lattice. ’I‘he broken straight
line is the result of Padé approximations. After Binder (1976). ‘

where Hext is the applied field, U(') is theinterdction energyin a fully aligned state and
n, is the cluster distribution function whlch gives the distribution of clusters Wlth I
reversed splns and has the form

T-T1)  J 2pupH R -
= — . Io ~11% I-7. 39).
g, X g [ao KT 4+ K.T . - (39

The constants g, and a, are related to the critical amplitudes and ¢ and  are'related
to the associate critical exponents B and 8 (15) and (17). In the two-dimensional
Ising case Fisher proposed that o has a value ~3/5 and 7~31/15. A Monte Carlo
simulation study was carried out by Stoll ez al (1972) to test the droplet model. They
defined a cluster as a group of reversed spins linked together by at least one nearest
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neighbour bond. The distribution function n, calculated from this study was fitted
to (39) assuming a value of 3/5 for o. This gave a Monte Carlo estimate for the
value of = as 21 &~ 0-1, in very good agreement with the value predicted by Fisher.
Thus the droplet model seems to be a good description of the critical phenomena, at
least in two dimensions.

Finite-size effects have been studied in two-dimensional Ising models, by Landau
(1976), employing Monte Carlo method. He confirmed the predictions of the scaling
theory of finite-size effects from the critical exponents for magnetisation, susceptibility
and specific heats of finite systems. However, in the two-dimensional Ising case, it
could not be ascertained if A (equation (34)) generally has the non-scaling value of
unity or has a value »* (equation (18)) as the value of v is unity in the two-dimen-
sional Ising case.

Critical properties of site-dilute two-dimensional Ising models have also been
studied by Ching & Huber (1976), employing Monte Carlo method. The studies
are carried out for p = 07, 0-8, 09, and 1-0 (p is the fraction of magnetic ions) on the
square Ising lattice. The thermodynamic properties are averaged over five independent
distributions of magnetic and non-magnetic ions for each concentration p. The plot
of T(p)/T. (1) vs p was a straight line with a slight spread of the point for p=0-7.
The initial slope of the curve has a value of 1-47 4 0-05, concordant with the series
value of 1-454-0-05. However, critical exponents do not seem to vary with p, in
contrast to the results of series expansion.

Glauber’s single spin-flip kinetic Ising model has been studied by the Monte Carlo
method, on a square lattice by Stoll er al (1973), as well as by Bolton & Johnson
(1976). Stoll et al computed the relaxation times 75,50 Taassas TorsEs ThEsE ToMSE
and 7§sz They found that the associated critical exponents satisfy the rigorous
inequalities and lower bounds, computed by approximate methods. The exponent
values are Agysy X Asmse® Asase ¥ 19042010, Afysa & 1604010, Adyse

A 09540110 and Afg; ~ 0. These results are consistent with the predictions
of the dynamic scaling hypothesis of Halperin & Hohenberg (1967, 1969). The
results of Bolton & Johnson are based on a different boundary condition. How-
ever, their results also agree with the predictions of the dynamic scaling hypothesis.

Studies of metastable states and non-equilibrium relaxations have also been
carried out on a square Ising lattice (Binder & Stoll 1973). In these calculations,
the external magnetic field is suddenly reversed and the evolution of the system after
reversal is followed. It is seen for some values of the reversed field that the non-
equilibrium relaxation time, exceeds the order parameter relaxation times by several
orders of magnitude. ‘Such non-equilibrium states, which are also observed in real
experiments are defined as metastable states. The critical exponent for the non-
equilibrium relaxation conforms to the prediction of dynamic scaling hypothesis.

