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The experimental realization of various spin ladder systems has prompted their detailed
theoretical investigations. Here we study the evolution of ground-state magnetization
with an external magnetic field for two different antiferromagnetic systems: a three-legged
spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction.
The finite system density-matrix renormalization-group method is employed for numerical
studies of the three-chain system, and an effective low-energy Hamiltonian is used in the
limit of strong interchain coupling to study the two- and three-chain systems. The three-
chain system has a magnetization plateau at one-third of the saturation magnetization.
The two-chain system has a plateau at zero magnetization due to a gap above the singlet
ground state. It also has a plateau at half of the saturation magnetization for a certain
range of values of the couplings. We study the regions of transitions between plateaus
numerically and analytically, and find that they are described, at first order in a strong-
coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms
give corrections to the XXZ model. We also study numerically some low-temperature
properties of the three-chain system, such as the magnetization, magnetic susceptibility
and specific heat.
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I. INTRODUCTION

One-dimensional and quasi-one-dimensional quantum spin systems have been studied extensively in
recent years for several reasons. Many such systems have been realized experimentally, and a variety of
theoretical techniques, both analytical and numerical, are available to study the relevant models. Due to
large quantum fluctuations in low dimensions, such systems often have unusual properties such as a gap
between a singlet ground state and the excited nonsinglet states; this leads to a magnetic susceptibility
which vanishes exponentially at low temperatures. Perhaps the most famous example of this is the
Haldane gap which was predicted theoretically in integer spin Heisenberg antiferromagnetic chains1, and
then observed experimentally in a spin-1 system Ni(C2H8N2)2NO2(ClO4)

2. Other examples include the
spin ladder systems in which a small number of one-dimensional spin-1/2 chains interact amongst each
other3. It has been observed that if the number of chains is even, i.e., if each rung of the ladder (which
is the unit cell for the system) contains an even number of spin-1/2 sites, then the system effectively
behaves like an integer spin chain with a gap in the low-energy spectrum. Some two-chain ladders which
show a gap are (V O)2P2O7

4, SrCu2O3
5 and Cu2(C5H12N2)2Cl4

6. Conversely, a three-chain ladder
which effectively behaves like a half-odd-integer spin chain and does not exhibit a gap is Sr2Cu3O5

5.
A related observation is that the quasi-one-dimensional system CuGeO3 spontaneously dimerizes below
a spin-Peierls transition temperature7; then the unit cell contains two spin-1/2 sites and the system is
gapped.

The results for gaps quoted above are all in the absence of an external magnetic field. The situation
becomes more interesting in the presence of a magnetic field8. Then it is possible for an integer spin chain
to be gapless and a half-odd-integer spin chain to show a gap above the ground state for appropriate
values of the field9–19. This has been demonstrated in several models using a variety of methods such
as exact diagonalization of small systems, bosonization and conformal field theory20,21, and perturbation
theory22. In particular, it has been shown that the magnetization of the system can exhibit plateaus at
certain nonzero values for some finite ranges of the magnetic field. Further, for a Hamiltonian which is
invariant under translation by one unit cell, the value of the magnetization per unit cell is quantized to
be a rational number at each plateau.

The necessary (but not sufficient) condition for the magnetization quantization is given as follows9.
Let us assume that the magnetic field points along the ẑ axis, the total Hamiltonian H is invariant under
spin rotations about that axis, and the maximum possible spin in each unit cell of the Hamiltonian is
given by S. Consider a state ψ such that the expectation value of Sz per unit cell is equal to ms in that
state, and ψ has a period n, i.e., it is invariant only under translation by a number of unit cells equal to
n or a multiple of n. (It is clear that if n ≥ 2, then there must be n such states with the same energy,
since H is invariant under a translation by one unit cell). Then the quantization condition says that a
magnetic plateau is possible at the state ψ, i.e., there is a range of values of the external field for which
ψ is the ground state and is separated by a finite gap from states with slightly higher or lower values of
total Sz, only if

n ( S − ms ) = an integer. (1)

This condition is very useful because it enables us to restrict our attention to some particular values of
ms and n when searching for possible plateaus in a given model. Note that the saturated state in which
all spins point along the magnetic field trivially satisfies (1) since it has ms = S (or −S) and n = 1.

In this paper, we will study the magnetization as a function of the applied field for a two- and three-
chain ladder. We will do so both numerically, using the density-matrix renormalization group method
(DMRG)23,24, and perturbatively, using a low-energy effective Hamiltonian (LEH)15,25. Our analysis will
extend the currently known results in many ways. We have used DMRG to study two-spin correlation
functions in the ground state, and some finite-temperature thermodynamic properties such as magnetic
susceptibility and specific heat. Further, our LEH goes up to the second order in a strong-coupling ex-
pansion. Whenever possible, we will use the analytical results from the LEH to understand the numerical
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results. The first-order LEH will turn out to be the well-studied XXZ spin-1/2 chain in a longitudinal
magnetic field11,26, and it will usually prove to be sufficient for a qualitative understanding of the results.
However, we will find it necessary to invoke the second-order results (which give corrections to the XXZ
model) for a more accurate comparison with the numerics.

The paper is organized as follows. In Sec. II, we will present all the numerical results we have obtained
for the three-chain ladder using DMRG. We will see that there is a finite energy gap and exponentially
decaying spin correlations at each plateau, while there is no gap and the two-spin correlations decay as
powers in between two plateaus. We will also study how the plateaus gradually disappear and how the
susceptibility and specific heat evolve as we increase the temperature. In Sec. III, we will derive the LEH
for the same model and show how it can be used to understand some of the numerical results in Sec. II.
We will also derive the LEH for a two-chain ladder which can be thought of as a dimerized and frustrated
spin-1/2 chain27, and we will use it to understand magnetization plateaus in the ground state. We will
see that for certain values of the dimerization and frustration, the ground state can spontaneously break
translation invariance leading to an additional plateau at an intermediate value of the magnetization. In
Sec. IV, we will summarize our results and point out some directions for future studies.

II. DENSITY-MATRIX RENORMALIZATION-GROUP STUDY OF THE THREE-CHAIN

LADDER

We have numerically studied a three-chain spin-1/2 ladder governed by the Hamiltonian

H = J ′
∑

a

∑

n

Sa,n · Sa+1,n + J

3∑

a=1

∑

n

Sa,n · Sa,n+1 − h

3∑

a=1

∑

n

Sz
a,n , (2)

where a denotes the chain index, n denotes the rung index, h denotes the magnetic field (we have
absorbed the gyromagnetic ratio g and the Bohr magneton µB in the definition of h), and J, J ′ > 0.
For convenience, we choose h ≥ 0 since the region h < 0 can be deduced from it by reflection about
the zero field. It is convenient to scale out the parameter J , and quote all results in terms of the two
dimensionless quantities J ′/J and h/J . If the length of each chain is L, the total number of sites is
N = 3L. Since the total Sz is a good quantum number, it is more convenient to do the numerical
computations without including the magnetic-field term in (2), and then to add the effect of the field at
the end of the computation. The label n+1 (or a+1) is appropriately interpreted for periodic boundary
conditions along the chain (or rung).

