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Abstract. One of the fascinating fields of study in magnetism in recent years has 
been the study of quantum phenomena in nanosystems. While semiconductor 
structures have provided paradigms of nanosystems from the stand point of electronic 
phenomena, the synthesis of high nuclearity transition metal complexes have provided 
examples of nano magnets. The range and diversity of the properties exhibited by 
these systems rivals its electronic counterparts. Qualitative understanding of these 
phenomena requires only a knowledge of basic physics, but quantitative study throws 
up many challenges that are similar to those encountered in the study of correlated 
electronic systems. In this article, a brief overview of the current trends in this area are 
highlighted and some of the efforts of our group in developing a quantitative 
understanding of this field are outlined. 
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1. Introduction 

In recent years, synthesis of high nuclearity transition metal complexes in magnetic 
ground state has spurred interest in magnetism on a nanoscale 1. The synthesis of Mn12 
and Fe8 clusters in S = 10 ground state and V15 in the spin-half ground states have led to 
extensive study of quantum resonant tunnelling and quantum interference phenomena 2. 
Quantum resonant tunnelling manifests as plateaus in the magnetization vs magnetic field 
curves, with the width and location of plateaus being determined by the ramping speed of 
the magnetic field as well as the initial state. The quantum interference phenomena 
observed in the Fe8 cluster are because the paths connecting the Ms = + 10 and Ms = –10 
could interfere in the presence of a magnetic field, leading to an oscillation in the 
tunnelling probabilities 3. 
 All these systems consist of magnetic molecules which interact only weakly with each 
other. In Mn12, each molecule is a cluster consisting of a core tetrahedron of four Mn4+ 
ions each with a spin of 3/2, and an outer crown consisting of eight Mn3+ ions each with 
spin 2. The exchange interactions are frustrated (see figure 1), leading to a high spin 
ground state with low-lying excitations also of high spin. Each molecule is a 
ferrimagnetic cluster with a ground state spin of 10. In these systems because of the 
rather complex exchange pathways which exist, it is difficult to predict a priori even the 
sign of the exchange constant, let alone its magnitude 4. The Fe8 cluster is shown in
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Figure 1. A schematic diagram of the exchange interactions between the Mn ions in 
the Mn12Ac molecule. The interactions J1 = 215 K and J2 = J3 = 86 K are 
antiferromagnetic, while J4 = 64⋅5 K is ferromagnetic. 

 
 

 

Figure 2. A schematic diagram of the exchange interactions between the Fe ions in 
the Fe8 molecule. 

 
figure 2. Each of the Fe ions has a spin of 2 and the ground state of the system has a total 
spin S = 10. All the exchange interactions in this system are expected to be 
antiferromagnetic, based on comparison with complexes containing similar exchange 
pathways. The structure of V15 is shown in figure 3. Structural and related studies on the 
cluster indicate that within each hexagon, there are three alternating exchanges J ≈ 800 K 
which are the strongest in the system, and they define the energy scale of the problem. 
Besides, there are weaker exchange interactions between the spins involved in the strong 
exchange and also with the triangle spins which lie between the hexagons. All the 
exchange interactions are antiferromagnetic in nature. The exchange pathways and their 
strengths 5 are also shown in figure 3. What is significant in the cluster is the fact that the 
spins in the triangle do not experience direct exchange interactions of any significance. 
 In the case of the Mn12 cluster, while the ground state spin as well as the lowest 
excitation gap is established experimentally, it is not at all clear what the magnitude and 
sign of the exchange interactions in the cluster are. In an earlier study 6, in order to
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Figure 3. Schematic exchange interactions in a V15 cluster. There is no direct 
exchange interaction amongst the triangle spins. Interactions not shown explicitly can 
be generated from the C3 symmetry of the system. 

 
 
simplify the calculations, the strongly coupled MnIII–MnIV were replaced by a fictitious 
spin-half object. The resulting model was studied for three different sets of exchange 
constants. It was observed that the ordering of the energy levels were very sensitive to the 
variations in the exchange constant. 
 In the case of the Fe8 cluster, while model exact calculations 7 were possible because of 
the smaller dimensions of the Hilbert spaces, the exchange parameters used were very 
different from those that have been determined recently 8 Considering the sensitivity of 
the ordering of the energy levels to values of the exchange constants, it is desirable to 
redo the calculations using revised estimates of the exchange constants. 
 The basic underlying physics behind the plateaus observed in the hysteresis 
measurement is easy to understand 9. In the Mn12 and Fe8 clusters, the dipolar interaction 
between the spins leaves only the MS = 10 and –10 states as the doubly degenerate ground 
states. The application of a magnetic field lifts this degeneracy, resulting in a nonzero 
magnetization. As the field is increased, different pairs of MS states become degenerate at 
certain values of the field. At those particular fields, the presence of matrix elements 
between the degenerate states, provided either by a weak transverse component in the 
applied magnetic field or by higher order spin–spin interactions, causes tunnelling 
between the states. This results in a jump in the magnetization. At all other values of the 
field at which there are no degeneracies, the plot of magnetization vs field shows plateaus 
or discrete steps provided the sweep rate of the magnetic field is not too low 10. This is 
because, according to the Landau–Zener theory 11 the tunnelling amplitude for going from 
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one magnetization state to another is very small unless the sweeping frequency is so low 
that it is comparable to the matrix element connecting the two states. In V15, a pair of 
doublets and a quartet formed from mainly the triangle spins are split off from the rest of 
the spectrum and the plateaus arise due to transition from the doublet to the triplet as the 
magnetic field is ramped. 
 In recent years, there have been many model calculations which illustrate such steps in 
the M vs H curves 12,13. These models involve either the presence of a transverse magnetic 
field, or higher order spin couplings which lead to a term of the type )ˆˆ( 44

yx SSc +  allowed 
by the symmetry of the cluster. However, most of these calculations have been restricted 
to the Landau–Zener two-level treatment within the spin-10 manifold. Besides, there also 
exists experimental evidence for low-lying excited states of S ≠ 10 which lie within the 
S = 10 ground state manifold. Earlier studies have also ignored these states without any 
a priori justification. In contrast, we have carried out an exact calculation of the low-
lying states of a Mn12Ac cluster using a Heisenberg spin model. We find that the 
symmetry of the excited states which lie within about ~ 100 K of the ground state are 
such as to prevent any admixture through a perturbation that does not change the C4 