3.1c Three-dimensional Ising models

Systematic study of the three-dimensional Ising lattices (simple- cubic and body-
centred cubic) was carried out by Fosdick (1959, 1963) and Ehrman et al (1960).
These workers computed the order-parameters and found excellent agreement with
series extrapolation estimation., However, information about thermodynamic
properties, such as specific heat and susceptibility is lacking in this case. -
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Finite-size effects have been studied by the Monte Carlo method in the case of a
simple cubic lattice and the scaling law (34) has been confirmed. This was not
possible in the two-dimensional case since the critical exponent was unify. The above
study was carried out using both free and periodic boundary condition. It was found
that with periodic boundary condition the effect of finite-size is small and that the
asymptotic behaviour (34) is reached for small system size. Thus the rounding’
effects observed in phase transitions of finite systems have been attributed to the free

surface since with free boundary condition the asymptotic limit is reached only for
much larger sizes of the system.

3.2 Heisenberg models
3.2a One-dimensional Heisenberg model

One-dimensional Heisenberg model does not show any phase transition. However, .
there are certain real systems whose behaviour closely approximates that of one-
dimensional Heisenberg antiferromagnet which has not yet been solved exactly. One
such system is tetramethylammonium manganese chloride (TMMC). To fit the
experimental scattering function data available on TMMC, Windsor & Locke-
Wheaton (1976) carried out a Monte Carlo calculation and estimated the spin
correlation function {S* (0) S,(#)». Scattering function calculated from this data
is in remarkably good agreement with the experimental scattering function. The

spin wave dispersion curves obtained from the Monte Carlo data show appreciable
nonlinearity even at low temperatures.

3.2b Two-dimensional Heisenberg model

The two-dimensional Heisenberg model also does not exhibit any phase transition
(Mermin & Wagner 1966). However, it was conjectured by Stanley & Kaplan
(1966), that a special ordered state with ¢ long-ranged short-range order ’ exists in the
two-dimensional Heisenberg model. The Monte Carlo simulation of Watson et al
(1970) indeed failed to show any critical behaviour. But the short-range order was
found to have a range as large or at times larger than the system dimensions.

3.2¢ Three-dimensional Heisenberg model

While extensive Monte Carlo calculations have been carried out on simple cubic
lattices (Binder & Rauch 1969; Watson et al 1969), only a few calculations are
available in the case of the body-centered cubic lattice (Binder et al 1970) and the face-
centred cubic lattice (Paauw et al 1975). In the case of the simple cubic lattice the
Monte Carlo estimates of B, y, 8, v and »' ((15) and (18)) are found to be in very good.
agreement with the values predicted by series expansion methods. Simple cubic
lattices with nearest and next nearest neighbour interactions have also been studied
(Binder 1976) and the Monte Carlo estimates are found to agree very well with the
series expansion calculations, wherever the latter has been performed. The three-
dimensional Heisenberg model has also been studied using the self-consistent Monte
Carlo method (Miiller-Krumbhaar & Binder 1972) and the agreement with the
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critical behaviour studied by series expansion methods was found to be quite satis-
factory. Miiller-Krumbhaar & Muiiller (1974) estimated the local order parameters
of the three-dimensional Heisenberg model near the critical point. They calculated
the distribution functions for magnetisation viz., p (M;)—of asingle spin, p(M,)—of a
pair of neighbouring spins, p(Mz)—of three collinears pins and p(M,)—of a central
spin and its six neighbours. They found that the width of the distribution p(My)
showed a cusp-like behaviour, near T, in each case. This was used in interpreting
some of the magnetic resonance results obtained on such systems.

3.3 Spin glass models

3.3a Experimental and theoretical situation

Spin glasses have been reviewed recently by Fisher (1977). They are dilute magnetic
alloys formed by dissolving magnetic impurities in a non-magnetic host metal (e.g.
Au Fe), and are characterised by a cusp in magnetic susceptibility at low temperatures
and a broad maxima in specific heat at a temperature T,, roughly 20 % higher than the
cusp temperature T;. In these systems, although Méssbauer lines are split due to a
hyperfine field, no long-range order has been found below T;. These systems also
show strongly asymmetric hysteresis loops when cooled below T} in an applied field.
The remanence is found to decrease logarithmically with time. The temperature T}
varies as C™, where C is the concentration of the magnetic impurity and m
ranges between 0°55 and 0-75.