For the ground state properties, we have only considered an open boundary condition (OBC) in the
rung direction, namely, the summation over a in the first term of (2) runs over 1, 2. However, for low-
temperature properties, we have studied both OBC, as well as a periodic boundary condition (PBC) in
the rung direction in which we sum over a = 1, 2, 3 in the first term. (Only the OBC is realized along
the rungs in the experimental systems studied so far. However, PBC along the rungs is interesting for
theoretical reasons as we will see below).

For small systems, we have performed exact diagonalization with periodic boundary conditions in
the chain direction. For larger systems, we have done DMRG calculations (using the finite system
algorithm23) with open boundary conditions in the chain direction. For exact diagonalization, we have
gone up to 24 sites, i.e., a chain length of 8. With DMRG, we have gone up to 120 sites (chain length
of 40) after checking that the DMRG and exact results match for 24 sites. The number of dominant
density matrix eigenstates, corresponding to the m largest eigenvalues of the density matrix, that we
retained at each DMRG iteration was m = 80. In fact, we varied the value of m from 60 to 100, and
found that m = 80 gives satisfactory results in terms of agreement with exact diagonalization for small
systems and good numerical convergence for large systems. For inputting the values of the couplings into
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the numerical programmes, it is more convenient to think of the system as a single chain (rather than as
three chains) with the Hamiltonian

H =
2

3
J ′

∑

i

[ 1 − cos (
2πi

3
) ] Si · Si+1 + J

∑

i

Si · Si+3 . (3)

The system is grown by adding two new sites at each iteration. Note that our method of construction
ensures that we obtain the three-chain ladder structure after every third iteration when the total number
of sites becomes a multiple of 6. At various system sizes, starting from 48 sites and going up to 120 sites
in multiples of 6 sites, we computed the energies after doing three finite system iterations; we found that
the energy converges very well after three iterations. The energy data is used in Figs. 1 and 2 below.
After reaching 120 sites, we computed the spin densities and correlations after doing three finite system
iterations. This data is used in Figs. 3 - 8.

All our numerical results quoted below are for J/J ′ = 1/3. We chose this particular value of the
ratio for two reasons; there is a particularly broad magnetization plateau at ms = 1/2 which can be
easily found numerically, and that value of the ratio is sufficiently deep inside the strong-coupling regime
that the second-order perturbation expansion of Sec. II gives results which compare very well with the
numerics.

We now describe the various ground-state properties we have found with OBC along the rungs. We
looked for a magnetization plateau as follows. Motivated by the conditions in (1), we looked for a plateau
at ms = 1/2 which would correspond to n = 1 in that equation, since S = 3/2. We also looked for
plateaus at ms = 0 and ms = 1, each of which would correspond to n = 2, i.e., a doubly degenerate state
which has a period of two rungs. For a system with N sites, a given value of magnetization per rung, ms,
corresponds to a sector with total Sz equal to M = msN/3. Using the infinite system algorithm, we found
the lowest energies E0(S

z, N) in the three sectors Sz = M + 1,M and M − 1. Then we examined the
three plots of E0/NJ versus 1/N and extrapolated the results up to the thermodynamic limit N → ∞.
We fitted these plots with the formula E0/NJ = ei + ai/N + bi/N

2, where the label i = 1, 2, 3 denotes
the Sz sectors M +1,M and M −1. (We found that a quadratic fit in 1/N matches the data much better
than just a linear fit). In the thermodynamic limit, the values of the three intercepts ei should match
since those are just the energy per site for the three states whose Sz’s differ by only 1. However, the three
slopes ai are not equal in general. We now show that there is a magnetization plateau if a1 +a3−2a2 has
a nonzero value. Since the three energies E0 are computed without including the magnetic field term,
the upper critical field hc+ where the states with Sz = M + 1 and M become degenerate is given by

hc+(N) = E0(M + 1, N) − E0(M,N) . (4)

Similarly, the lower critical field hc− where the states with Sz = M and M − 1 become degenerate is
given by

hc−(N) = E0(M,N) − E0(M − 1, N) . (5)

We therefore have a finite interval ∆h(N) = hc+(N) − hc−(N) in which the lowest energy state with
Sz = M is the ground state of the system with N sites in the presence of a field h. If this interval has
a nonzero limit as N → ∞, we have a magnetization plateau. Thus, in the thermodynamic limit, the
plateau width ∆h/J is equal to a1 + a3 − 2a2.

We will now quote our numerical results for J/J ′ = 1/3. For a rung magnetization of ms = 1/2, i.e.,
M = N/6, we found the three slopes ai to be equal to 3.77,−0.02 and −1.93; see Fig. 1. This gives the
upper and lower critical fields to be

hc+

J
= a1 − a2 = 3.79 ,

hc−

J
= a2 − a3 = 1.91 ,

∆h

J
=

hc+ − hc−

J
= 1.88 . (6)
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This is a sizeable plateau width, and it agrees with the exact diagonalization results10 and with the second-
order perturbation expansion which will be discussed in the next section. For a rung magnetization of
ms = 1, we found the ai to be equal to 4.97,−0.24 and −5.43. Thus the upper and lower critical fields
are

hc+

J
= 5.21 ,

hc−

J
= 5.19 ,

∆h

J
= 0.02 . (7)

Finally, for a rung magnetization of ms = 0, we need the energies of states with M = 0 and M = ±1.
Since the last two states must have the same energy, we have a1 = a3 and it is sufficient to plot only
E0(0, N) and E0(1, N) versus 1/N . We found a1 and a2 to be equal to 0.39 and 0.34. This gives the
upper and lower fields to be

hc+

J
= 0.05 ,

hc−

J
= − 0.05 ,

∆h

J
= 0.10 . (8)

The plateau widths given in (7) and (8) are rather small. In Fig. 2, we indicate the plateau widths
∆h(N)/J as a function of 1/N for ms = 1/2, 0 and 1. We will see that the LEH in the next section
actually predicts that there should be no plateaus at ms = 0 and 1.

Next, we computed the various spin correlations for the 120-site system. We studied the spin densities
〈Sz

a,n〉 where the chain index a = 1, 2, 3 and n is the rung index. [Due to the rotation invariance about

the ẑ axis, the other two spin densities 〈S±
a,n〉 must vanish]. For the plateau at ms = 1/2, we found that

〈Sz
1,n〉 = 〈Sz

3,n〉 = 0.27 , 〈Sz
2,n〉 = − 0.04 , (9)

for values of n in the middle of the system. The spin densities are shown in Fig. 3.

We also examined several two-spin correlations which can be denoted by 〈Sz
a,lS

z
b,n〉 and 〈S+

a,lS
−
b,n〉.

For the zz correlations, it is convenient to subtract the product of the two separate spin densities; the
subtracted zz correlations then go to zero for large rung separations |l−n|, just like the +− correlations.
At ms = 1/2, we found that all these correlations decay very rapidly to zero as |l − n| grows. In fact,
the fall offs were so fast that we were unable to compute sensible correlation lengths. All the correlation
lengths are of the order of one or two rungs as can be seen in Figs. 4 and 5.

