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Abstract 

In conformal field theory, key properties of spin-1/2 chains, such as the ground state 

energy per site and the excitation gap scale with dimerization δ as δα with known 

exponents α and logarithmic corrections. The logarithmic corrections vanish in a spin 

chain with nearest (J=1) and next nearest neighbor interactions (J2), for J2c=0.2411.  

DMRG analysis of a frustrated spin chain with no logarithmic corrections yields the 

field theoretic values of α, and scaling relation is valid up to the physically realized 

range, δ ~ 0.1. However, chains with logarithmic corrections (J2<0.2411J) are more 

accurately fit by simple power laws with different exponents for physically realized 

dimerizations. We show the exponents decreasing from approximately 3/4 to 2/3 for 

the spin gap and from approximately 3/2 to 4/3 for the energy per site and error bars 

in the exponent also decrease as J2 approaches to J2c.  
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The linear Heisenberg antiferromagnet (HAF) of spin-1/2 sites is an important and unique 

model many-body system that is both experimentally realized (in organic and inorganic 

crystals1) and is theoretically amenable to exact solution. As discussed in Refs..2 and 3, 

bozonization and conformal field theories have motivated recent theoretical interest in 

HAFs and dimerized spin chains and provide scaling laws for stabilization of the ground 

state energy per site as well as the magnitude of spin gap, as a function of the 

dimerization δ. However, the spin gap at experimentally realized dimerization, does not 

follow scaling2,4. Scaling theory leaves open the range of dimerization over which scaling 

results are reliable, while experiment requires HAFs with substantial dimerization that 

may be outside the range of scaling. Frustration in AF systems is another broad topic of 

current interest5-10. For example, a frustrated HAF has a second-neighbor exchange J2 that 

yields a valence-bond solid at J2 = 1/2. Since the scaling of the dimerization gap depends 

on J2, an HAF with both dimerization and frustration6 is well suited to study scaling 

exponents, logarithmic corrections and the dimerization range of scaling. The 

Hamiltonian with nearest-neighbor exchange J = 1, taken as the unit of energy, is 
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The parameters δ and J2 > 0 describe dimerization and frustration, respectively. The 

regular HAF with δ = J2 = 0 in Eq. (1) has ground state (GS) energy per site11 of ε0= –ln2 

+1/4 and vanishing singlet-triplet (ST) gap12 ∆(0,0) = 0. The ST gap, ∆(0,J2), opens at   

J2c = 0.2411, that marks the transition from magnetic to nonmagnetic ground state13. 

 

In this brief report, we use the density matrix renormalization group (DMRG) 

method14 to find the ST gap and GS energy per site of the infinite chain. We analyze the 

results for δ << 1 and J2 ≤ J2c as 
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The coefficients A, B and exponents α, β are functions of J2. The exponents at J2 = 0 are 

α = 2/3 and β = 4/3 according to bosonization and conformal field theory3,15-19  However, 

there are logarithmic corrections3,15-19 so that the gap goes as δ2/3/|lnδ|1/2 and the energy  

gain as δ4/3/|lnδ|. In a perturbation analysis of H(δ,0), Barnes, Riera and Tennnant 

(BRT)4,20 found the ST gap to be accurately given by α = 3/4 and A = 2 over the entire 

range of δ  from 0 to 1. This remarkably simple, accurate, but not exact expression 

showed that δ2/3/|lnδ|1/2 is restricted to the surprisingly small range, δ < 0.02. Logarithmic 

corrections arise because H(δ,0) is not strictly scale invariant at δ = 0; a marginal 

operator is present that destroys scale invariance. The coefficient of the marginal operator 

decreases with increasing J2 and vanishes at J2c, where exponents α = 2/3 and β = 4/3 are 

then expected6. The dimerization range over which Eq. (2) is valid is given by J2c. For J2 

= 0, Papenbrock et al also found a pure power law or a power law with field theoretic 

exponents and logarithmic corrections from their DMRG studies4. 