symmetry of the cluster. Hence, it is sufficient to consider the 21 states belonging to the 
S = 10 ground state manifold in a low-temperature study. We have studied simultaneous 
quantum tunnelling amongst these low-lying states by setting up a Hamiltonian in this 
subspace of states which includes, besides the multipolar spin–spin interactions and a 
transverse magnetic field, different gyromagnetic ratios for the core and crown spins. 
This last interaction is reasonable to introduce because of the different environments 
around the core and crown spins (as confirmed by ESR experiments 14). We have then 
evolved an initial state, which is taken to be the ground state with a specific value of MS 
(the z-component of the total spin) in the absence of the magnetic field, by using the 
time-dependent formulation of the problem in the restricted subspace. The V15 cluster is 
far more amenable to rigorous quantum mechanical analysis because of the much smaller 
Fock space (≈ 33,000 dimensional) spanned by the unpaired spins of the system. A 
quantitative study of these systems requires that at least the low-lying states of the full 
spin-Hamiltonian is evolved in time, quantum mechanically as the external magnetic field 
is ramped with time as is done in experiments. In this article, we report our studies on the 
resonant tunnelling of magnetization in V15 by following the evolution of magnetization, 
as a function of the time-dependent magnetic field, at different temperatures. The low-
lying states are obtained by solving the exchange Hamiltonian corresponding to all the 
spins of the system. The temperature dependence is introduced in the Hamiltonian via a 
spin–phonon interaction term which depends upon the thermal distribution of phonons 
and thermally averaging the magnetization over the low-lying states, after each of these 
states are independently evolved. We find that this model reproduces, quantitatively, all 
the experimental features 5 associated with quantum resonant tunnelling in V15. 

2. Model Hamiltonian and computation details 

The model Hamiltonian employed in these studies is the isotropic exchange Hamiltonian 
involving exchange interactions between nearest neighbours,  
 

,ˆˆˆ
ji

ij
ij ssJH ⋅= ∑

〉〈

 (1) 
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where the exchange interaction Jij takes the values dictated by experimental studies of 
structure and magnetic properties. The total dimensionality of the Fock space of the 
cluster is given by 
 

∏ +=
n

iF SD
1

),12(  (2) 

 
where n is the total number of spins in the cluster and Si is the spin on each cluster. In the 
case of Mn12 cluster consisting of eight spin-2 ions and four spin-3/2 ions, the Fock space 
dimensionality is a hundred million. Specialising to given total MS leads to Hilbert space 
dimensionalities, which are lower than the Fock space dimensionality. In the case of the 
Mn12 cluster the MS = 0 space has a dimensionality of over eight million (8,581,300). 
 The major challenge in exact computation of the eigenvalues, and properties of these 
spin clusters lies in handling such large bases and the associated matrices. While the 
dimensions look overwhelming, the matrices that represent the operators in these spaces 
are rather sparse. Usually, the number of nonzero elements in a row is of the order of the 
number of exchange constants in the Hamiltonian. This sparseness of the matrices allows 
one to handle fairly large systems. However, in the case of spin problems, generating the 
basis states and using the symmetries of the problem is nontrivial. The isotropic exchange 
Hamiltonians conserve total spin, S, besides the z-component of the total spin, MS. 
Furthermore, the geometry of the cluster also leads to spatial symmetries which can often 
be exploited. The simplest way of generating bases functions which conserve total spin is 
the valence bond (VB) method that employs the Rumer–Pauling rule 15. It is quite easy to 
generalize the Rumer–Pauling rules to a cluster consisting of objects with different spins 
to obtain states with desired total spin, S. However, setting-up the Hamiltonian matrix in 
such a basis can be computationally intensive since the exchange operators operating on a 
“legal” VB diagram (diagram that obeys Rumer–Pauling rules) could lead to “illegal” VB 
diagrams and resolving these “illegal” VB diagrams into “legal” diagrams would present 
the major bottle-neck. Indeed, the same difficulty is encountered when spatial symmetry 
operators operate on a VB function 16. Thus, the extended VB methods are not favoured 
whenever one wishes to apply it to a motley collection of spins or when one wishes to 
exploit some general spatial symmetries that may exist in the cluster. 
 Usually, in frustrated spin systems, it is important to partition the spaces into different 
total spin spaces because of the usually small energy gaps between total spin states which 
differ in S by unity. To avoid the difficulties involved in working with total spin 
eigenfunctions, we exploit parity symmetry in the systems. The parity operation involves 
changing the z-component of all the spins in the cluster from MSi to –MSi. There is an 
associated phase factor with this operation given by (–1)Stot + ∑iSi. The isotropic exchange 
operator remains invariant under this operation. If this symmetry is employed in the 
MS = 0 subspace, the subspace is divided into “even” and “odd” parity spaces depending 
upon the sign of the character under the irreducible representation of the parity group. 
The space which corresponds to even (odd) total spin is called the even (odd) parity 
space. Thus, employing parity allows partial spin symmetry adaptation which separates 
successive total spin spaces, without introducing the complications encountered in the 
VB bases. However, the VB method can lead to complete factorization of the spin space 
leading to smaller complete subspaces. 
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 In the Mn12 cluster, besides spin symmetries, there also exists spatial symmetries. The 
topology of the exchange interaction leads to a C4 point group symmetry. This point 
group appears at first site to present difficulties because the characters in the irreducible 
representation are in some cases complex. This could lead to complex bases functions. 
This, however, can be avoided by recognizing that in the Cn group, states with 
wavevectors k and –k are degenerate in the absence of an external magnetic field. We can 
therefore construct a linear combination of the k and –k states which is real. The 
symmetry representations in the C4 group would then correspond to the labels A, B and E, 
with the characters in the E representation given by 2cos(rk) under the symmetry 
operation C 