On the other hand, for the state at ms = 0, we found that all the two-spin correlations decay quite
slowly. The decays are consistent with power law fall offs of the form A(−1)|l−n|/|l−n|η. It is difficult to
find η very accurately since the maximum value of |l−n| is only 20; this is because we fixed one site to be
in the middle of the chain (to minimize edge effects), and the maximum chain length is 40 for our DMRG
calculations. For ms = 0, the exponent η for all the correlations was found to be around 1. There was
no difference in the behaviors of the zz and +− correlations since this was an isotropic system; ms = 0
is the ground state if the magnetic field is zero.

For the state at ms = 1 (which is the ground state only for a substantial value of the magnetic field),
we found that the +− correlations again decay quite slowly consistent with a power law. The exponents
η for the different +− correlations varied from 0.61 to 0.70 with an average value of 0.66; see Fig. 6
for an example. However, the zz correlations actually increased, rather than decreased, with increasing
separation |l − n|; see Fig. 7. We found that this is because of large edge effects. Since the magnetic
field is particularly strong for the state with ms = 1, and sites at the ends have fewer neighbors coupled
antiferromagnetically to them, they respond more strongly to the magnetic field than sites near the center
of the system. This can be seen from Fig. 8 where the spin density Sz

a,n shows a sharp increase towards
the end of the chain (the rung index n is equal to 1 at the end).

We now summarize the properties of the three states studied with OBC along the rungs. The state
with ms = 1/2 is characterized by a large gap to excited states and extremely short correlation lengths
for spin correlations. The states at ms = 0 and ms = 1 appear to have no gaps to excited states (within
our numerical accuracy), and have slow fall offs of correlation functions consistent with power laws.
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We now describe some low-temperature thermodynamic properties of the three-chain system obtained
using DMRG. Although DMRG is normally expected to be most accurate for targeting the lowest states
in different Sz sectors, earlier studies of mixed spin chains have shown that DMRG is quite reliable for
computing low-temperature properties also28. There are two reasons for this; the low-lying excited states
generally have a large projection onto the space of DMRG states which contains the ground state, and
the low-lying excitations in one sector are usually the lowest states in nearby Sz sectors.

We first checked that for systems with 12 sites, the results obtained using DMRG agree well with those
obtained by exact diagonalization. We then used DMRG to study the magnetization, susceptibility and
specific heat of 36-site systems with both OBC and PBC along the rungs. We first compute the partition
function Z =

∑
i exp [−β(Ei − h(Sz)i)] , where the sum is over all the states i in all the Sz sectors, and

β = 1/kBT where kB is the Boltzmann constant. Then the magnetization is given by

〈M〉 =
1

Z

∑

i

(Sz)i e
− β [ Ei − h (Sz)i ] . (10)

The magnetic susceptibility is related to the fluctuation in magnetization,

χ = β [ 〈M2〉 − 〈M〉2 ] , (11)

and the specific heat is related to the fluctuation in energy,

CV

kB
= β2 [ 〈E2〉 − 〈E〉2 ] . (12)

The plots of magnetization versus magnetic field for various temperatures are shown in Figs. 9 and 10
for OBC and PBC, respectively, along the rungs. The temperature T is measured in units of J/kB. We
see that the plateau at ms = 1/2 disappears quite rapidly as we increase the temperature. With OBC
along rungs, the plateau has almost disappeared at T = 0.4 which is substantially lower than the width
∆h/J = 1.88. The plots of susceptibility in Fig. 11 for OBC also show no surprises. The susceptibility is
(exponentially) small at low temperatures in the region of the plateau because the magnetic excitations
there are separated from the ground state by a gap.

However, the specific heats shown in Figs. 12 and 13 demonstrate an interesting difference between
OBC and PBC along the rungs. While it is very small at low temperatures for OBC, it is not small for
PBC; further, it shows a plateau in the same range of magnetic fields as the magnetization itself. These
two observations strongly suggest that the system with PBC along the rungs has nonmagnetic excitations
which do not contribute to the magnetization or susceptibility, but do contribute to the specific heat.
Figure 14 gives a more direct comparison between OBC and PBC along the rungs. The LEH of Sec.
III will clearly show the origin of these excitations. Although these excitations were studied by previous
authors10,11,24, we believe that our specific heat plots prove their existence most physically. To show
these excitations even more explicitly, we present in Fig. 15 all the energy levels for a 12-site chain in
the sector Sz = 2 (i.e., ms = 1/2) using exact diagonalization. It is clear that the ground state is well
separated from the excited states for OBC, but it is at the bottom of a band of excitations for PBC;
these excitations are nonmagnetic since they have the same value of Sz as the ground state.

We should point out that the rapid but small fluctuations seen in Figs. 11 - 14, in the susceptibility
and specific heat at the lowest temperature of T = 0.1, are due to finite-size effects. Apart from a large
plateau at ms = 1/2, a system with only 36 sites also has small plateaus for several values of m at zero
temperature. These lead to small wiggles in the magnetization 〈M〉 at very low temperature. The wiggles
get amplified in the susceptibility since it is equal to the first derivative, i.e., χ = ∂〈M〉/∂h. The specific
heat shows low-temperature fluctuations for the same reason.

We should mention here that a small plateau has been found at ms = 0 for PBC along the rungs11,24.
The half-width is given by hc+/J = 0.21 in the limit J ′/J → ∞. However, this plateau is not clearly
visible in our low-temperature plots of magnetization and susceptibility.
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III. LOW-ENERGY EFFECTIVE HAMILTONIANS

A. General comments

We will now discuss the LEH approach for studying the properties of spin ladders. There are two
possible limits which may be considered. One could examine J ′/J → 0 which corresponds to weakly
interacting chains, and then directly use techniques from bosonization and conformal field theory; this
has been done in detail by others10,11,14,15. We will therefore consider the strong-coupling limit J/J ′ → 0
which corresponds to almost decoupled rungs. In that limit, the LEH has been derived to first order in
J/J ′ for a three-chain ladder with PBC along the rungs20,24, and for a two-chain ladder15,25.

We will derive the LEH for the three-chain model with OBC along the rungs and a two-chain model
to second order in J/J ′, and for the three-chain model with PBC along the rungs to first order. For the
three-chain system with OBC and for the two-chain system, we find that the first-order LEH takes the
form of the XXZ spin-1/2 model in a magnetic field. A lot of information is available for this model
through conformal field theory11,26. In particular, the exponent η for the correlation power laws can be
read off from the first-order Hamiltonian. We will use the terms of second order in J/J ′ only to determine
the boundaries hc± of the various plateaus. The second-order terms should also give corrections to the
exponent η but we will not consider that problem here. For the three-chain model with PBC along the
rungs, even the first-order LEH is sufficiently complicated that its properties are not well understood;
however we will present the form of the LEH for completeness.

