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Abstract. Two-band extended Hubbard model studies show that the shift in optical gap
of the metal-halogen (MX) chain upon embedding in a crystalline environment depends
upon alternation in the site-diagonal electron—lattice interaction parameter (ey) and the
strength of electron-electron interactions at the metal site (Uy). The equilibrium geometry
studies on isolated chains show that the MX chains tend to distort for alternating &y and
small Uy values.
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1. Introduction

There has been considerable recent interest in quasi one-dimensional systems containing
metal-halogen chains (Tanino and Kobayashi 1983; Fanwick and Huckaby 1987,
Yamashita et al 1983; Wada et al 1985; Toriumi et al 1990; Okamato et al 1991).
‘The metal ions are the nickel, palladium or platinum jons and the halide ions are the
chloride, bromide or iodide ions. In the crystal, the metal ions are ligated to other
ligand molecules and counter ions could also be present between the chains to maintain
charge neutrality. A typical system is the Pt—Cl system, [Pt(en),][Pt(en),Cl,]1.(ClO),
(Girlando and Painelli 1991). These systems show an interplay of mixed valence of
the metal ion and Peierls’ distortion of the one-dimensional M-X chain. Thus, there
is evidence for strong electron—lattice as well as strong electron—electron interactions
in these systems.

The earliest models (Nasu 1984; Bishop and Gammel 1989) for studying the M-X
systems focussed only on metal ions which contain a single electron in the d_. orbital.
The model employed was a half-filled Hubbard model with an effective transfer
integral between the transition metal ions (obtained after implicitly integrating out
the charge degrees of freedom of the halide ion) and static electron-lattice interaction.
The electron-lattice interaction was both site-diagonal leading to different orbital
energies at different metal sites as well as site off-diagonal corresponding to an
alternation in the intermetal transfer integrals. While this model provided an
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interesting phase diagram in its parameter space, which included phases such as the
charge density wave (CDW) and spin density wave (SDW) phases, the model itself
was quite unrealistic. Later, theoretical studies (Conradson et al 1988; Gammel et al
1992) employed the two-band extended Hubbard model which explicitly included
the orbitals of the halide ion as well. The p, orbital of the halide ion contributed two
electrons a one electron was contributed by the d,. orbital of the metal ion. Thus
these models are the two-band models at (3/4)ths filling. The electron-lattice interactions
included were similar to those in the one-band model. The two-band model studies
focussed on structural distortions, electronic spectra and mixed valence in the system *
and showed that the diverse experimental results were indeed reproduced for different
parameter sets of the model. The two-band model studies also have been somewhat
incomplete as they do not include the effect of the lattice potential. This could be
important since the lattice consists of highly charged metal ions as well as many
anions and the Madelung potential associated with the crystal is quite large. Another
aspect of the problem that has not been well studied is that of obtaining equilibrium
-geometry of the M-X chains by relaxing the lattice self-consistently. In this paper,
we present preliminary results of our studies on the effect of self-consistently
embedding small M-X chains in the solid, on the optical gap in the system. We also
present results of equilibrium geometry calculations of small M-X segments by
relaxing the bond lengths from a bond order calculation and using Coulson’s formula
(Coulson 1939). We employ the two-band Pariser—Parr—Pople (PPP) model and
carry out complete configuration interaction (CI) calculations in the valence bond
(VB) basis. In the next section, we introduce the model Hamiltonian and give some
computational details. This is followed by a section on results and discussion. We
end this paper with a summary.

2. Model Hamiltonian and computational details
The two-band PPP model Hamiltonian is given by
HPPP = Z Em a?:r aio‘ + ZEX b;!::r bja
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where a¥ (a;,) creates (annihilates) an electron in the metal d,. orbital with spin o
similarly the operators b* and b, are associated with the orbitals of the halide p:
orbital. The index i, refers to the metal site and j, refers to the halogen site. The
indices k and I run over all the sites in the chains. The Hubbard on-site repulsion
parameters for the metal and the halogen atoms are given by Uy and Uy respectively.
The site energy of the metal orbital is given by &, and that of the halide ion by &y.
In cases wherein the metal-ion sites are identical, that is when the site-diagonal
electron—lattice interaction is identical for all the metal ions, ¢y is taken to be zero.
The transfer integral between the metal ion and the halide ion, ¢, is the same for all
bonds in a uniform chain and alternates in a Peierls’ distorted chain. In the alternating
chain the transfer integral between the M and X ions is taken to be

t=ty+(L—27035) x tq, (4)

where L is the actual bond length in &mgstroms (A) and t and ¢, are in electronvolts
(eV). This choice reflects a linear electron—phonon coupling. The quantities zy and
zy fix the correct charges on the ions depending upon the occupancy of the respective
orbitals. Thus, when the halide orbital has two, one or zero electrons, the charge on
the halide ion would be — 1, 0 or + 1 respectively. Similarly, when the metal d,.
orbital has two, one or zero electrons, the charge on the metal ion would be 2, 3, or
4 respectively. Thus, the chosen zy and zy values give the lowest energy for the
configuration M*#X ™! and highest energy for the configuration M*+4X*1 This is
very similar to the parametrization scheme chosen in m-conjugated systems in the
PPP model.