Spin glass property has been attributed, at a microscopic level, to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) exchange interaction between magnetic moments
which are randomly distributed. The RKKY interaction is long-ranged and oscilla-
tory in behaviour. In spin glass theories, the RKKY interaction between the
randomly distributed magnetic impurities is replaced by a randomly varying exchange
interaction between regularly arranged Heisenberg or Ising spins. Generally the
exchange coupling J;;, which is a random variable, is assumed to be distributed
according to a Gaussian curve with mean zero. Edwards & Anderson (1975)
solved such a model in a generalised mean field approximation and obtained a sharp
cusp in susceptibility as well as specific heat at the same temperature. However,
it is well known that mean field results are net very reliable and they tend to give
sharp transitions even where transitions do not exist (e.g. one-dimensional Ising
model with nearest neighbour interactions). Thus it is not known whether the
failure of the Edwards-Anderson model is genuine or due to the approximations
involved in the calculations.

3.3b. Monte Carlo simulationrofspz'n glass

Monte Carlo simulations of spin glass have been carried out by Binder & Schroder
(1976a, b), Binder & Stauffer (1976) and Binder (1977) to ascertain whether the
Edwards-Anderson model is suitable for describing spin glasses or whether the
approximation involved in solving the model gives spurious results. Apart from
the fact that Monte Carlo simulation gives better results than the mean field approxi-
mation, it also permits a study of non-equilibrium relaxation phenomenon which is
of importance in spin glass systems.
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Binder & Schroder considered an Ising square lattice with nearest neighbour
interactions in zero and non-zero fields. The nearest neighbour interaction was
chosen at random from a Gaussian distribution of width AJ and mean zero. The

quantities computed included internal energy, direct and staggered magnetisations,
the spin glass order parameter ¢(z) given by :

_ 1w  SEwyar\ -
1O =5>" (.f_r______) ; (40)

t—t

and the autocorrelation function { S/ (0) S/(r) ). From these results specific
heats, direct and staggered susceptibilities were computed. The internal energy is
found to reach the same asymptotic value independent of the initial state while
magnetisation showed remanence for a ferromagnetic initial state below Ty. The
remanence showed a slow decay with time. Both the results are consistent with
experimental observations. The conjecture that the autocorrelation function decays
to the order parameter value as - oo could not be verified since the decay of the
autocorrelation function is very slow. However, the order parameter g relaxed to a
zero value for kg7 > A J but assumed a non-zero value at lower temperatures.
The specific heat and susceptibility variations of a spin glass with temperature are
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Figure 6. Specific heat vs temperature of a two-dimensional Ising spin glass. After
Binder & Schroder (1976). :
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Figure 7. Susceptibility vs temperature of a two¢dim¢n_sional Ising spin glass. AJ
is gthe width of the Gaussian. After Binder & Schroder (1976).
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shown in figures 6 and 7 respectively. We notice that the susceptibility curve shows
a cusp while the specific heat curve shows a broad maxima. The temperature of the
maxima is ~25% higher than the cusp temperature. The field required to smoothen
the cusp in the susceptibility curve is of the same order as that predicted by the
Edwards-Anderson model and is an order of magnitude higher than the required
experimental fields. In the three-dimensional Ising case, the temperatures Ty and
T, come closer together. This is not surprising since for disordered systems the
mean field results are known to be exact in six-dimensions.

Binder (1977) has estimated a global spin glass order parameter ¢ for the Edwards-
Anderson model. This order parameter is given by (Luttinger 1976)

b=, 4, R

where <l>:“ is the phase function for the spin glass. The phase function in the spin
glass state is not known and is difficult to determine. But by using a cﬁ;n obtained

from the ground state spin glass simulation and using the same ground state as the
initial state for calculations at non-zero temperatures,shas been estimated at various
temperatures. The advantages of using the global order parameter ¢ instead of the
local order parameter g ((40)) is that ¢ has a much weaker dependence on ¢ (Monte
Carlo steps/spin) than g and hence converges faster. Besides the order parameter
shows critical fluctuations while ¢ does not. The susceptibility corresponding to
fluctuations in ¢ diverges in the vicinity of T%.