 

H(δ,J2) conserves the total spin S, and the GS is a singlet, S = 0. Valence bond 

(VB) diagrams are a many-electron basis that conserves S and are best suited for exact 

diagonalization of small systems. DMRG calculations with fixed MS  are highly accurate 

for large systems. The S=0 space is absent in the MS = 1 sector and hence allows 

computation of the ST gaps6. We computed ε(0,0) for open chains of N = 200 sites as 

half of the difference between the total energy for 198 and 200 sites, retaining 128, 200 

and 300 density-matrix eigenvectors. All the three match to 8 digits. The sum of the 

eigenvalues of the discarded density matrix eigenvectors in each of these cases is 

approximately 10–15. We have further checked our numerical results using the finite 

system DMRG algorithm keeping 128 density matrix eigenvectors and doing finite 

system calculation at each chain length (before increasing the system size) up to 200 

sites. We find that for J2 = 0 and δ = 0 (the most difficult case due to the infinite 

correlation length for these parameter values21), the difference between the gaps in the 

finite and infinite system DMRG algorithms are in the fifth significant place at a chain 

length of 200 sites. All results below are based on infinite DMRG algorithm with 128 

density matrix eigenvectors for open chains with even N from N = 100 to 200, and 



subsequent extrapolation to infinite N. The ground state energy per site at chain length, N 

is calculated ½[E(N)-E(N-2)], where E(N) is the energy of the lowest MS = 0 at chain 

length, N. The spin gap at N is the energy difference between the lowest MS = 1 state and 

the corresponding ground state. These quantities are plotted against 1/N and the 

thermodynamic values are obtained by extrapolation to infinite N using a fourth degree 

polynomial in (1/N). The extrapolated ε(0,0) is < 2 x 10–8 J from the exact ε0, while the 

extrapolated ∆(0,0) is less than 10–5 J. Comparable or improved convergence is expected 

for nonzero δ and  J2 with a finite ST gap, and is found on comparing to BRT20 at δ = 1/3, 

J2 = 0. The range of δ extends ref. 20 down to δ = 0.001. Direct targeting of spin state S 

improves the accuracy of the ST gap at small δ over previous works summarized in Table 

3 of ref. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .1  Log-log plot of the ST gap ∆ versus dimerization δ  at J2 =J2c =0.2411  and J2 =0.  

            Scaling theory predicts a slope of 2/3 as found at J2c  Inset extends the range of δ  

            to  1  for J2 =0. 

Table 1 lists representative values of extrapolated ST gaps and GS energies at J2 = 0 and 

J2c. Calculations were also performed at J2 = 0.05, 0.10, 0.15 and 0.20, as well as at other 

δ.  Figure 1 shows a log-log plot of the ST gaps between δ = 0.001 and 0.10 for J2 = 0 



(HAF) and J2c. The inset extends the ST gap to δ = 1. The HAF curve for the gap is the 

BRT relation,4,20 2δ3/4, whose accuracy we confirm over three decades in δ. A least 

squares fit between 0.001 and 0.10 returns an exponent of α = 0.750. As discussed in Fig. 

29 of ref. 2, small deviations from δ3/4 can be demonstrated. With A = 2 in Eq. (2) and 

∆(δ,J2) in Table 1, the exponent α(J2) is easily found at each J2, and small deviations from 

3/4 exceed the 10–5 accuracy of ∆(δ,J2). The BRT expansion20 of the ST gap in a = (1-

δ)/(1+δ) matches δ3/4 up to a2 for a << 1, in the limit of weakly interacting dimers, but 

deviates in the next order. By contrast, the J2c gap has α = 2/3 at least to δ = 0.10, in 

agreement with scaling3,15-19 and previous6 DMRG results. 

Table 1. Ground state energy per site, ε(δ,J2), and singlet-triplet gap, ∆(δ,J2), of  chain, 

Eq. (1), with dimerization δ and frustration J2 for two special values  = 0 (HAF) and 

0.2411 (J2c). 

 

Dimerization δ 

 

ε(δ,0) 

 

∆(δ,0) 

 

ε(δ,J2c) 

 

∆(δ,J2c) 

0.001 -0.443166 0.01119 -0.402010 0.02078 

0.002 -0.443196 0.02064 -0.402094 0.03465 

0.005 -0.443333 0.04116 -0.402423 0.06243 

0.010 -0.443655 0.06374 -0.403121 0.09883 

0.020 -0.444537 0.10982 -0.404844 0.15698 

0.050 -0.448374 0.21427 -0.411407 0.28984 

0.100 -0.457246 0.35707 -0.424741 0.46237 

1/3 -0.517954 0.87661 -0.501575 1.05382 

 

Figure 2 shows a log-log plot of ε(δ, J2) – ε(0, J2) vs. δ for J2 = 0 (HAF) and J2c. The 

scaling exponent of β = 4/3 holds at J2c up to at least δ = 0.10. The HAF curve yields β = 

1.450, distinctly less than 2α = 1.50. The power law fit of the energy gain is more 

accurate than the scaling expression with logarithmic corrections. Least square fits to Eq. 