To embed the chain in the solid, we need to evaluate the Madelung potential in
the crystal at the metal ions and the halide ion. This is done by using the Ewald
procedure (Tosi 1964) wherein the Madelung sum is calculated as a sum of two terms,
one involving summation over the direct lattice and another involving summation

‘over the reciprocal lattice. These summations are carried out over a sufficiently large

number of neighbours so that the convergence is good to 0-01 eV. Since this calculation
is the slow step in the entire scheme, we have used the potentials calculated for one
structure in the crystal [PdL,][PdBr,L,](ClO,), (Yamashita et al 1985) as the
potential for all parameters of the model Hamiltonian, (1). The initial charges of the
jons used in the calculation corresponds to + 3 on the cation and —1 on the anion.
To avoid double countirig of the interactions, we subtract from the Madelung potential
the potential due to ions in the MX chain under consideration. The Madelung
potential ¥}, at site i is given by

V(i) = Z' zjez/rij. , (5)

The interaction between the Madelung potential and the ions in the chain is now
given by the potential V(i)

Tl = Vi) — 3 2 6)

& chain

where z; is the charge on the ion, j, and the r; 18 the distance between the jth and
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ith ions. In our calculations, we solve the model Hamiltonian for the finite chain
exactly and from the ground state eigenfunction obtain the average charges on the
metal ions and the halide ion. These charges are then used in the evaluation of the
potential due to the lattice and the resulting model Hamiltonian is once again solved.
The procedure is repeated iteratively until convergence in the charges on the ions or
the energies are within acceptable limits.

To obtain equilibrium geometries in the ground and excited states, we calculate

the bond orders of the nearest neighbour bonds in the MX chain. These are given
by the expectation value of

ﬁij=§b?;bja+ b?abia’ (7)

in the appropriate states. From the bond orders we calculate the relaxed distances
between the neighbouring sites using the Coulson (1989) formulia,

x=1— (=)l + ((ki/ks) x (1= p)/P)]; ®

where s is the bound length of the short bond and I the bond length of the long
bond, fixed at 2:496 an 2:911 A, respectively, p is the bond order and k, and k; are
the stretching force constants of the short and long bonds taken from literature
(Pegiorgi et al 1989) to be 073 and 0-61 Newtons per metre. The new bond distances
are then used to obtain revised values of the transfer integrals and interaction
potentials. The resulting Hamiltonian is then solved and from the eigenstates the
bond orders are once again calculated and the whole cycle is repeated until convergence
in bond distances or bond orders or the total energies are acceptable.

The model Hamiltonian discussed above conserves total spin. Thus using spin
adapted basis functions would greatly reduce the computational effort besides giving
the correct spin label to the states. We have employed a VB basis in our calculations.
The VB diagrams are easy to construct and manipulate since they can be represented
by an integer in the bit representation scheme (Ramasesha and Soos 1984). The VB
basis although complete and linearly independent is nonorthogonal and the resulting
Hamiltonian matrix is nonsymmetric. However, there exist efficient small matrix
algorithms that allow solutions to low-lying states and the lack of symmetry does
not lead to any difficulties (Soos and Ramasesha 1990). We have used a cyclic boundary
condition in our calculations and the resulting C, symmetry in some cases has also
been exploited. Although there exist schemes wherein full spatial symmetry of the
Hamiltonian can be exploited within the VB approach, we have not used them in
the present studies (Ramasesha and Soos 1993). The Hamiltonian discussed elsewhere
in detail (Soos and Ramasesha 1990). The model Hamiltonian spans a finite
dimensional Hilbert space and, using the complete and linearly independent VB basis,
we obtain an exact representation of the Hamiltonian as a matrix. The eigenstates
obtained by solving this matrix are therefore the exact eigenstates of the model
Hamiltonian. To obtain the bond orders and charge densities in the desired states,
we find it convenient to transform the eigenstates in the VB basis to eigenstates in
the Slater determinantal basis. The latter can also be represented as integers in a bit

representation scheme and this facilitates the calculation of any desired matrix element
(Ramasesha et al 1991). ‘
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3. Results and discussion

We have carried out calculations on a chain containing for metal ions and four halide
ions. We have calculated the ground and excited state energies, average charge on
the ions, energies and charges in the embedded chain, in the ground and dipole
allowed excited state. We have also calculated the equilibrium geometry of the chain
in the ground state. In the next subsection, we discuss our results of embedding
calculations and this will be followed by a subsection on the equilibrium geometry
calculations.