r
4, with k = π/4. The parity operation commutes with the spatial symmetry 

operations and the full point group of the system would then correspond to the direct 
product of the two groups. Since both parity and spatial symmetries can be easily 
incorporated in a constant MS basis, we do not encounter the difficulties endemic to the 
VB theory. In Fe8 system, symmetry adaptation is straightforward although it is not 
critical. The same is true of the V15 system. 
 The generation of the complete basis in a given Hilbert space requires a simple 
representation of a state on the computer. This is achieved by associating with every state 
a unique integer. In this integer, we associate ni bits with spin si, such that ni is the 
smallest integer for which 2ni ≤ (2si + 1). In the integer that represents the state of the 
cluster, we ensure that these ni bits do not take values which lead to the ni bit integer 
value exceeding (2si + 1). For each of the allowed bit states of the ni bit integer, we 
associate an MSi value between –si and si. For a spin cluster of n spins, we scan all 
integers of bit length i

n
i nN 1=∑= and verify if it represents a basis state with the desired 

MS value. Generation of the bases states is usually a very fast step, computationally. 
Generating the basis as an ordered sequence of integers that represent them also allows 
for rapid generation of the Hamiltonian matrix elements as will be seen later. 
 Symmetrization of the basis by incorporating parity and spatial symmetries involves 
operation on the constant MS basis by the symmetry operators. Since spatial symmetry 
operators exchange the positions of equivalent spins, every spatial symmetry operator 
operating on a basis function generates another basis function. Every symmetry operator 
can be represented by a correspondence vector whose ith entry gives the state that results 
from operating on the ith state by the chosen operator. This is also true for the parity 
operator, in the MS = 0 subspace. The symmetry combinations can now be obtained 
operating on each state by the group theoretic projection operator, 
 

,
1ˆ

ˆ)(∑ ΓΓ =
R

RRii h
P χ  (3) 

 
on each of the basis states. Here Γi is the ith irreducible representation, R̂  is the 
symmetry operation of the group and χΓi(R) is the character under R̂  in the irreducible 
representation Γi. The resulting symmetrized basis is overcomplete. The linear 
dependencies can be eliminated by a Gram–Schmidt orthonormalization procedure. 
However, in most cases, ensuring that a given basis function does not appear more than 
once in a symmetrized basis is sufficient to guarantee linear independence and weed out 
the linearly dependent states. A good check on the procedure is to ensure that the 
dimensionality of the symmetrized space agrees with that calculated from the traces of 
the reducible representation obtained from the matrices corresponding to the symmetry 
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operators. Besides, the sum of the dimensionalities of the symmetrized spaces should 
correspond to the dimensionality of the unsymmetrized Hilbert space. 
 Generation of the Hamiltonian matrix is rather straightforward and involves operation 
of the Hamiltonian operator on the symmetry adapted basis. This results in the matrix 
SH, where S is the symmetrization matrix representing the operator 

i
PΓ̂ and H is the 

matrix whose elements hij are defined by 
 

.||ˆ 〉=〉 ∑ jhiH

j
ij  (4) 

 
The states {i} correspond to the unsymmetrized basis functions. The Hamiltonian matrix 
in the symmetrized basis is obtained by right multiplying the matrix SH by S†. The 
symmetric Hamiltonian matrix is stored in the sparse matrix form and the matrix 
eigenvalue problem is solved using the Davidson algorithm. Computation of the 
properties is easily done by transforming the eigenstate in the symmetrized basis into that 
in the unsymmetrized basis. Since the operation by any combination of spin operators on 
the unsymmetrized basis can be carried out, all relevant static properties in different 
eigenstates can be obtained quite simply. 
 We explicitly obtain the time evolution of the system by solving the time-dependent 
Schrödinger equation, 
 

.)(ˆ
d

d
ψ

ψ
tH

t
i =h  (5) 

 
The time dependence in the Hamiltonian arises because we increase the applied magnetic 
field in a chosen time dependent fashion. We assume the system to be in the appropriate 
initial state for e.g. in case of Mn12 we start with S = 10, MS = –10 (all-spins-down state) 
at time t = 0. This is the initial state which is time evolved according to the equation 
 

).()/)2/((ˆexp()( ttttHitt ψψ h∆∆+−=∆+  (6) 

 
The evolution is carried out by explicit diagonalization of the Hamiltonian matrix 
H(t + (∆t/2)), and using the resulting eigenvalues and eigenvectors to evaluate the matrix 
of the time evolution operator )./)2/((ˆexp( htttHi ∆∆+− Since the Hamiltonian matrix is 
in a truncated basis of 21 eigenstates of the magnetic cluster, it is possible to repeatedly 
carry out the time evolution in small time steps of size ∆t. Each calculation typically 
involves time evolving the initial state by four million time steps. At each time step we 
calculate the magnetization of the state by obtaining the expectation value 〈Sz〉 

3. Low-lying states of clusters 

We have solved the exchange Hamiltonian exactly for the Mn12, Fe8 and V15 clusters 
using the method mentioned in the previous section. We have obtained the eigenvalues 
and various properties of the eigenstates such as spin densities and spin–spin correlation 
functions for these clusters 17. In what follows, we will discuss these in detail. 
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3.1 Mn12Ac cluster 

In figure 1 we show the geometry and the exchange parameters for this cluster. The 
crystal structure suggests that the exchange constant J1 is largest and antiferromagnetic in 
nature 18. Based on magnetic measurements, it has been suggested that J1 has a magnitude 
of 215 K. Other magnitudes and signs of the other exchange constants are based on 
comparisons with manganese systems in smaller clusters 18. It has been suggested that the 
exchange constant J2 and J3 are antiferromagnetic and have a magnitude of about 85 K. 
However, for the exchange constant J4, there is no concrete estimate, either of the sign or 
of the magnitude. In an earlier study the MnIII–MnIV pair with the strongest 
antiferromagnetic exchange constant was replaced by a fictitous 2

1-spin object 6 and the 
exchange Hamiltonian of the cluster solved for three different sets of parameters. It was 
found that the ordering of the energy levels were very sensitive to the relative strengths of 
the exchange constants. In these studies, J4 was set to zero and the low-lying excited 
states were computed. Besides, only states with spin S upto ten could be obtained because 
of the replacement of the higher spin ions by the fictitous 2