We derive the LEH as follows. We first set the intrachain coupling J = 0 and consider which of the
states of a single rung are degenerate in energy in the presence of a magnetic field. In general, there will
be several values of the field, denoted by h0, for which two or more of the rung states will be degenerate
ground states. We will consider each such value of h0 in turn. The degenerate rung states will constitute
our low-energy states. If the amount of degeneracy in each rung is d, the total number of low-energy
states in a system with L rungs is given by Ld. (The number d depends both on the system and on the
field h0. It is two for three chains with OBC along the rungs and for two chains, while it is three or four
for three chains with PBC along the rungs. The form of the LEH depends crucially on this degeneracy).
Next, we decompose the Hamiltonian of the total system as H = H0 + V , where H0 contains only the
rung interaction J ′ and the field h0, and V contains the small interactions J and the residual magnetic
field h− h0 which are both assumed to be much smaller than J ′. Let us now denote the degenerate and
low-energy states of the system as pi and the high-energy states as qα. The low-energy states all have
energy E0, while the high-energy states have energies Eα according to the exactly solvable Hamiltonian
H0. Then the first-order LEH is given, up to an overall constant, by degenerate perturbation theory,

H
(1)
eff =

∑

ij

|pi〉 〈pi|V |pj〉 〈pj | . (13)

The second-order LEH is given by

H
(2)
eff =

∑

ij

∑

α

|pi〉
〈pi|V |qα〉 〈qα|V |pj〉

E0 − Eα
〈pj | . (14)

The calculation of the various matrix elements in Eqs. (13) and (14) can be simplified by using the
symmetries of the perturbation V , e.g., translations and rotations about the ẑ axis.

Finally, if there is a state pi such that 〈pj |V |pi〉 = 0 for all low-energy states j 6= i, then the unnormal-
ized state pi is given, to first order, by

|pi〉(1) = |pi〉 +
∑

α

|qα〉
〈qα|V |pi〉
E0 − Eα

. (15)
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This result will be used to compute the first-order changes in some quantities like the spin densities and
correlations.

Before ending this section, we would like to make a few comments on the XXZ spin-1/2 model in a
magnetic field since this will play an important role below11,26. Consider a spin-1/2 chain governed by
the Hamiltonian

H =
∑

n

[ Sx
nS

x
n+1 + Sy

nS
y
n+1 + ∆ Sz

nS
z
n+1 ] − h

∑

n

Sz
n . (16)

where the anisotropy parameter ∆ > −1. It is known that this system is gapped for h > 1 + ∆ with all
sites having Sz = 1/2 in the ground state, and for h < −1 − ∆ with all sites having Sz = −1/2. For
∆ ≤ 1, these are the only two magnetization plateaus with m = ±1/2 per site. For ∆ ≤ 1 and h = 0,
the two-spin correlations decay asymptotically as

〈S+
0 S

−
n 〉 ∼ (−1)n

|n|η ,

〈Sz
0S

z
n〉 ∼ (−1)n

|n|1/η
,

η =
1

2
+

1

π
sin−1 (∆) . (17)

On the other hand, for ∆ > 1, there is an additional plateau at ms = 0; there are two degenerate
ground states which have a period of two sites consistent with the condition (1). Thus the invariance
of the Hamiltonian under a translation by one site is spontaneously broken in the ground states. This
is particularly obvious for ∆ → ∞ where the two ground states are + − + − · · · and − + − + · · ·. The
two-spin correlations decay exponentially for ∆ > 1 and h = 0.

B. Three-chain ladder with open boundary condition along the rungs

We will decompose the Hamiltonian in (2) as H = H0 + V , where

H0 = J ′
∑

a=1,2

∑

n

Sa,n · Sa+1,n − h0

3∑

a=1

∑

n

Sz
a,n ,

V = J
3∑

a=1

∑

n

Sa,n · Sa,n+1 − (h − h0)
3∑

a=1

∑

n

Sz
a,n . (18)

We determine the field h0 by considering the rung Hamiltonian H0 and identifying the values of the
magnetic field h0 where two or more of the rung states become degenerate.

The eight states in each rung are described by specifying the Sz components (+ and − denoting +1/2
and −1/2 respectively) of the sites belonging to chains 1, 2 and 3. For instance, the four states with
total S = 3/2 are denoted by |1〉, ..., |4〉, where |1〉 = |+ ++〉 and the other three states can be obtained
by acting on it successively with the operator S− =

∑
a S

−
a . These four states have the energy J ′/2

in the absence of a magnetic field. There is one doublet of states |5〉 and |6〉 with S = 1/2, where

|5〉 = [ 2 | + −+〉 − | − ++〉 − | + +−〉 ]/
√

6 and |6〉 ∼ S−|5〉. These have energy −J ′. Finally, there is

another doublet of states |7〉 = [ | + +−〉 − | − ++〉 ]/
√

2 and |8〉 ∼ S−|7〉 which have zero energy. It is
now evident that the state |1〉 with Sz = 3/2 and the state |5〉 with Sz = 1/2 become degenerate at a
magnetic field h0 = 3J ′/2, while states |5〉 and |6〉 are trivially degenerate for the field h0 = 0. We will
now examine these two cases separately.
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For h0 = 3J ′/2, the low-energy states in each rung are given by |1〉 and |5〉, while the other six are
high-energy states. We thus have an effective spin-1/2 object on each rung n. We may introduce three
spin-1/2 operators (Sx

n, S
y
n, S

z
n) for each rung such that S±

n = Sx
n ± iSy

n and Sz
n have the following actions:

S+
n |1〉n = 0 , S+

n |5〉n = |1〉n ,

S−
n |1〉n = |5〉n , S−

n |5〉n = 0 ,

Sz
n |1〉n =

1

2
|1〉n , Sz

n |5〉n = − 1

2
|5〉n . (19)

Note that the state which has a |1〉 on every rung, i.e., |111 · · ·〉, is just the state with rung magnetization
ms = 3/2 corresponding to the saturation plateau. The state with a |5〉 on every rung corresponds to the
ms = 1/2 magnetization plateau. The LEH we are trying to derive will therefore describe the transition
between these two plateaus.

We now turn on the perturbation V in (18) with the assumption that J and h − h0 are both much
smaller than J ′. We can write V =

∑
n Vn,n+1, where

Vn,n+1 = J

3∑

a=1

Sa,n · Sa,n+1 − 1

2
(h − h0)

3∑

a=1

[ Sz
a,n + Sz

a,n+1 ] . (20)

The action of Vn,n+1 on the four low-energy states involving rungs n and n + 1 can be obtained after a
long but straightforward calculation. We then use Eq. (14) and find that the LEH to second order in
J/J ′ is given, up to a constant, by

Heff = J
∑

n

[ Sx
nS

x
n+1 + Sy

nS
y
n+1 + (

1

2
− 29J

72J ′
) Sz

nS
z
n+1 ]

− 5J2

18J ′

∑

n

(
1

2
− Sz

n) (Sx
n−1S

x
n+1 + Sy

n−1S
y
n+1)

− 2J2

27J ′

∑

n

(
1

2
− Sz

n−1) (
1

2
− Sz

n) (
1

2
− Sz

n+1)

− ( h − 3J ′

2
− J

2
− 29J2

72J ′
)

∑

n

Sz
n , (21)

where we have substituted h0 = 3J ′/2. Note that the terms of order J only involve two neighboring sites.
The LEH up to that order simply describes an XXZ model with anisotropy ∆ = 1/2 in a magnetic field
h− 3J ′/2 − J/2 [see (16)]. Some of the terms of order J2/J ′ involve three neighboring sites; this makes
the model unsolvable by the Bethe ansatz at this order.

