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Abstract Generally, the first step in modeling molecular magnets involves obtaining the low-
lying eigenstates of a Heisenberg exchange Hamiltonian which conserves total spin and belongs
usually to a non-Abelian point group. In quantum chemistry,it has been a long standing problem
to target a state which has definite total spin and also belongs to a definite irreducible represen-
tation of the point group. Many attempts have been made over years, but unfortunately these
have not resulted in methods that are easy to implement, or even applicable to all point groups.
Here we present a general technique which is a hybrid method based on Valence Bond basis and
the basis of z-component of the total spin, which is applicable to all types of point groups and
is easy to implement on computer. We illustrate the power of the method by applying it to the
molecular magnetic system,Cu6Fe8, with cubic symmetry. We emphasize that our method is
applicable to spin clusters with arbitrary site spins and iseasily extended to fermionic systems.

1 Introduction

The field of molecular magnetism has witnessed an explosion in the number of systems that ex-
hibit molecular magnetic phenomena such as quantum resonant tunneling and photomagnetism
(see reviews [1, 2]). This explosive growth has also presented challenges to theorists model-
ing these systems. The problems encountered by theorists begin with modeling the nature of
exchange interactions between pairs of magnetic ions. While an electronic many-body Hamil-
tonian has to be solved for determining the nature of exchange, this is often circumvented by
guessing the nature of exchange based on the knowledge of theligands, electron configuration
of the transition metal ion and the geometry of the complex. The second problem concerns with
obtaining the eigenstates of the exchange Hamiltonian,

Hex= −∑
〈i j 〉

Ji j Ŝi · Ŝj (1)
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describing the coupling between pairs of magnetic ions〈i j 〉 with exchange constantJi j . Of-
ten, the Fock space of the Hamiltonian of the magnetic systemcould be very large (in case of
Mn12Ac, it is as large as a hundred million [4] and inFe12 ferric wheel, it is more than two bil-
lion [3]) and obtaining even a few low-lying states of the Hamiltonian could pose a challenge.
Since the exchange Hamiltonian conserves both total spin and z-component of total spin (MS),
the problem can be simplified by specializing the basis, in which the matrix representation of
the Hamiltonian is sought, to the case of fixed z-component ofthe total spin. Further simplifi-
cation could come from exploiting spatial symmetries of themodel. An ideal situation would
correspond to one in which all the spin and spatial symmetries are utilized to construct a fully
symmetrized basis to minimize the size of the Hamiltonian matrix that needs to be diagonalized.

The conservation of theSz
tot, the total z-component of spin is trivially achieved by choos-

ing from the Fock space, states whose totalMS value corresponds to the desired value. This is
possible since individualSz

i operators commute with theSz
tot operator. It is also quite straight-

forward to set up the Hamiltonian matrix in this basis and solve for a few low-lying states in
cases where the Hilbert space is spanned by a few hundred million states [30]. However, the
exchange Hamiltonian of molecular magnets often consists of interactions that are geometri-
cally frustrated. In such a system, the ground state spin is often not predictable and one needs
to obtain the lowest state in each total spin subspace to fix the spin of the ground state. Besides,
low energy states with different total spins lie close in energy and it is numerically difficult to
achieve convergence to nearly degenerate eigenstates unless they can be dispersed into orthogo-
nal Hilbert spaces. We can partially alleviate this problemby employing the parity symmetry of
the exchange Hamiltonian. This symmetry corresponds to rotation of all the spins in the system
around the x or y-axis by an angleπ which leaves the Hamiltonian invariant, in theMS = 0
sector.

[H,Ry(π)] = 0; where, Ry(θ) = e−iθŜy/h̄ (2)

The action of parity operator (P̂) on a basis state with sitems valuesm1, m2, m3 .... mn, is to flip
all the spins in the system, i.e.,

P̂|m1m2 . . .mn〉 = (−1)η|−m1−m2 . . .−mn〉; where, η = ∑
i

si (3)

Thus, the parity operator which conserves the totalMS value, only whenMS = 0, is a sym-
metry element of the Hamiltonian matrix in theMS = 0 sector. In the general case where the
individual objects have spinsi , if ∑i si is even then symmetric (antisymmetric) combination of
the basis states, under parity, will span a space of even (odd) total spin states. The method
can be extended easily to systems which allow only half odd-integer total spin. Since in most
cases, the lowest excited state usually has a spin which is one different from that of the ground
state, this symmetry renders it easy to obtain the spin gap accurately. However, the size of
the Hilbert space is only reduced by approximately half of the size of the fullMS = 0 space,
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by using this symmetry. Use of parity is still advantageous as exploiting spatial symmetries is
straightforward, even when the point group is not Abelian.