1-spin  object. 
 In our calculation, we have dealt with all the magnetic ions in the cluster and using 
symmetry, we have factored the MS = 0 Hilbert space into the six symmetry subspaces. 
We have obtained low-lying eigenstates in each of these sectors and determined the total 
spin of the state by explicitly computing the expectation value of the 2Ŝ operator in the 
state. 
 Our results for the low-lying states are shown in table 1. We note that none of the three 
sets of parameters studied using an effective Hamiltonian, gives the correct ground and 
excited states, when an exact calculation is performed. It appears that setting the 
exchange constant J4 to zero, cannot yield an S = 10 ground state (table 1, cases A, B and 
C). When J3 is equal to or slightly larger than J2 (cases A and B, table 1), we find a 
singlet ground state, unlike the result of the effective Hamiltonian in which the ground 
state has S = 8 and S = 0 respectively. The ground state has spin S = 6, when J3 is slightly 
smaller than J2 (case C, table 1). In all these case, the first few low-lying states are found 
to lie within 20 K of the ground state. 
 When we use the parameters suggested by Chudnovsky 19 (case D, table 1), we obtain 
an S = 10 ground state separated from an S = 9 first excited state by 223 K. This is 
followed by another S = 9 excited state at 421 K. Only when the exchange constant J4 is 
sufficiently strongly ferromagnetic (case E, table 1), do we find an S = 10 ground state 
with an S = 9 excited state separated from it by a gap of 35 K, which is close to the 
experimental value 20. The second higher excited state has S = 8, and is separated from 
the ground state by 62 K. 
 We have explored the parameter space a little further by varying J3 and J4, to see the 
effect of these exchange constants on the ordering of the energy levels. We find that for 
|J3| = |J4| and J3 is antiferromagnetic but J4 is ferromagnetic, and the ground state is 
always S = 10 (table 2, cases C, D and E); the first and second excited states are S = 9 and 
S = 8 respectively. The lowest excitation gap decreases slowly with increasing magnitude 
of the exchange constants. 
 We find that the spin of the ground state is very sensitive to J4, for a fixed value of J3. 
In the case where J4 is weakly ferromagnetic (table 2, case B), we obtain an S = 0 ground 
state, and when J4 is weakly antiferromagnetic we obtain an S = 4 ground state (table 2, 
case A). This shows that frustrations play a dominant role. If J3 is also made 
ferromagnetic, the role of frustration is considerably reduced. 
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Figure 4. Spin density of Mn12Ac for parameter values: J1 = 215 K, J2 = 85 K, 
J3 = 85 K and J4 = –64.5K. (a) Spin density for ground state (S = 10, Ms = 10). (b) 
Spin density for 1st excited state (S = 9, Ms = 9). 

 
 In figures 4a and b, we show the spin density 21 for the Mn12 cluster in the ground state 
for the S = 10, MS = 10 state. While the manganese ions connected by the strong 
antiferromagnetic exchange show opposite spin densities, it is worth noting that the total 
spin density on these two ions is 0⋅691, well away from a value of 0⋅5 expected, if these 
ions were indeed to form a 2

1-spin  object. We also note that the spin density at the 
manganese ion in the middle of the crown is much larger than that at the corners. The 
spin density in the excited state S = 9, MS = 9, also has similar distribution, although in 
this state, the symmetry of the spin Hamiltonian is apparently broken (figure 4b). The 
corner ions in the crown no longer have the same spin density and, in fact, a pair of 
opposite corner ions have larger spin density than on ions in the middle of the crown. 
However, since this state is doubly degenerate, there is another state in which the spin 
densities are related to the spin densities of this state by a ninety degree rotation. In any 
experiment involving this state, only an arbitrary linear combination of the two spin 
densities is observed. Note also that the large differences in the spin densities for the 
closely lying excited states are an indication of the large degree of spin frustration in the 
system. 
 The small energy gap (35 K) between the S = 10 ground state and the S = 9 lowest 
excited state seems to indicate that, if the g factors of the Mn ions in the core and crown 
are different, then an applied magnetic field should mix these spin states. Such a mixing 
would then be reflected in the quantum resonance tunnelling experiments. However, it 
appears that the experiments are well-described by the S = 10 state alone. This is what we 
should expect from the symmetry of the two low-lying states. We note that the ground 
state has A symmetry while the lowest excited state has an E symmetry. These two states 
cannot be mixed by any perturbation that retains the C4 symmetry of the cluster. 

3.2 Fe8 cluster 

The Fe8 cluster is shown in figure 2. Each of the Fe ions has a spin of 2 and the ground 
state of the system has a total spin S = 10, with the S = 9 excited state separated from it 



C Raghu et al 470 

by about 20 K. All the exchange interactions in this system are expected to be 
antiferromagnetic. While the structure of the complex dictates that the exchange 
interaction J2 along the back of the butterfly should be considerably small in comparison 
with the interaction J1 across the wing 22, in earlier studies it was reported that such a 
choice of interaction parameters would not provide a S = 10 ground state 7. 
 We have carried out exact calculations of the eigenstates of the Fe8 cluster using three 
sets of parameters. In two of these cases, J2 is very much smaller than J1. We find that in 
all these cases, the ground state has a spin S = 10 and the lowest excited state has spin, 
S = 9. One of the main difference we find amongst the three sets of parameters is in the 
energy gap to the lowest excited state (table 3). For the set of parameters used in the 
earlier study, this gap is the lowest at 3⋅4 K. For the parameter sets 1 and 3 8 this gap is 
respectively 13⋅1 K and 38⋅0 K. While in cases 1 and 2, the second excited state is an 
S = 8 state, in case 3, this state also has spin 9. 
 The spin densities in all the three cases for both the ground and the excited state are 
shown in figures 5a to f. The spin densities in all cases are positive at the corners. In 
cases 1 and 2, the spin density on the Fe ion on the backbone is positive and negative on 
the remaining two Fe sites 23 However, in case 3, the negative and positive spin density 
sites for Fe ions in the middle of the edges is interchanged. This is perhaps due to the fact 
that in cases 1 and 2, the exchange constant J3 is less than J4, while in case 3, this is 
reversed. Thus, a spin density measurement can provide relative strengths of these two 
exchange constants. In all the three case, the difference between the spin densities in the 
ground and excited states is that the decrease in the spin density in the excited state is 
mainly confined to the corner Fe sites. 
 The Fe8 cluster is quite different from the Mn12 cluster in the following sense. In the 
Fe8 cluster, we have excited states of spin S = 8 and S = 9 which have the same symmetry 
as that of the S = 10 ground state. Furthermore, the total splitting of the ground state due 
to the anisotropic terms arising in the system due to spin-dipolar interactions is larger 
than the energy gaps with the S = 8 and S = 9 states of the same spatial symmetry as the 
ground state. Thus, if the g factors of the Fe ions on the backbone of the butterfly are 
different from those on the wings, then an applied magnetic field could lead to mixing 
between the different spin states. We expect this to provide an additional mechanism for 
quantum resonance tunnelling in the Fe8 cluster. 