3.1 Effect of embedding on optical gap and mixed valency

In table 1 is given the variation of the optical gap as a function of the alternation
parameter , (i) when the site energies at all the metal sites are identical and (ii) when
the site energy at a metal site with two short M-X bonds is larger than the site
energy at a metal site with two long M-X bonds. We find that the effect of embedding

Table1. The optical gap, in eV, for the cyclic chain of M, X, with and without
embedding for different alternation parameters 8, for Uy =40, Uy =30 and
ex = 6:0€V. A fefers to uniform ey = 0-0 and B to &, = 00 or 1:0eV at alternate
metal ion sites.

Optical gap
Shift in
o Before embedding After embedding optical gap
‘A 1-567 1-564 0-003
0-10 ‘
- B 1-642 1-450 0192
A 1-405 1-399 0-006
0-15
B 1-793 1-589 0-204
A 1-246 1-236 0010
0-20
B 1-945 1-736 0209

Table 2. Optical gap depencence of ey (both in V) before and after
embedding the cyclic chain of M,X,. &y has values of 0-0 and 0-5eV
at alternate metal sites. Other model parameters are Uy=40¢eV,
Uyx=30eVand 6 =02. :

Optical gap
Shift in
ex Before embedding  After embedding optical gap
~40 1-588 1-444 0-144
—60 1-517 1-360 0-157
~80 1:459 1-292 0167

—100 1-411 1236 , 0-175
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Table 3. Optical gap (eV) dependence on U, (eV) before and after
embedding a cyclic chain of M, X,. ey has values 0-0eV and 1-0eV at
alternate metal sites. &y = — 60 and Uy =40eV.

Optical gap
- Shift in
Ux Before embedding  After embedding optical gap
10 1-712 1-534 0178
20 1-815 1-621 0-194
30 1-945 1-736 0-209
40 2-101 1-878 0-223

is hardly discernible when the site energies are identical for all alternations. However,
when the site energies are different at the metal sites, the optical gap is reduced on
embedding. We also find from table 2 that the shift in optical gap is not very sensitive
to the site energy at the halide sites or the strength of the electron repulsion Uy
(table 3). However, we find that the shift in the optical gap shows an interesting
variation with the electron repulsion parameter U, at the metal site (figure 1). The
optical gaps both with and without embedding follow the experimental trend (Aoki
et al 1982), namely, the gap decreases with decrease in Uy and &x which corresponds
to changing the halide ion from chloride to bromide to iodide.

0.20}f

0151
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<

0.10F

0.0 i L 1
20 4.0 6.0 -
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Figure 1. Shift in optical gap upon embedding as a function of the electron repulsion
integral Uy. The alternation 5 is 02 and the site energy at the metal site alternates between
0-0 and 1-0eV. Site energy at the halide site, &x = —60eV and the halide site electron
repulsion integral, Uy =30 eV.
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Figure 2. Charge densities in the ground state at the metal sites (M and M’) and halogen
site (X) as the function of & before embedding the cyclic chain of M X, for e¢x = —60eV,
Uy =30eV, Uy=40eV and g, = 0-0eV at all metal sites.

The above results show that the important factors affecting the optical gap upon
embedding are the site energy differences at the metal sites and the strength of the
electron repulsion Uy at the metal ion. The degree of mixed valency is sensitive to
the site-diagonal distortion. In the absence of site-diagonal distortion, mixed valency
is observed only for large values of 4, both before and after embedding (figures 2-3).
However, introduction of site-diagonal distortion leads to a large difference in the
charge density distribution in the ground state before and after embedding (figure 4
and 5). Thus, the shift in optical gap upon embedding is most sensitive to the site
energy differences at the metal ion sites. The shift in optical gap to lower values upon
embedding is consistent with the assumption that the dipole allowed state is stabilized
to a greater extent, by the Madelung potential, than the ground state because of a
higher degree of ionicity in the former state. The interesting dependence of the shift
in optical gap with Uy, is in agreement with the fact that for higher values of Uy the
degree of mixed valency reduces in the ground and excited states. The fact that
embedding does not alter the optical gap significantly when Uy and &y are changed
indicates that the halide ion does not directly affect the degree of mixed valency.
The charge densities in the ground and the dipole allowed excited states differ in the
magnitude of the charge on the metal ions and the halide ion is almost in a closed shell
configuration. '
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Figure 3. Charge densities in the ground state at the metal sites (M and M') and the
halogen site (X) as the function of & after embedding the cyclic chain of M, X,. All other
parameters have the same values as in figure 2.
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Figure 4. Charge densities in the ground state at the metal sites (M and M} and the
halogen site (X) as-the function of & before embedding the cylic chain of M Xy, as the
funtion of 5. &y alternates between 10 and 0-0eV at the metal sites and all other parameters
are as in figure 2. ‘ ‘
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Figure 5. Charge densities in the ground state at metal sites (M and M’) and the halogen
site (X) as a function of , after embedding. All other parameters are as in figure 4.