Construction of spin adapted configuration state functions(CSF) has been a problem of long
standing interest in quantum chemistry. The CSFs are simultaneous eigenstates of totalS2

tot and
Sz

tot and setting up the Hamiltonian matrix in this basis leads to matrices of smaller size besides
allowing automatic labeling of the states by the total spin.Besides, the eigenvalue spectrum
is enriched, since we can obtain several low-lying states ineach total spin sector. This is in
contrast to obtaining several low-lying states in a given total MS sector as the latter would have
states with total spin Stot ≥MS. There are many ways of achieving this task [5]. The simplest
method involves setting up the matrix of the total spin operator, S2

tot, in the CSF basis of fixed
MS and obtain the eigenstates corresponding to given total spin value; these eigenstates which
are linear combinations of the constantMS CSFs are then the spin adapted CSFs. For large
systems this method is not practical. Another method which is some times used is the L ¨owdin
projection method [6, 7] in which a projection operatorPS, given by,

PS = ΠS′ 6=S(Ŝ
2−S′(S′+1)) (4)

is used to project out all undesired states of spinsS′ except the spin S of interest, from a given
CSF. The methods that have been extensively in vogue for construction of the spin adapted CSFs
are the Graphical Unitary Group Approach (GUGA) [8, 9, 10], Symmetry Group Graphical Ap-
proach (SGGA) [11] and the Valence Bond (VB) approach [12, 13, 14, 15, 17]. In the GUGA
method, the total spin adapted CSFs are represented as Shavitt graphs or Paldus arrays and the
matrix element of a term (which corresponds to a generator ofthe unitary group) in the Hamil-
tonian between any two CSFs is obtained by comparing the two arrays or graphs corresponding
to the CSFs. Similarly, graphs are used to represent spin adapted CSFs in the SGGA method
and rules for computing matrix elements between two CSFs of aterm in the Hamiltonian have
been derived (see for example reviews [18, 19, 20]). Using these methods it is possible to carry
out large scale configuration interaction (CI) calculations. While in all these methods the total
spin symmetry is fully exploited, spatial symmetry adaptation is not an easy task [18]. The
CSFs are each built up of several orbitals with each orbital in general transforming according to
some specific irreducible representation of the point groupof the system. The direct product of
the irreducible representations of a general symmetry group is not a single irreducible represen-
tation of the same group. Thus it is not possible to associatean irreducible representation with
a given CSF unless the point group to which the system belongsis an Abelian group [21, 22].
Otherwise, symmetry operation on a CSF leads to a linear combination of many CSFs which
is in general difficult to construct. For small dimensionalities of the Hilbert spaces, matrix rep-
resentation of the symmetry operators can be obtained in thespace of CSFs. The projection
matrix for a given irreducible representation can be constructed from these matrices and from
these, the symmetry adapted CSFs [23]. However, this approach is of limited value in real large
scale problems [18]. In quantum chemical literature this difficulty is bypassed by dealing with
Abelian subgroups of the systems point group [24, 25]. But, this can lead to ambiguities in
assigning the irreducible representation of a state [26]. Among the methods for constructing
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spin adapted CSFs, the VB method is the simplest and will be considered in the next section.

The ultimate goal of symmetry adaptation is to be able to exploit the full spatial and spin
symmetries of the system, both for computational efficiencyand for labeling of the state by the
irreducible representation to which it belongs. In the nextsection, we give a brief introduction
to the symmetrized valence bond (VB) approach that was developed earlier and highlight the
difficulties associated with the technique [16]. In the third section, we present a hybrid VB-
constantMS method which overcomes these difficulties. In the fourth section, we illustrate an
application of this method to a magnetic spin cluster. In thefinal section, we summarize and
discuss the future prospects for the technique.