3.3 V15 cluster 

The simplest cluster to study is the V15 cluster, since each of the ions has a spin of half. 
The interesting aspect of the V15 cluster is that the three spins sandwiched between the 
 

Table 3. Energies (in units of K) of a few low-lying states in Fe8. 
The exchange constants corresponding to the various cases are: case (A) J1 = 25 K, 
J2 = 150 K, J3 = 30 K, J4 = 50 K; case (B) J1 = 153 K, J2 = 180 K, J3 = 22⋅5 K, 
J4 = 52⋅5 K; case (C) J1 = 30 K, J2 = 195 K, J3 = 52⋅5 K, J4 = 22⋅5 K. 

  Case A Case B Case C 
 

State S E(K) State S E(K) State S E(K) 
 
eA 10 0⋅0 eA 10 0.0 eA 10 0⋅0 
oB 9 13⋅1 oB 9 3.4 oA  9 39⋅6 
oA 9 26⋅1 eA 8 10.2 oB  9 54⋅2 
eA 8 27⋅3 oB 7 20.1 oB  9 62⋅4 
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Figure 5. Spin density of Fe8 for parameter values: J1 = 25 K, J2 = 150 K, J3 = 30 K, 
J4 = 50 K. (a) Spin density for ground state (S = 10, Ms = 10). (b) Spin density for 1st 
excited state (S = 9, Ms = 9). Spin density of Fe8 for J1 = 153 K, J2 = 180 K, 
J3 = 22⋅5 K, J4 = 52⋅5 K parameter values. (c) Spin density for ground state (S = 10, 
Ms = –10). (d) Spin density for 1st excited state (S = 9, Ms = –9). Spin density of 
Fe8 for J1 = 30 K, J2 = 195 K, J3 = 52⋅5 K, J4 = 22⋅5 K parameter values. (e) Spin 
density for ground state (S = 10, Ms = 10). (f) Spin density for 1st excited state (S = 9, 
Ms = 9). 
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hexagons (figure 3) have no direct spin–spin interactions. All the interactions shown in 
figure 3 are antiferromagnetic and the spin system is frustrated. Eigenstates of this system 
consists of eight states corresponding to the triangle spins which have split off from the 
rest of the spectrum. We find the effective Hamiltonian is given by, 
 

Hsp–sp = εI + α(S1⋅S2 + S2⋅S3 + S3⋅S1), (7) 
 
where ε = –4⋅58590955 and α = 0⋅0034373, in units of the exchange J. This Hamiltonian 
reproduces the eight low-lying eigenstates of the full exchange Hamiltonian to numerical 
accuracy.  
 The spin density distribution in the S = 1/2, MS = 1/2 ground and excited states as well 
as in the S = 3/2, MS = 3/2 states is shown in figures 6a to c. We find that the spin 
densities on the hexagons are negligible. In the lowest S = 1/2 state, the triangle spins 
have both positive and negative spin densities, while the higher S = 1/2 state is 
characterized by positive and zero spin densities. This clearly implies that the exchange 
interactions felt by these spins is antiferromagnetic in nature. The S = 3/2, MS = 3/2 states 
have almost equal spin densities at all three sites, nearly equal in value to that of the free 
spins. In fact, the total spin density in the S = 1/2 states is also nearly that of a free-
electron spin and this suggests that describing the low-energy spectrum of this system by 
the triangle spin is quite appropriate.  

4. Quantum tunnelling in Mn12Ac cluster 

To study quantum tunnelling in Mn12 we have considered the effective Hamiltonian 
defined over the S = 10 ground state of the cluster in the presence of an external magnetic 
field 24. The Hamiltonian is given by, 
 

.ˆ)(ˆ)()ˆˆ(ˆˆ
corecorecrowncrown

4
total,

4
total,

2
total, StgStgSScSDH yxz ⋅−⋅−++−= HH

 (8) 
 

 

Figure 6. Spin density of V15 for J1 = 800 K, J2 = 300 K, J3 = 150 K parameter 
values. (a) Spin density for ground state (S = 0⋅5, Ms = 0⋅5). (b) Spin density for 1st 
excited state (S = 0⋅5, Ms = 0⋅5). (c) Spin density for excited state (S = 1⋅5, Ms = 1⋅5). 
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Here D is the quadratic anisotropy factor, gcrown and gcore are the Landé g-factors for the 
crown and core spin respectively, and H(t) is the time-dependent magnetic field. We have 
chosen D = 3⋅5 × 10–3 and c = 10–3 (in units of J1) in accordance with the experimental 
values 25,26. We take gcrown = 1⋅96 and gcore = 2⋅0. The fourth-order anisotropy term allows 
transitions between states with ∆MS = ±4. To study the evolution of the magnetization as 
a function of the applied magnetic field, we start from an axial field equal to –1 (in units 
of J1/h) and then slowly increase it in steps till it equals + 1.  
 The Hamiltonian matrix is set-up in the MS = 10 subspace and the the lowest energy 
state is obtained using the Davidson algorithm 27. We calculate the spin densities and the 
spin–spin correlation functions in this state. Using the spin–spin correlation functions, we 
have computed the expectation value of S2

total operator, from which we have confirmed 
the total spin of the state to be S = 10. We also compute the total spin density of the core 
and crown spins in this state. From the total spin and the spin density of the core and 
crown spins in the MS = 10 state, using the spin ladder operators we obtain the spin 
densities in the core and crown of the cluster for all the allowed MS values. These are 
later used in computing the magnetization response of the system. 
 We have carried out a systematic investigation of the dependence of the magnetization 
steps on the field sweep rate, the fourth order anisotropy term, and the presence of a 
transverse field. 
 It is useful to have an idea of the energy levels of the system as a function of the 
magnetic field. Figure 7 shows the energy levels of the Hamiltonian in (8) with a constant 
 