(2)  for ln ∆ vs ln δ  and ln |ε(δ) – ε(0)| vs ln δ  up to δ = 0.10 lead to the exponents α, β 

and coefficients A, B in Table 2. Increasing J2 decreases the coefficient of the marginal 

operator that is responsible for logarithmic corrections. Indeed, α and β decrease 



smoothly to the scaling values at J2c, while A and B increase slightly. We also observe 

that the error bars decrease as J2 increases from 0 to  J2c. The J2c results agree with theory 

within our improved numerical accuracy up to at least δ = 0.10, which is well into the 

regime of spin-Peierls systems.22-24As previously noted,2,4,20 the ST gap at J2 = 0 is more 

accurately represented by Eq. (2) than by scaling theory with logarithmic corrections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Log-log plot of energy per site versus dimerization at J2 =J2c =0.2411 and J2 =0.   

            The slope at J2c   is 4/3 as predicted by scaling theory. 

 

Our DMRG results show that the power laws in Eq. (2) accurately fit the ST gap and 

energy stabilization on dimerization of H(δ,J2) in the interval 0.001 ≤ δ ≤ 0.10 for any 

J2 ≤ J2c. The HAF and scaling analysis in Ref. 2 extends to far smaller δ and to very low 

temperature. Such mathematical properties of spin chains are largely beyond 

experimental comparisons. In terms of physical realizations, spin-Peierls systems22-24 

with strong coupling to the lattice and δ ~ 0.10 at low T are required in order to minimize 

competition from second neighbor or interchain exchange or from anisotropic or 

antisymmetric corrections to J.  



 

Table 2  Fit to Eq. (2) of the ST gap ∆(δ,J2) and energy ε(δ,J2) for dimerization 0.001 ≤ 

δ≤ 0.10 and frustration J2 ≤ J2c. The standard deviation (σ) for the parameters is also 

shown. 

 

∆(δ,J2) = Aδα ε(δ,J2) – ε(0,J2) = -Bδβ

 
 

J2     α             σα    A             σA      β            σβ B              σB 

0.000 0.7475 0.0075 2.0375 0.0672 1.4417 0.0018 0.3891 0.0031 

0.050 0.7365 0.0066 2.0720 0.0606 1.4388 0.0026 0.4331 0.0051 

0.100 0.7246 0.0052 2.1090 0.0492 1.4137 0.0023 0.4497 0.0047 

0.150 0.7101 0.0041 2.1431 0.0394 1.3769 0.0014 0.4527 0.0029 

0.200 0.6903 0.0027 2.1585 0.0261 1.3469 0.0028 0.4735 0.0059 

0.2411 0.6715 0.0018 2.1709 0.0172 1.3078 0.0027 0.4736 0.0056 

 

The energy stabilization of the HAF on dimerization drives the spin-Peierls transition. In 

usual approximations of linear spin-phonon coupling, γ = (dJ/du)0 for displacements  u(–

1)n, and a harmonic lattice with force constant K, the equilibrium dimerization δ(0) at T = 

0 is given by2 
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Strong coupling γ and/or small K result in large dimerization. The divergence as δ–0.55 is 

rather weak in spin-Peierls systems with δ(0) > 0.05. A large ST gap localizes the GS and 

leads to rapid size convergence for the function δ–1ε′(δ). Direct solution24 of H(δ,0) for 22 

spins in Eq. (1) agrees within a few percent for δ = 0.05 with the DMRG analysis and 



rapidly becomes more quantitative with increasing δ. The large ST gap in the dimerized 

singlet ground state localizes the wave function and speeds up size convergence. 

 

 Our results for H(δ,J2) for the special case of J2c and for experimentally realized 

range of dimerization, agrees quantitatively with scaling theory both for the ST gap and 

the stabilization energy (with exponents of 2/3 and 4/3, respectively) up to at least δ ~ 

0.2. Indeed, direct least squares fits of the gap and energy per site vs. dimerization 

(instead of linear fits to the log-log plot) give exponents of 0.667 and 1.333 with standard 

deviations of 0.0014 for the gap and 0.00033 for the energy per site. Logarithmic 

corrections are expected for J2 < J2c. Power laws with exponents different from the 

universal values of 2/3 and 4/3, as found numerically in Table 2 for the ST gap and 

stabilization energy, are then more accurate than the scaling theory expressions with 

logarithmic corrections. Thus the logarithmic corrections complicate the scaling theory 

expressions for the ST gap and stabilization energy of the linear HAF, thereby restricting 

universal power law behavior to very small values of δ. 
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