We will now use (21) to compute the values of the fields h1 and h2 where the states with all rungs
equal to |1〉 and all rungs equal to |5〉 respectively become the ground states. We can then identify h1

with the lower critical field hc− for the plateau at ms = 3/2, and h2 with the upper critical field hc+ for
the plateau at ms = 1/2. [Recall the definition of upper and lower critical fields around Eqs. (4) and
(5)].

To compute the field h1, we compare the energy E0 of the state with all rungs equal to |1〉 with the
minimum energy Emin(k) of a spin-wave state in which one rung is equal to |5〉 and all the other rungs
are equal to |1〉. A spin wave with momentum k is given by

|k〉 =
1√
L

∑

n

eikn |5n〉 , (22)
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where |5n〉 denotes a state where only the rung n is equal to |5〉. The spin-wave dispersion, i.e., ω(k) =
E(k) − E0, is found from (21) to be

ω(k) = J ( cos k − 1

2
+

29J

72J ′
) + ( h − 3J ′

2
− J

2
− 29J2

J ′
) . (23)

This is minimum at k = π and it turns negative there for h < h1, where

h1 =
3J ′

2
+ 2J . (24)

This is therefore the transition point between the ferromagnetic state |111 · · ·〉 and a spin-wave band lying
immediately below it in energy.

Similarly, we compute the field h2 by comparing the energy E0 of the state with all rungs equal to |5〉
with the minimum energy Emin(k) of a spin wave in which a |5〉 at one rung is replaced by a |1〉. For a
spin wave with momentum k, the dispersion ω(k) = E(k) − E0 is found to be

ω(k) = J ( cos k − 1

2
+

29J

72J ′
) +

J2

J ′
(

2

9
− 5

18
cos 2k ) − ( h − 3J ′

2
− J

2
− 29J2

72J ′
) . (25)

This is minimum at k = π and it turns positive there for h > h2, where

h2 =
3J ′

2
− J +

3J2

4J ′
. (26)

This marks the transition between the state |555 · · ·〉 and the spin-wave band. Equation (26) agrees to
this order with the higher-order series given in the literature11. Note that the second-order result gives
h2/J = 3.75 for J/J ′ = 1/3, compared to our DMRG value of hc+/J = 3.79 in (6).

From the first-order terms in (21), we can deduce the asymptotic form of the two-spin correlations.
From (17), we see that the exponent η = 2/3 for ∆ = 1/2. Although this is the exponent for the +−
correlation of the effective spin-1/2 defined on each rung, we would expect the same exponent to appear in
all the correlations 〈S+

a,lS
−
b,n〉 studied by DMRG in the previous section, regardless of how we choose the

chain indices a, b = 1, 2, 3. We now see that the analytically predicted exponent of 2/3 agrees quite well
with the numerically obtained exponents which lie in the range 0.61 to 0.70. Incidentally, this agreement
implies that J/J ′ = 1/3 is sufficiently small so that the second-order terms do not significantly affect the
correlation exponent.

Finally, we can use the first-order wave function given in (15) to compute the spin densities and short-
distance two-spin correlations. As examples, we quote the results for spin densities and some of the
nearest-neighbor spin correlations for the plateau at ms = 1/2. We will give the first-order expressions
and their values for J/J ′ = 1/3, followed by the numerical values obtained by DMRG.

〈Sz
1,n〉 = 〈Sz

3,n〉 =
1

3
− 4J

27J ′
= 0.28 vs. 0.27 from DMRG ,

〈Sz
2,n〉 = − 1

6
+

8J

27J ′
= − 0.07 vs. − 0.04 ,

〈Sz
1,nS

z
1,n+1〉 =

1

9
− J

8J ′
= 0.07 vs. 0.07 ,

〈Sz
2,nS

z
2,n+1〉 =

1

36
− 4J

27J ′
= − 0.02 vs. − 0.02 ,

〈S+
1,nS

−
1,n+1〉 = − J

6J ′
= − 0.06 vs. − 0.08 ,

〈S+
2,nS

−
2,n+1〉 = − 2J

9J ′
= − 0.07 vs. − 0.11 . (27)
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We will now consider the LEH at the other magnetic field h0 = 0 where the rung states |5〉 and |6〉 are
degenerate. We take these as the low-energy states and introduce new effective spin-1/2 operators for
each rung with actions similar to Eqs. (19), except that we replace |1〉 and |5〉 in those equations by |5〉
and |6〉. We again compute the action of the perturbation V on the low-energy states. We then deduce
the second-order LEH to be

Heff = J
∑

n

[ ( 1 − J

9J ′
) Sn · Sn+1 − 8J

27J ′
Sn · Sn+2 ] − h

∑

n

Sz
n . (28)

This Hamiltonian describes the transition between the magnetization plateaus at ms = 1/2 and ms =
−1/2; since these plateaus are reflections of each other about zero magnetic field, it is sufficient to study
one of them. By a calculation similar to the one used to derive (24), the field h1 can be found from the
dispersion of a spin wave in which one rung is equal to |6〉 and all the other rungs are equal to |5〉. The
dispersion is

ω(k) = h + ( J − J2

9J ′
) ( cos k − 1 ) +

8J2

27J ′
( 1 − cos 2k ) . (29)

This gives

h1 = 2J − 2J2

9J ′
. (30)

This is the lower critical field hc− of the ms = 1/2 plateau. For J/J ′ = 1/3, the second-order result
gives 1.93 versus the DMRG value of 1.91 in (6). The Hamiltonian (28) describes an isotropic spin-1/2
antiferromagnet with a weak ferromagnetic next-nearest-neighbor interaction. From the comments at the
end of the previous section, we see that this model only has the two saturation plateaus at ms = ±1/2,
and no other plateau in between. For h = 0, the two-spin correlations decay as power laws with the
exponent η = 1 [see (17)].

C. Three-chain ladder with periodic boundary condition along the rungs

In this section, we will present the first-order LEH for the Hamiltonian (2) with PBC along the rungs.
The LEH will turn out to be somewhat complicated. We will not study their properties in any detail,
but will limit ourselves to a few comments. As in the case with OBC along the rungs, there are two
different LEH to be considered here because there are two values of the magnetic field where there are
degeneracies. We again begin with a description of the eight states on each rung. The four states with
S = 3/2 are the same as the states |1〉, ...., |4〉 introduced in the previous section, except that they now
have energy 3J ′/4 in the absence of a field. The doublet states have to be chosen differently now in
order that they be eigenstates of the periodic rung Hamiltonian. We choose two of the doublet states
to be |5′〉 = [ | + +−〉 + ω2 | + −+〉 + ω | − ++〉 ]/

√
3 and |6′〉 ∼ S−|5′〉, where ω = exp(i2π/3).