 

 
Figure 7. Energy spectrum of the Hamiltonian in (8) in the presence of a time-
independent axial field. Only a few low-lying energy levels are shown. 
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axial magnetic field .ˆ)()( ztHt z=H  For the field value Hz = 0, levels with opposite 
magnetizations ± MS are degenerate; the energy spectrum is symmetric about Hz = 0. We 
can see from the figure that there are at least three values of the axial field where level 
crossings occur. Crossings occur around Hz = ± 0⋅13, ± 0⋅43 and ± 0⋅75 (in units of J1/h). 
When we sweep the field, we should expect to see jumps in the magnetization value in 
the neighborhood of these values of the field where the crossings occur; however the 
actual values of the fields where crossings occur depend on the fourth order anisotropy 
term. Besides, as we will see, the occurrence and widths of plateaus in the magnetization 
are strongly dependent on the field sweep rate. The number of plateaus and their 
locations and widths depend on the probability of tunnelling from one magnetization state 
to another. This probability increases when the time scale of sweeping matches with the 
time scale of tunnelling. In that case, the probability of staying in the same eigenstate is 
small; the state is scattered into another eigenstate which produces a step in the 
magnetization plot.  
 Following the field sweeping technique used by De Raedt et al 13, we now study the 
behaviour of the magnetization as the field is changed with time. The magnetic field Hz is 
increased from – 1 to 1 in steps of 5 × 10–4 (all in units of J1/h). At each value of the field, 
the state is evolved for 1000 time steps of size ∆t. We have considered two different time 
step values given by ∆t = 0⋅01 h/J1 and 0⋅1 h/J1; thus each value of the field is kept fixed 
for a time equal to 10 h/J1 and 100 h/J1 respectively. The field sweep rate is given by 
5 × 10–7/∆t; we therefore have two sweep rates differing by a factor of 10. At each time 
step, the time evolved state is used to compute the magnetization M given by 
 

.)(|ˆ|)()( total, 〉〈= tSttM z ψψ  (9) 
 
The magnetization at each value of the field is then taken to be the average of the 
magnetiza tion computed over all the time steps for which the field is held fixed. 
 In figure 8, we show the step behaviour of the magnetization with the applied field. 
The upper curve is for a time step equal to 0⋅1 (in units of h/J1), while the lower curve is 
for a time step of 0⋅01. We observe jumps in the magnetization plot at field values of 
approximately Hz = 0⋅13 J1/h and 0⋅33 J1/h. Before the first jump in the magnetization the 
magnetization value remains almost constant at – 10. The reason why we do not see any 
jumps at the corresponding negative fields Hz = –0⋅13 J1/h or – 0⋅33 J1/h is because at 
those field values, MS = – 10 continues to be the ground state. For positive field values, 
MS = + 10 is the ground state, and states with lower positive values of MS successively 
come into resonance with the MS = –10 state. We observe a remarkable thing that the 
magnetization value seems to saturate after a certain time evolution, but it never 
approaches the state with MS = 10. We can argue that in our model the system can only 
gain or loose energy by interacting with the time-dependent field; there is no interaction 
with the environment through, for example, spin–phonon or nuclear spin–electron 
spin interactions which provide the mechanism for relaxation to the ground state. The 
MS = –10 state tunnels to states with 0 ≤ MS < 10, and to attain MS = 10 state, the final 
state in the tunnelling process needs to relax to the ground state. So even for very large Hz 
the magnetization does not reach the saturation value in a finite time. However, the 
magnetization does reach a higher value for large fields if the sweep rate is lower, since 
there is more time to tunnel to the lowest energy states in that case. The inset of figure 8 
shows the result obtained when the field is held fixed for a longer time equal to 200 h/J1 
corresponding to 2000 time steps of size 0⋅1 h/J1 each. Note that the plateau in the inset



Quantum phenomena in magnetic nano clusters 475 

 

 
Figure 8. Evolution of magnetization at two different sweep rates. The upper curve 
is for a time step equal to 0⋅1 (in units of h/J1), while the lower curve is for a time step 
of 0⋅01. The inset shows the result obtained when the field is held fixed for a time 
equal to 200 h/J1. 
 
 

occurs at a different value of the magnetization compared to the plateaus in the two 
curves in the main figure where the sweep rates were faster. This is due to tunnelling to 
nearly degenerate states with different values of the magnetization. 

5. Model for magnetization plateaus in V15 

We study the magnetization of V15 by following its evolution as a function of a time-
dependent magnetic field at different temperatures 28. The low-lying states are obtained 
by solving the exchange Hamiltonian corresponding to all the spins of the system. A 
spin-phonon interaction is then introduced in the Hamiltonian. We thermally average the 
magnetization over the low-lying states after each of these states is independently 
evolved. We find that this model reproduces quantitatively most of the experimental 
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features found in the magnetization studies of V15
 5, without invoking ad hoc concepts 

such as a “phonon bottleneck”. 
 The exchange Hamiltonian of the cluster is solved by (7). The direct spin–spin 
interaction terms permitted by the C3 symmetry are given by 
 

)].()[( 3333
dip −+−+ −++= SSiSSH γ  (10) 

 

We have also introduced a coupling between the spin states of the cluster and the 
phonons. The spin-phonon interaction Hamiltonian which preserves the C3 symmetry is 
phenomenologically given by 29 
 

)],()())[(( 3
3
122222†

phsp SSSSiSSbbqH z −+−+++= −+−+−  (11) 
 

where q is the spin-phonon coupling constant, b(b†) is the phonon annihilation (creation) 
operator, and hω is the phonon frequency. For simplicity, we have assumed a single 
phonon mode although the molecule has various possible vibrational modes. The form of 
the interaction in (11) means that the phonons couple only to states with spin –3/2. We 
have restricted the dimensionality of the Fock space of the phonons to 15 considering the 
low temperatures of interest. 
 The evolution of the magnetization as a function of the magnetic field has been studied 
by using the total Hamiltonian Htotal, given by 
 

