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An explanation of the phenomenon of polytypism
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Abstract. Based on the analogy between polytypes and spin-half Ising chains, polytypes can
be considered as different phases of a spin-half Ising system with competing nearest neighbour
and next nearest neighbour interactions operating in a single direction. It is known that such an
Ising system exhibits extremely rich and complicated phase behaviour. This behaviour is
shown to be very similar to the phase behaviour exhibited by polytypes.
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1. Introduction

Polytypism is a phenomenon exhibited by crystals such as SiC, CdI, and TaS,.
Different polytypic forms of a substance exhibiting polytypism have the same a and b
dimensions of the unit cell but have widely different c-dimensions. This phenomenon
arises because of the differences in the sequence in which the atomic layers are stacked
along the c-axis. Some of the striking features of polytypism are (i) the existence of
many different types of unidimensional order, (ii) the apparent violation of Gibbs’
phase rule owing to the coexistence of a large number of polytypic phases with no
discernible differences in stability under identical conditions, (iii) the growth of
different polytypic forms in different parts of the same specimen, a feature known as
syntactic coalescence and (iv) the existence of varying amounts of disorder in some
polytypes. Several theories have been put forth to explain this phenomenon (Verma and
Trigunayat 1974), but none explains satisfactorily the above features of polytypism.

‘Recently (Ramasesha and Rao 1977; Uppal et al 1980) attempts to simulate growth of

polytypes using the analogy between one-dimensional spin-half Ising chains and
polytypes have succeeded in explaining the formation of different polytypes to a certain
extent. However, the models used by them have not been able to explain either the
existence of a large number of polytypes (e.g. more than a hundred SiC polytypes are
known to exist) or the extremely large c-dimension of the unit cell (of the order of
hundreds of Angstroms) encountered in some polytypes. The purpose of the present
note is to discuss the competing interaction model invented by Elliott (1961) and
recently studied by Bak (1981), Bak and von Boehm (1980), von Boehm and Bak (1979),
Fisher and Selke (1980), Selke and Fisher (1979), and Villain and Gordon (1980), in the
context of polytypism.
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2. The competing interaction model

“

Elliott (1961) put forth the competing interaction model to explain the sinusoidal spin

“ordering observed in some of the rare earth metals, namely, erbium and thulium. This

model consists of Ising spins on a simple cubic lattice whose nearest neighbour
interaction is ferromagnetic, while next nearest neighbour interaction is antifer-
romagnetic and the latter exists only along the z-direction. The Hamiltonian of this
model, also called the anisotropic next nearest neighbour Ising (aNNNI) model can be
written as, ‘

H= Z [Jl(Sfc.y,z fc:tl,y.Z‘}"S;.y,z i,yil,z

X5 ¥, Z

+S;,y,zsfc,y,zt1)+']2 Si-y.ZS;,Y.ZiZ]'

Original theoretical analysis showed that this model displayed a low temperature
ordered phase with a sinusoidally varying magnetization along the z-direction. The
wavevector corresponding to the sinusoidal variation was essentially independent of
temperature and determined solely by the ratio —J,/J;.

The aNnNt model has recently attracted much attention, theoretically, as it is known
to display a Lifshitz point* (Redner and Stanley 1977). Furthermore, it has also been
successfully employed in explaining the complicated phasc diagram of CeSb which
exhibits several different types of stacking of ordered magnetic layers (Fisher et al
1978). The mean field equations of the ANNNI model were numerically solved by Bakand
von Boehm (1979, 1980). Selke and Fisher (1979) used Monte Carlo technique as well as
low temperature expansion technique (Fisher and Selke 1980) to study this model. The
salient features of the annNI model are that for a given ratio of — J,/J,, the equilibrium
wave vector, g, of the sinusoidally modulated phase varies with temperature as shown in
figure 1. We notice that the temperature range over which a given wavevector of the
sinusoidally modulated phase is stable becomes narrow as the temperature increases.
The g-T curve is nonanalytic in nature and is known as the ‘devil’s stair case’. The free
energy differences between the different phases at any temperature also are rather small.
Figure 2 gives the phase diagram of the ANNNI model. We see that at a given
temperature, depending upon the ratio — J,/J,, one can have a different sinusoidally
modulated phase as the equilibrium phase. The phase diagram becomes extremely

‘complicated near T, the temperature above which the system is paramagnetic. In the

grey region of the phase diagram, the stable phases are either the higher order
commensurate phases or the incommensurate phases. The incommensurate phases can
be described as consisting of commensurate regions separated by domain walls or
solitons. The commensurate and incommensurate phases in this region of the phase
diagram are separated by chaotic phases (Bak 1981). In §3 we discuss the relevance of ‘
this phase behaviour in the context of polytypism.