These two states have momenta 2π/3 along the rung (right moving). The other two doublet states are

|7′〉 = [ | + +−〉 + ω | + −+〉 + ω2 | − ++〉 ]/
√

3 and |8′〉 ∼ S−|7′〉 with momenta −2π/3 (left moving).
All these four states have energy −3J ′/4. This extra degeneracy (which is twice the degeneracy of the
doublets for OBC along the rungs) leads to a more complicated LEH as we will see.

We now note that for a field h0 = 3J ′/2, the three states |1〉, |5′〉 and |7′〉 become degenerate. We
now introduce seven operators R±, L±, τ± and σz for each rung with the following nonzero actions on
the three low-energy states,

R+
n |5′〉n = |1〉n , R−

n |1〉n = |5′〉n ,
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L+
n |7′〉n = |1〉n , L−

n |1〉n = |7′〉n ,

τ+
n |7′〉n = |5′〉n , τ−n |5′〉n = |7′〉n ,

σz
n |1〉n = |1〉n , σz

n |5′〉n = − |5′〉n , σz
n |7′〉n = − |7′〉n . (31)

All the actions (of operators on states) not mentioned in Eqs. (31) are assumed to give zero. We thus
observe that there are five magnetic operators L±, R± and σz which change or measure the Sz of a state,
and two nonmagnetic operators τ± which do not change Sz but simply interchange the right and left
moving states.

We then find that the first-order LEH is given, up to a constant, by

Heff =
J

2

∑

n

[ L+
nL

−
n+1 + L−

nL
+
n+1 + R+

nR
−
n+1 + R−

nR
+
n+1 ]

+
J

3

∑

n

[ τ+
n τ

−
n+1 + τ−n τ

+
n+1 ] +

J

12

∑

n

σz
nσ

z
n+1

− 1

2
( h − 3J ′

2
− 2J

3
)

∑

n

σz
n . (32)

We can now find the magnetic field h1 at which the the ferromagnetic state |111 · · ·〉 crosses over to the
minimum energy spin-wave state (in which a |1〉 is replaced by either a |5′〉 or a |7′〉 on exactly one rung).
The spin-wave dispersion is

ω(k) = h − 3J ′

2
− J + J cos k . (33)

We thus see that h1 = 3J ′/2 + 2J just as for OBC along the rungs. Thus the lower critical field hc− of
the saturation plateau ms = 3/2 has the same value for OBC and PBC along the rungs.

Below some field h2 (which seems rather hard to find analytically), the low-energy eigenstates of (32)
will not have the state |1〉 on any rung; only the states |5′〉 and |7′〉 will appear. This gives us the
magnetization plateau ms = 1/2. However, this plateau has a large number of nonmagnetic excitations
described by the Hamiltonian

Heff =
J

3

∑

n

[ τ+
n τ

−
n+1 + τ−n τ

+
n+1 ] (34)

which may be obtained from (32) by omitting the state |1〉 on all the rungs. Equation (34) has the form
of (16) with ∆ = 0, and is therefore exactly solvable; at low temperature, it has a specific heat which
grows linearly with T . The situation is therefore quite different from the case of OBC along the rungs
where the ms = 1/2 plateau consists of a single state in which every rung is in the state |5〉; all other
states are separated by a gap, hence the specific heat goes to zero exponentially at low temperature.

Finally, we examine the LEH at the field h0 = 0 where the four doublet states |5′〉, · · · , |8′〉 become
degenerate. This has been discussed in detail earlier11,20,24. On each rung, we introduce effective spin-1/2
operators which change or measure Sz, and the two nonmagnetic operators τ± which interchange the left
and right moving states. Then the LEH is

Heff =
J

3

∑

n

[ 1 + 4 ( τ+
n τ

−
n+1 + τ−n τ

+
n+1 ) ] Sn · Sn+1 − h

∑

n

Sz
n . (35)

This also appears to be nonexactly solvable but it has been studied numerically11,24. It has a small
plateau at ms = 0 where there are two degenerate ground states, each with a period of two rungs. Above
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some magnetic field h1 (which is again hard to calculate analytically from (35), this model crosses over
to the ms = 1/2 plateau where the rungs can only be in the two Sz = 1/2 states |5′〉 and |7′〉. We see
from (35) that these two states are again governed by the Hamiltonian in (34).

The phase diagrams of the three-chain ladder for OBC and PBC along the rungs are shown as functions
of J ′/J and h/J in Figs. 6 (b) and (c) in Ref. [11]. We observe that the plateaus with ms = 1/2 and
ms = 3/2 (called M = 1/3 and M = 1, respectively, in Ref. [11]) have large regions of stability for both
OBC and PBC. The plateau with ms = 0 exists only in the case of PBC along the rungs, and it has a
small region of stability close to h/J = 0.

D. A two-chain ladder

In this section, we will use the LEH approach to study a two-chain spin-1/2 ladder with the following
Hamiltonian,

H = J ′
∑

n

S1,n · S2,n + J2

2∑

a=1

∑

n

Sa,n · Sa,n+1

+ 2J1

∑

n

S1,n · S2,n+1 − h

2∑

a=1

∑

n

Sz
a,n , (36)

as shown in Fig. 16. The model may be viewed as a single chain with an alternation in nearest-neighbor
couplings J ′ and 2J1 (dimerization), and a next-nearest-neighbor coupling J2 (frustration). Equation
(36) has been studied extensively27,29. More recently, it has been studied from the point of view of
magnetization plateaus using a first-order LEH, bosonization and exact diagonalization15,16,25 . We will
therefore limit ourselves to deriving the second-order LEH and making a few other comments.

We begin by setting J1 = J2 = 0, and studying the four states on each rung. These are specified by
giving the configurations ± of the spins on chains 1 and 2 as follows. The three triplet states with S = 1
are denoted as |1〉, |2〉 and |3〉, where |1〉 = | + +〉 and the other two states are obtained by acting on it
successively with S−. These three states have energy J ′/4 in the absence of a magnetic field. The singlet

state |4〉 = [| + −〉 − | − +〉]/
√

2 has energy −3J ′/4. The states |1〉 and |4〉 become degenerate at a field
h0 = J ′. We now develop perturbation theory by assuming that J1, J2 and h− h0 are all much less than
J ′. The perturbation is V =

∑
n Vn,n+1 where

Vn,n+1 = J2

2∑

a=1

Sa,n · Sa,n+1 + 2J1 S1,n · S2,n+1

− 1

2
(h − h0)

2∑

a=1

[ Sz
a,n + Sz

a,n+1 ] . (37)

The actions of this operator on the four low-energy states of a pair of neighboring rungs can be easily
obtained. We now introduce effective spin-1/2 operators Sn on each rung which act on the two low-energy
states. The second-order LEH is then found to be