3.2 Equilibrium geometry of the M—X chains

The equilibrium geometry studies have been carried out for many different values of -
Uy, Ux, &y and &y. For large Uy and in the absence of site-diagonal electron-lattice
interactions, with a cyclic boundary condition, we do not find evidence for Peierls’
distortion of the chain, even when other parameters in the Hamiltonian are varied
widely. Even with open boundary condition, there is marginal distortion of the chain
as reflected in the slightly unequal equilibrium bond lengths indicating that this is
not a finite-size effect. When we introduce site-diagonal electron-lattice interaction
by setting different &,, values at alternate metal ion sites, we find that even with cyclic
boundary condition, the equilibrium bond lengths alternate, showing evidence for
Peierls’ instability (tables 4 and 5). The extent of distortion is insensitive to the site
energy (table 4) at the halide ion site as well as to the on-site repulsion parameter
(table 5) at the halide site. However, the distortion is sensitive to the Hubbard
parameter at the metal ion. At least for the ring of M, X,, there appears to be a
critical value of U, below which the ring distorts even for gy =0 at all the sites
(tables 4 and 5). |

Since the distortion strongly depends upon ¢y, the site-diagonal electron—lattice
interaction appears to dictate the structural instability. This parameter is sensitive
to the actual halide ion which ‘indeed is in agreement with experiments. If the site
energy at the metal-ion site on one sublattice is more negative than at the other, this
would favour a higher electron density at those sites. The adjacent halide ions being
nearly doubly occupied, such a configuration would not favour delocalization of the
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Table 4. Dependence of equilibrium bond lengths of M X, cyclic chain on
Uy and Ux when (A) ey =00eV at all metal sites and (B) ey =10 and 0:0eV
at alternate metal sites. &x = — 2.0eV, bond lengths are in angstroms and Uy
and Uy are in electron volts,

A B
[
Un Uy  Shortbond Long bond Short bond  Long bond
20 1-0 2:643 2764 2:629 2778
20 2:651 2756 2636 2771
30 2:656 2:701 2:642 . 27765
40 2660 2747 2-647 2:760
40 1-0 2:704 2704 2:652 2755
20 2704 2704 2:653 2-754
30 2704 27704 2:654 2:753
40 2704 2:704 2:655 2752

Table 5. Dependence of equilibrium bond lengths of M X, cyclic chain on
Uy and &y when (A) gy =0-0eV at all metal sites and (B) ey =10 and 0-0eV
at alternate metal sites. Uy =10eV, bond lengths are in angstroms and Uy
and &y are in electron volts.

A B

Uy & Short bond  Long bond  Short bond Long bond

20 -20 2:643 27764 2629 2778
—40 2:652 . 27756 2637 27170
-60 2659 2748 2643 2764
—-80 2:666 2741 2:649 2758

40 =20 2704 2704 2652 2755
~40 2704 2704 2:656 2751
-60 2704 2704 2-660 2747
-80 2704 2704 2-663 2:744

electrons. Therefore, the halide ions adjacent to these metal sites would move away.
This would result in a stronget M-X bond between the halide ion and the metal ion
on the other sublattice which has a lower charge density. Such a situation favours
greater delocalization of the electrons and hence greater stability. A small Uy also
favours distortion of the lattice and this is also in conformity with experiments where
the higher row transition elements show a greater tendency for Peierls’ distortion.
The observation that the Peierls’ instability does not depend upon the halide orbital
parameters Ux and &y shows that the halide ion only plays an indirect role in the
structural distortion in these systems.

To summarize, we have studied the effect of embedding a metal-halogen chain in
the crystal on the optical gap in the system. We find that the shift is significant only
when the site-diagonal distortion is large. We also find that the shift shows an
interesting dependence on the Hubbard parameter at the metal site. The equilibrium
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geometry of the chains also shows a strong dependence on these parameters in
conformity with experiments. The above results are based on studies of a cyclic chain
of M, X, only. To extrapolate to the infinite system we need to carry out similar
studies on larger systems such as MsXs and MgXg systems. However, the trends
presented above can be justified on physical grounds and we may expect only
quantitative differences from further studies.
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