Htotal = Hsp–sp + Hdip + Hsp–ph + hω(b†b + 1/2) + hz(t)Sz + hx(t)Sx,  (12) 
 

where we have assumed that besides an axial field hz(t), a small transverse field hx(t) 
could also be present to account for any mismatch between the crystalline z-axis and the 
molecular z-axis. The numerical method involves setting up the Hamiltonian matrix in 
the product basis of the spin and phonon states |i, j〉, where |i〉 corresponds to one of the 
eight spin configurations of the three spins, and j varies from 0 to 14, corresponding to 
the fifteen phonon states retained in the problem. The values we have assigned to the 
different parameters are γ = 10–3, q = 10–4 and hω = 1⋅25 × 10–4, all in units of the 
exchange J (see figure 3). 
 To study the magnetization phenomena, we start with the direct product eigenstates of 
Hsp–sp and hω (b†b + 1/2), and independently evolve each of the 120 states ψij by using the 
time evolution operator 
 

ψ(t + ∆t) = exp(– iHtotal∆t/h)ψ(t). (13) 
 

The evolution is carried out in small time steps by applying the evolution operator to the 
state arrived at in the previous step. The magnetic field is changed step-wise in units of 
0⋅015 T. At each value of the magnetic field, the system is allowed to evolve for 300 time 
steps of size ∆t, before the field is changed to the next value. At every time step, the 
average magnetization 〈M(t)〉 is calculated as 
 

,)(|ˆ|)(

)2/1(exp()([exp(
)(

8
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Figure 9. (a) Eigenstates of the effective spin Hamiltonian Hsp–sp, (b) Eigenstates in 
the presence of a moderate axial field. Arrows show the states connected by the 
dipolar terms and the transverse field. (c) is the same as (b) but in a stronger field, (d) 
describes the effect of spin–phonon terms (shown by arrows with broken lines) on (c). 

 
 
where wi and mi are the eigenvalues and magnetizations of eigenstates of Hsp–sp, 
β = 1/kBT, Zph is the phonon partition function of hω(b†b + 1/2), and Zspin is the partition 
function of Hsp–sp in the presence of the axial magnetic field. In figure 9, we show the 
energy level ordering of the effective spin Hamiltonian and the effect of the magnetic 
field on the eigenvalue spectrum. We also show the couplings between various states 
brought about by the magnetic dipolar terms and the spin–phonon terms; note that the 
spin –1/2 and spin –3/2 states are not connected to each other by these terms. 
 In figure 10, we show the hysteresis plots of the system for different temperatures. We 
see that at low temperatures, the plateaus in the hysteresis plots are very pronounced. The 
width of transition from 〈Sz〉 = – 0⋅5 to –1⋅5 corresponds to 2⋅8 T which is in excellent 
agreement with the experimental value of 2⋅82 T 5 assuming that J = 800 K. We also find 
that the plateau vanishes above a temperature of 0⋅9 K which is also in excellent 
agreement with the experimental value of 0⋅9 K 5. The inset in figure 10 shows the 
temperature variation of the plateau width. We note that the plateau width falls off 
rapidly with temperature, and an exponential fit to W = Aexp(–T/Ω) (see figure 10) gives 
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the characteristic temperature Ω  to be 0⋅2 K. This small value of Ω  is because there are 
no large barriers between the different magnetization states in this system, unlike the high 
spin molecular magnets such as Mn12

 30 .The width of the plateau as well as the field at 
which it occurs is very sensitive to the model parameters. We see in figure 11 that for the 
set of parameters corresponding to (a), both the width of the transition and the field of 
onset of the transition agree with experiments. 
 We also observe that when the field is swept more rapidly, there are additional plateaus 
at intermediate values of magnetization. For example, when the field sweep rate is 
increased by a factor of five compared to figure 10, we find a small plateau of width 
0⋅03 T near H = 0⋅15 T at a value of 〈Sz 〉 = – 0⋅375. This is because near that field, some 
of the spin –3/2 states become degenerate in energy; subsequently, as the magnetic field 
is increased, the system stays locked in some of those states if the sweep rate is too high. 
This plateau vanishes on warming the system slightly. 
 
 

 
Figure 10. Plot of magnetization vs axial field at different temperatures. Inset shows 
plateau width as a function of temperature (full circles).  
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6. Dynamic magnetization oscillations 

The energy level structure of the eigenstates of Hamiltonian in (8) are very similar to 
those encountered in the dynamic studies of two-level lattices. There has been 
considerable study of the two-level lattices in which Stark–Wannier effect and Bloch 
oscillations are observed 31,32. In the presence of oscillatory electric fields, population 
trapping 33 and dynamic localization 34 have also been observed. The aim of the present 
study is to see if these effects can also be observed in the Mn12 magnetic cluster in the 
presence of an oscillatory magnetic field 35. 
 As before the initial state in the time evolution is chosen to be the state with S = 10 and 
MS = –10, which is the ground state, in the absence of the weak off-diagonal terms of 
Hdip. The angular frequency, ω, of the axial field is varied between 10–1 and 10–3 radian-
D/h. The time evolution is carried out successively in steps ∆t = 0⋅1 and the evolution is 
carried out over several periods of the applied field. 
 

 
Figure 11. Comparison of the width of transition and the field of onset of transition 
from 〈Sz〉 = –0⋅5 to –1⋅5 depending on different parameter values. (a) J = 800 K, 
J1 = 54⋅4 K, J2 = 160 K (b) J = 800 K, J1 = 150 K, J2 = 300 K 5 (c) J = 756 K, 
J1 = 28⋅8 K, J2 = 178⋅56 K 1. Onset field values are 2⋅82 T, 17⋅88 T and 7⋅87 T 
respectively for parameters a, b and c. Experimental value of the field of onset of 
transition is 2⋅8 T. 
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 In figure 12a, we show a plot of magnetization vs time, for the amplitude of the axial 
field, H0 = 50 D, and angular frequency ω = 10–2 radian-D/h. We notice that the 
magnetization shows distinct plateaus and in each plateau, the magnetization oscillates a 
fixed number of times. The number of oscillation Nosc in each plateau is given by the ratio 
of half the energy gap between the MS = –10 and the MS = –9 states at the field H0 and 
hω, where ω corresponds to the angular frequency of the applied axial field. This kind of 
oscillation with similar dependence of Nosc has been theoretically observed in the two-
levelsystems by Rotvig et al 36 and Raghavan et al 37. Such oscillations have also been 
seen in the Bose–Einstein condensates in a double-well trap 38. Rotvig et al 36 observe this 
in the context of a two-band semiconductor superlattice in an external electric field, while 
Raghavan et al 37 observe it in a single-band model in the presence of an electric field. In 
these calculations, the probability in a given state shows the temporal oscillations that we 
see here for magnetization. Indeed, the different MS states in the magnetic cluster can be 
viewed as forming a large but finite lattice. The transverse magnetic field couples the 
states at successive lattice sites, much as the transfer terms in the models of Rotvig et al 36 
 