Thus, we see from the Monte Carlo simulation studies that the Edwards-Anderson
model is a viable spin glass model and the spurious results are largely due to the
generalised mean field approximations.

There has been some recent interest in the computer simulation of a real spin glass.
Walker & Walstedt (1976) studied a spin glass of classical spins randomly embedded
in a face-centred cubic lattice and interacting via RKKY interactions, However,
this simulation is not a Monte Carlo simulation and it is aimed at obtaining the spin
glass elementary excitation spectrum from the ground state configuration to explain
the approximate linearity and concentration independence of the specific heat
variation at low temperatures. De Rozario et al (1977) studied the ground state
internal field distribution of classical spins randomly distributed on a simple cubic

lattice and obtained the low temperature specific heats. This again is not a Monte
Carlo simulation.

3.4. Renormalisation group critical exponents via Monte Carlo method

The renormalisation group method involves a study of the transformation of inter-
action parameters of a model under a change of length scale. - This transformation
gives the critical exponents of the model and this method has been very widely applied
in recent times. In this subsection we shall briefly outline some exploratory attempts
at obtaining this transformation by the Monte Carlo method (Ma 1976; Friedman
& Felsteiner 1977). D

Ma considered a two-dimensional single spin-flip kinetic Ising model. In this
model, the transition probability for a spin to flip in a time interval dt is given by

Wi(S7) =T exp (— S By, (42)
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where B, is the magnetic field seen by the spin at site . The method adopted by
Ma to obtain the transformation of interaction parameters with change of length
scale is the following. Given an initial configuration S at time z, the spin-flip pro-
babilities are computed for all the spins using (42). The probability that no spin
shall flip during a period #’ is given by exp (— € t') where,

Q=>, W (s 43)

And the probability that during a subsequent period dt’, one of the spins will flip
is Q dt’. Thus, the net probability for the two events to occur in succession is
exp (— Q) Qdt’. The computational method involves (i) choosing the time #’
during which none of the spins flips and (ii) choosing the site i for flipping the spin.
These are chosen with the help of two random numbers x and y with 0 < x, y < 1.
The time ¢’ is given by

t" = —In x/Q. (44)

To choose i for each configuration, the interval 0 to 1 is subdivided into N sub-
intervals with the length of each sub-interval proportional to W,. The site 7 is now
the ith sub-interval to which the random number y belongs. The spin at site i is
flipped and the process of choosing ¢’ and i are repeated for the new configuration.
The quantities of interest are averaged over a large number of such cycles.

The quantities computed in this simulation are the life-times of the individual spins
and block spins in different environments. Block spins are defined as spins represent-
ing the state of a block of 2 X 2 single spins. The block spin assumes two states,
just as the single spin, depending upon the direction of magnetisation of the block
with one of the four spins neglected randomly to give a net magnetisation in all
situations. From the life-times of the block spins in different environments, we can
calculate the interaction parameters for the block spins. The life-times of single
spins serve in checking the accuracy of the calculations. The interaction parameters
of the block-spins and the single spins give the elements of the matrices 8J°,/8J; and
Oh'i/oh, (J'yand A'; are interaction parameters and fields corresponding to the inter-
action parameters of block spins. Similarly J; and 4; are defined for single spins),
whose eigen values are related to the critical indices. The dynamic critical exponent
is related to the transformation of I" (equation (42)). The dynamic and static critical
exponents obtained from this method compare well with those obtained from other
methods.

Friedman & Felsteiner (1977) have also applied the Monte Carlo technique to .
calculate renormalisation group critical exponents. However, they have adopted
the Monte Carlo sampling technique only to estimate the partition functions of the
original and the renormalisation group transformed Hamiltonians. Thus their
method is not a fundamental application of the Monte Carlo method to renormali-
sation group transformation; they have employed the Monte Carlo method only
as a numerical tool. .

The author is grateful to Professor C N R Rao for several helpful discussions and
constant encouragement. :
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