* Lifshitz point in the magnetic context is the point in the magnetic phase diagram which separates a

uniformly ordered ferromagnetic phase (g = 0), a sinusoidally modulated ordered phase (¢ =0) and a
paramagnetically disordered phase.
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Figure 1. Equilibrium wavevector vs temperature for J,/J; = —07. The dots and the

horizontal lines are results of numerical mean field calculations. Full curve is the result of -
soliton theory (Bak and von Boehm 1980).

0.2 0.3 0.4 0.5 0.6 0.7

Figure 2, Full phase diagram of the ANNNI model. The dotted region of the diagram consists
of commensurate and incommensurate phases separated by chaotic phases (Bak and von

Boehm 1980).

3. Relevance of ANNNI model to polytypism

In polytypes, a given layer can exist in any one of the two configurations, namely, cubic
(k) or hexagonal (h) and a polytype can be uniquely described by specifying the hk
sequence of the layers in the unit cell. Similarly, any of the phases of the ANNNI model
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can be uniquely described by giving the spin orientations (either up or down) of all the
layers in the unit cell. In the earlier work on polytypes (Ramasesha and Rao 1977,
Uppal et al 1980), this analogy between the spin-half Ising systems and polytypes was
used to simulate polytypes. The Hamiltonian used for the simulation contained an
infinite-range ‘ferromagnetic’ interaction term competing against short-range ‘antifer-
romagnetic’ interaction terms extending up to second nearest neighbours. However, as
has been shown by Villain and Gordon (1980), elastic strains and harmonic fields can
mediate oscillating indirect interactions between particles (layers) if the direct
interactions are not limited to nearest neighbours. Simple potential energy calculations
on aggregates of layers (Uppal et al 1980) indeed show that direct inter-layer
interactions are not limited to nearest neighbours. Thus, it appears that polytypes are
well represented by the annnt model. The interactions in the x-y plane in the ANNNI
model are necessary only to provide long-range order at non-zero temperature and do
not play any significant part in determining the structure of the phases. This role in
polytypes could be played by the infinite range “ferromagnetic” interaction between the
layers as proposed by Ramasesha and Rao (1977 ). Even otherwise, polytypes are truly
three-dimensional systems and hence the phase diagram predicted by the mean field
theory should adequately describe the real situation. |

Having qualitatively justified the appropriateness of the ANNNI model to describe
polytypism, it is easy to see how all the striking features of polytypism can be fully
explained on the basis of the phase diagram of the annNI model. In the polytype
- language, the phase diagram predicts that as the temperature is varied we would scan
through an infinity of polytypic phases. Each polytypic phase is stable over a small
range of temperature and the wavevector of each stable phase at a given temperature is
given by the ‘devil’s stair case’ (figure 1). The many different polytypic forms observed at
ordinary conditions of temperature and pressure would then correspond to the
metastable states. Since at the time of growth the short-range interactions may fluctuate
presumably due to the random motion of the atoms in the layers (Uppal et al 1980) it is
possible that at a given temperature many polytypic forms are stable. However, the
number of such stable phases reduce to two as the temperature is lowered (figure 2). In
any caseit is rather difficult to establish experimentally any single polytypic phase as the
stable phase for the free energy differences between the phases at any given temperature
and pressure are very small—a criterion essential for the existence of a ‘devil’s stair case’.
Thus, ANNNI model explains two of the fundamental properties of polytypism, namely,
existence of different types of unidimensional order as well as existence of many
polytypic phases with no discernible differences in their stability under identical
conditions. Syntactic coalescence can also be explained based on the fact that the
temperature range over which a given wave vector is stable becomes extremely narrow
as T, is approached. Hence, it is possible that the slight temperature gradient that might
exist across the specimen during crystallization could lead to different polytypic
orderings in different regions of the specimen. Finally, polytypes with large number of
stacking faults could correspond to incommensurate phases (the wave vector g not
equal to a rational fraction of the inverse interlayer spacing). It is known that
incommensurate phases consist of large regions of the nearest commensurate phase
separated by domain walls or solitons. In the polytype context the domain walls or
solitons would be the familiar stacking faults. Thus, we see that ANNNI model describes
all the important features of polytypism. '
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