Heff = ( J2 − J1 −
J2

1

J ′
)

∑

n

(Sx
nS

x
n+1 + Sy

nS
y
n+1)

+
1

2
( J2 + J1 +

2J2
1

J ′
− 3(J1 − J2)

2

4J ′
)

∑

n

Sz
nS

z
n+1
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+
J2

1

2J ′

∑

n

[(
1

2
+ Sz

n)(Sx
n−1S

x
n+1 + Sy

n−1S
y
n+1) + (

1

2
+ Sz

n−1)(S
x
nS

x
n+1 + Sy

nS
y
n+1)

+ (
1

2
+ Sz

n+1)(S
x
n−1S

x
n + Sy

n−1S
y
n) + (

1

2
+ Sz

n−1)(
1

2
− Sz

n)(
1

2
+ Sz

n+1)]

− (J1 − J2)
2

4J ′

∑

n

(
1

2
− Sz

n)(Sx
n−1S

x
n+1 + Sy

n−1S
y
n+1)

− ( h − J ′ − J1

2
− J2

2
− 3(J1 − J2)

2

8J ′
)

∑

n

Sz
n . (38)

We now compute the field h1 above which the state |111 · · ·〉 becomes the ground state. The dispersion
of a spin wave, in which one rung is equal to |4〉 and all the others are equal to |1〉, is given by

ω(k) = h − J ′ − J1 − J2 − J2
1

2J ′
+ (J2 − J1) cos k +

J2
1

2J ′
cos 2k . (39)

By minimizing this as a function of k in various regions in the parameter space (J1, J2), and then setting
that minimum value equal to zero, we find that h1 is given by

h1 = J ′ + 2J1 if J2 ≤ J1 − 2J2
1

J ′
,

= J ′ + J1 + J2 +
J2

1

J ′
+

(J1 − J2)
2J ′

4J2
1

if J1 −
2J2

1

J ′
≤ J2 ≤ J1 +

2J2
1

J ′
,

= J ′ + 2J2 if J2 ≥ J1 +
2J2

1

J ′
. (40)

This is the lower critical field hc− of the saturation plateau with magnetizationms = 1 per rung. Similarly,
we can find the field h2 from the dispersion of a spin wave in which one rung is equal to |1〉 and the rest
are equal to |4〉. The dispersion is given by

ω(k) = − h + J ′ +
3(J1 − J2)

2

4J ′
− J2

1

J ′
+ (J2 − J1 −

J2
1

J ′
) cos k − (J1 − J2)

2

4J ′
cos 2k . (41)

By setting the minimum of this equal to zero, we find that h2 is given by

h2 = J ′ +
(J1 − J2)

2

2J ′
+ J2 − J1 − 2J2

1

J ′
if J2 ≤ J1 +

J2
1

J ′
,

= J ′ +
(J1 − J2)

2

2J ′
− J2 + J1 if J2 ≥ J1 +

J2
1

J ′
. (42)

This is the upper critical field hc+ of the saturation plateau with magnetization ms = 0 per rung.

Finally, we can see that the first-order terms in (38) are of the same form as the XXZ model in (16).
We can always make the coefficient of the first term in (38) positive, if necessary by performing a rotation
Sx

n → (−1)nSx
n, Sy

n → (−1)nSy
n and Sz

n → Sz
n. We then get a first-order Hamiltonian of the form

Heff = |J2 − J1|
∑

n

[ Sx
nS

x
n+1 + Sy

nS
y
n+1 ] +

1

2
( J2 + J1 )

∑

n

Sz
nS

z
n+1

− ( h − J ′ − J1

2
− J2

2
)

∑

n

Sz
n . (43)
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This is an XXZ model with

∆ =
J2 + J1

2 |J2 − J1|
. (44)

From the comments in Sec. III A, we therefore see that the two-chain ladder will have an additional
plateau at ms = 1/2 for ∆ > 1, i.e., if J2 + J1 > 2|J2 − J1|. In particular, ∆ = ∞ for J2 = J1 (this is
called the Shastry-Sutherland line30); the ms = 1/2 plateau will then stretch all the way from the upper
critical field of the ms = 0 plateau to the lower critical field of the ms = 1 plateau. This can be seen
in Fig. 17 which is taken from Ref. [16]; the dimerization parameter α in that figure is related to our
couplings by J ′ = 1 + α and 2J1 = 1 − α. Note that the ms = 1/2 plateau is particularly broad at
α = 0.6, i.e., J2 = J1 = 0.2, and that it actually touches the ms = 1 plateau on the right. The fact that
it does not extend all the way up to the ms = 0 plateau on the left is probably because we have ignored
the second-order terms in (38) which lead to deviations from the XXZ model.

IV. SUMMARY AND OUTLOOK

We studied a three-chain spin-1/2 ladder with a large ratio of interchain coupling to intrachain coupling
using the DMRG method and a LEH approach. For both OBC and PBC along the rungs, we found a
wide plateau with rung magnetization given by ms = 1/2. For the case of OBC, the two-spin correlations
are extremely short-ranged, and the magnetic susceptibility and specific heat are very small at low
temperature in the plateau. All these are consistent with the large magnetic gap. At other values of
m, the two-spin correlations fall off as power laws; the exponents can be found by using the first-order
LEH which takes the form of an XXZ model in a longitudinal magnetic field. For the case of PBC, the
magnetic susceptibility is again very small at low temperature in the plateau. However the specific heat
goes to zero much more slowly which dramatically shows the presence of nonmagnetic excitations. This
can be understood from the LEH in (34) which is an XY model. Finally, we used the LEH approach to
study a two-chain ladder with an additional diagonal interaction. In addition to a plateau at ms = 0, this
system also has a plateau at ms = 1/2 for certain regions in parameter space. The ms = 1/2 plateau is
interesting because it corresponds to degenerate ground states which spontaneously break the translation
invariance of the Hamiltonian. This can be understood from the LEH which, at first-order, is an XXZ
model with ∆ > 1.

An interesting problem for the future may be to take the second-order terms in the LEH presented
in Secs. III B and III D, and to compute the corrections produced by them in the exponents of the
correlation power laws. This would require us to study the effects of a perturbation to the XXZ spin-1/2
chain. This may not be difficult to do analytically since the XXZ model is integrable and exactly solvable
by the Bethe ansatz.

The quantization condition for magnetization given in (1) is reminiscent of the quantum Hall effect
where the Hall conductivity shows plateaus as a function of the magnetic field31. However, it is not clear
if the magnetization quantization is as insensitive to disorder as the conductivity quantization is known
to be. Although a magnetization plateau may be expected to survive small amounts of disorder (e.g., if
the disorder strength is much smaller than the energy gap), there seems to be no fundamental physical
principle, analogous to gauge invariance in the quantum Hall system, why the value of the magnetization
should remain fixed at a simple rational value. In fact, the derivation of (1) assumes translation invariance
of the Hamiltonian which is certainly broken by disorder. It would therefore be interesting to study this
issue, for instance, by allowing a small amount of disorder in the couplings of the spin ladder models
discussed in this paper.
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Figure Captions

1. The energy/site in units of J vs 1/N at the ms = 1/2 plateau, for J/J ′ = 1/3. The curves indicate
quadratic fits for (a) E0(M + 1, N), (b) E0(M,N), and (c) E0(M − 1, N).