 

 
Figure 12. (a) Plot of evolution of magnetization with time (in units of h/D × 10–1) 
for H0/D = 50 and ω = 0⋅01 radian-D/h , initial state is Ms = –10. For (b), (c) and (d) 
H0/D = 100 and ω = 0⋅01 radian-D/h , initial states are respectively Ms = –9, –4 and 4. 
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and Raghavan et al 37. The time varying axial magnetic field corresponds to the applied 
oscillatory electric field of the two level systems. It is also worth noting that for the 
parameters that Raghavan et al 37 use, the oscillations die down for larger lattices. It 
appears that the size of the pseudo-lattice provided by the magnetic cluster is not large 
enough for the oscillations to die down for the realistic model parameters we have 
chosen. 
 The oscillations in magnetic field that we observe are quite robust. We have observed 
these oscillations for other initial states with integral MS values corresponding to the 
eigenstates of the Hdip, with off-diagonal elements set to zero (figures 12b–d). The 
dependence of the magnetization on the amplitude of the magnetic field is shown in 
figure 13. We note that at higher fields, we see more oscillations in each plateau since the 
gap between successive MS states widen with increasing amplitude. In figures 14b, d and 
f, we show the energies of the two low-lying eigenstates of Hdip, corresponding to the 
axial field at that instance. We note that the jump in magnetization coincides with two 
 
 

 
Figure 13. (a) Plot of magnetization vs time when H0/D = 100 and ω = 0⋅01. For (b) 
H0/D = 200 and ω = 0⋅01. Initial state in both cases is Ms = –10. ω and time are in 
units of figure 12. 
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Figure 14. Magnetization vs time (a, c and e) and energy of Ms = –10 (solid line) 
and –9 (broken line) vs time (b, d and f) for (i) ω = 0⋅001 (a, b) (ii) ω = 0⋅01 (c, d) and 
(iii) ω = 0⋅1 (e, f). H0/D = 100 for all cases. ω and time are in units of figure 12. 

 
 
states with different MS values becoming degenerate. In the time between these 
coincidences, the magnetization shows small amplitude oscillations. Assuming that the 
system wavefunction evolves as ,/)(exp( 12 htEEi −− where 1E  and 2E  are the average 
energies of the two states in question, the number of oscillation in a time period t = 2π/ω 
is given by .)( 12 ωh=− EE  We note that the energy gap at the maximum amplitude in 
all the cases are the same and hence the number of oscillations in a plateau is inversely 
proportional to the frequency of the axial field. In figures 14a, c and e we show the 
dependence of the oscillation pattern on the frequency of the axial field with a fixed 
amplitude. We note that at decreasing frequencies, the number of oscillations in each 
plateau increases and the plateau structure itself vanishes with the magnetization 
following the magnetic field for higher frequency of the axial field.  
 We have also studied this system in the presence of an axial magnetic field with two 
different frequencies, given by H0cos(ω 1t)cos(ω 2t). This leads to a beat pattern involving 
the sum and difference of the two frequencies. In figure 15, we show the time variation of
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Figure 15. Plot of magnetization vs time when H0/D = 100, ω1 = 0⋅01 and 
ω 

2 = 0⋅005. ω  and time are in units of figure 12. 
 
 
magnetization in the presence of two different frequency magnetic fields. We note that 
one set of oscillations correspond to Nosc = ∆E/2h (ω 1 + ω 2) while another set of 
oscillations have Nosc = ∆E/2h(ω 1 – ω 2), where ∆E is the difference in energy between 
the MS = –10 and MS = –9 states when the axial field is equal to the amplitude. 
 The parameters for which we have carried out the calculations corresponds to Mn12. 
However, systems such as Fe8 also have high spin ground state although the D value is 
different. In order to study the effect of change in D value on the oscillations, we have 
carried out these calculations for several H0/D values. In figure 16, we show the results of 
our calculations for H0  /D = 20 and H0  /D = 10. The oscillations vanish (H0  /D = 20) and 
we have a M vs t behaviour that does not have much structure for this larger H0  /D value. 
However for lower H0  /D value, we find that the oscillations persist, but with much 
reduced amplitude. Thus, it is possible that in other high spin systems, these oscillations 
are found at different field amplitude. 

7. Summary and conclusion 

The synthesis of high nuclearity high spin magnetic clusters has provided an impetus for 
studying magnetism on a nanoscale. These systems are the magnetic analogs of quantum 
dots or artificial atoms fabricated using semiconductor structures. The magnetic clusters
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Figure 16. Evolution of magnetization with time with different H0

 /D values, ω is 
kept fixed at 0⋅01. H0

 /D = 100, 20 and 10 respectively for (a), (b) and (c). ω and time 
are in units of figure 12. 

 
exhibit a wide variety of basic phenomena in a dramatic fashion. The quantum resonant 
tunnelling in these systems manifests as magnetization plateaus in a magnetization vs 
magnetic field plots. They also exhibit dynamic oscillations characterized by temporal 
localization in an oscillating magnetic field, much as the behaviour displayed by two 
level systems in an oscillating electric field. 
 Understanding these phenomena at a quantitative level requires devising methods for 
solving low-lying eigenstates of large exchange Hamiltonians as well as methods for 
studying time evolution of properties in these states, in the presence of off-diagonal 
perturbations. We have shown that simple time dependent techniques allow tracking the 
dynamics in these systems. Our studies, besides reproducing experimental observations 
quantitatively also predicts new phenomena such as dynamic oscillations in 
magnetization in high spin clusters. 
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