2. Plateau widths vs 1/N for (a) ms = 1/2, (b) ms = 0, and (c) ms = 1.

3. Spin densities at the ms = 1/2 plateau for J/J ′ = 1/3. The upper points (circles) denote the top
chain a = 1, while the lower points (triangles) denote the middle chain a = 2. n = 1 and 20 denote the
end and middle rungs respectively.

4. Correlation function < S+
2,lS

−
2,n > at the ms = 1/2 plateau for J/J ′ = 1/3.

5. Correlation function < Sz
1,lS

z
1,n > at the ms = 1/2 plateau.

6. Correlation functions < S+
1,lS

−
2,n > in the ms = 1 state for J/J ′ = 1/3.

7. Correlation function < Sz
2,lS

z
2,n > in the ms = 1 state.

8. Spin densities in the ms = 1 state for J/J ′ = 1/3. The upper points (circles) denote the top chain
a = 1, while the lower points (triangles) denote the middle chain a = 2. n = 1 and 20 denote the end
and middle rungs respectively.

9. Magnetization vs magnetic field for 36 sites, with OBC along rungs for J/J ′ = 1/3.

10. Magnetization vs magnetic field for 36 sites, with PBC along rungs for J/J ′ = 1/3.

11. Susceptibility vs magnetic field for 36 sites, with OBC along rungs.

12. Specific heat in units of kB vs magnetic field for 36 sites, with OBC along rungs for J/J ′ = 1/3.

13. Specific heat in units of kB for 36 sites, with PBC along rungs.

14. Comparisons of specific heat and susceptibility of the 36-site systems with OBC and PBC along the
rungs.

15. Comparison of the energy spectra in units of J of the 12-site system with OBC and PBC along the
rungs. The energies in the Sz = 2 sector are shown for J/J ′ = 1/3.

16. Schematic diagram of the two-chain ladder with an additional diagonal interaction. The labels 1 and
2 denote sites in the upper and lower chains respectively.

17. Phase diagram of the two-chain ladder as a function of h and α for J2 = 0.2. In our notation,
J ′ = 1 + α and 2J1 = 1 − α. The numbers 0, 1/2 and 1 in the figure correspond to the values of ms at
the plateaus. Reproduced with permission from Ref. [16].

17



0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022
−1.04

−1.02

−1.00

−0.98

−0.96

−0.94

−0.92

−0.90

(a)

(b)

(c)

1/N

E 0/N

FIG. 1.

0 0.005 0.010 0.015 0.020 0.025 0.030
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

 1/N

 ∆ h
/J

(a)

(b)
(c)

FIG. 2.

18



21 19 17 15 13 11 9 7 5 3 1

−0.1

0

0.1

0.2

0.3

n

 <
 S

a,
n

z
>

FIG. 3.

0 2 4 6 8 10 12 14 16 18 20
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

 | l−n |

 <
 S

2,
l+
S

2,
n−
>

 

FIG. 4.

19



0 2 4 6 8 10 12 14 16 18 20
0.072

0.074

0.076

0.078

0.08

0.082

0.084

 | l−n |

 <
 S

3,
lz
S

3,
nz

>
 

FIG. 5.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

| l−n |

 | 
<

 S
2,

l+
S 2,

n−
>

 |

FIG. 6.

20



0 2 4 6 8 10 12 14 16 18 20
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

 | l−n |

 <
 S

2,
lz
S 2,

nz
>

 

FIG. 7.

21 19 17 15 13 11 9 7 5 3 1
0

0.1

0.2

0.3

0.4

0.5

n

 <
 S

a,
n

z
>

FIG. 8.

21



0 2 4 6 8 10
0

5

10

15

<
M

>

T=0.1

0 2 4 6 8 10
0

5

10

15

<
M

>

T=0.2

0 2 4 6 8 10
0

5

10

15

<
M

>

T=0.3

0 2 4 6 8 10
0

5

10

15

<
M

>

T=0.4

0 2 4 6 8 10
0

5

10

15

<
M

>

T=0.5

h/J
0 2 4 6 8 10

0

5

10

15

<
M

>

T=0.6

h/J

FIG. 9.

0 2 4 6 8
0

5

10

15

<
M

>

T=0.1

0 2 4 6 8
0

5

10

15

<
M

>

T=0.2

0 2 4 6 8
0

5

10

15

<
M

>

T=0.3

0 2 4 6 8
0

5

10

15

<
M

>

T=0.4

0 2 4 6 8
0

5

10

15

<
M

>

T=0.5

h/J
0 2 4 6 8

0

5

10

15

<
M

>

T=0.6

h/J

FIG. 10.

22



0 2 4 6 8 10
0

2

4

6

χ

T=0.1

0 2 4 6 8 10
0

2

4

6

χ

T=0.2

0 2 4 6 8 10
0

2

4

6

χ

T=0.3

0 2 4 6 8 10
0

2

4

6

χ

T=0.4

0 2 4 6 8 10
0

2

4

6

χ

T=0.5

h/J
0 2 4 6 8 10

0

2

4

6

χ

T=0.6

h/J

FIG. 11.

0 2 4 6 8 10
0

1

2

3

4

5

C
v

T=0.1

0 2 4 6 8 10
0

1

2

3

4

5

C v

T=0.2

0 2 4 6 8 10
0

1

2

3

4

5

C v

T=0.3

0 2 4 6 8 10
0

1

2

3

4

5

C
v

T=0.4

0 2 4 6 8 10
0

1

2

3

4

5

C
v

T=0.5

h/J
0 2 4 6 8 10

0

1

2

3

4

5

C
v

T=0.6

h/J

FIG. 12.

23



0 2 4 6 8
0

2

4

6

C v

T=0.1

0 2 4 6 8
0

2

4

6

C
v

T=0.2

0 2 4 6 8
0

2

4

6

C v

T=0.3

0 2 4 6 8
0

2

4

6

C
v

T=0.4

0 2 4 6 8
0

2

4

6

C v

T=0.5

h/J
0 2 4 6 8

0

2

4

6

C
v

T=0.6

h/J

FIG. 13.

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

C
v

 T=0.1, OBC

0 2 4 6 8
0

5

10

15

 χ

 T=0.1, OBC

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

C
v

 T=0.1, PBC

 h/J
0 2 4 6 8

0

5

10

15

 χ

 T=0.1, PBC

 h/J

FIG. 14.

24



−10 −5 0 5 10

−10 −5 0 5 10
Energy

OBC

PBC

FIG. 15.

2 2

1 1

J’

J2

2J1

FIG. 16.

25



1.0 2.0 3.0

0

1
1/2

h

α

0.0

0.5

1.0

FIG. 17.

26