2 The Symmetrized VB Approach

Exploiting the invariance of both total spin and its z-component is nontrivial, since eigenstates
of the Sz

tot operator expressed as a product of the eigenstates of all theSz
i operators are not

simultaneously eigenstates of theS2
tot operator. The situation is further complicated by the fact

that in a molecular magnet, often the spins of all the constituent magnetic centers,si are not
the same. In such a situation, the easiest way of constructing the spin adapted functions is the
diagrammatic valence bond (VB) method based on modified Rumer-Pauling rules [12, 14]. In
this method, a magnetic site with a given spin “si” is replaced by 2si spin-half objects. To obtain
a state with total spinS from N such spin-1/2 objects from all the magnetic centers, (N−2S) of
these spin-1/2 objects are singlet spin paired explicitly,subject to the following restrictions: (1)
there should be no singlet pairing of any two spin-half objects belonging to the same magnetic
center (this ensures that the 2si objects are in a totally symmetric combination [29]) , (2) a total
of 2Sspin-half objects are left unpaired, (3) when all the spin-half objects are arranged at the
vertices of a regular polygon with number of vertices equal to number of spin-half objects, N,
and straight lines are drawn between spin paired vertices, there should be no intersecting lines
in the resulting diagram and (4) when all the spin-half objects are arranged on a straight line and
lines are drawn between spin paired objects, these lines should not enclose any unpaired spin-
1/2 object. These rules follow from the generalization of the Rumer-Pauling rules to objects
with spin greater than 1/2 and total spin greater than zero. The set of diagrams which obey
these rules would hence forth be called “legal” VB diagrams.Some legal VB diagrams are
shown in Fig. 1. A line in the VB diagram between two spin -1/2 objects i and j corresponds to
the state(αiβ j −βiα j)/

√
2 where we chooseα to correspond to| ↑〉 andβ to | ↓〉 orientations of

the spin. The phase convention assumed is that the ordinal number “i” is less than the ordinal
number “j”. The 2Sspin-1/2 objectsk1 k2 k3 . . . . k2S which are left unpaired can be taken
to represent the state withMS = Sgiven byαk1αk2αk3...αk2s. VB states corresponding to other
MS value for this state with spin S, can be obtained by operatingthe S−tot operator on the state
by the required number of times. Since the exchange Hamiltonian is isotropic, each eigenstate
in the spin S is (2S+1) fold degenerate and it is sufficient to work in subspace of chosen MS
value. The VB state corresponding to a given diagram is a product of the states representing
the constituent parts of the diagram. On a computer, a “legal” VB diagram of any spin can be
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Figure 1: Above VB diagram shows spin pairings to yield a total spin Stot=0 state from ten
spin-1/2 objects, constituent elementary spins of two spin1 and two spin 3/2. Its bit represen-
tation corresponds to unique integer I = 856. The bottom VB diagram shows aStot=1 state, the
corresponding unique integer is I = 888.

uniquely represented by an integer of 2N bits with a one bit representing the beginning of a
singlet line and a zero bit the ending of singlet line. The unpaired spins are also represented as
one-bits. Fig. 1 also shows bit representation of typical VBdiagrams.

To spatially symmetrize a VB basis, it is necessary to know the result of a symmetry op-
erator operating on a legal VB diagram. In general, the resultant of such an operation on a
“legal” VB diagram is an “illegal” VB diagram. An example of this is shown in Fig. 2 [16]. An
illegal VB diagram can be decomposed into a linear combination of legal VB diagrams, a pro-
cess that is computationally demanding. In practice, the VBspace is broken down into smaller
invariant subspaces of the symmetry group and within each invariant space, a symmetrized lin-
ear combination of the VB basis is constructed. However, thestructure of the invariant spaces
is very complex and constructing disjoint invariant spacesis not simple. While constructing
symmetrized VB basis, a projection operator for a given symmetry representation is employed
to project the symmetrized linear combinations by acting oneach of the VB states in the in-
variant space. While the number of linearly independent symmetry combinations of a given
representation is knowna priori, the actual linear combinations are obtained by carrying out
Gram-Schmidt orthonormalization of the projected states.However, since the VB diagrams
are not orthogonal the orthonormalization process is both computationally involved and time
consuming.

Furthermore, in case of molecular magnets containing magnetic ions with spin greater than
half, the exchange operator between such high-spin centersalso generates “illegal” VB dia-
grams as it involves non-nearest neighbor exchange interactions between constituent elemen-
tary spins [14]. To illustrate, exchange between a center A with say spin one and a center B
with spin 3/2,SA ·SB, is expressed as(sA1 +sA2) · (sB1 +sB2 +sB3). These exchange terms op-
erate on a VB diagram with constituent elementary spins which are non-nearest neighbors and
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Figure 2: The effect of operation by the C1
3 symmetry operator about the (1,8) axis. Top left

shows the initial and final VB diagrams with spin couplings between vertices of the cube shown
as dark lines. Bottom left shows the same states as spin couplings between vertices of a reg-
ular octagon. The resultant is an “illegal” diagram. Decomposing the resultant to “legal” VB
diagrams yields a sum of five VB diagrams shown on the right, with spin couplings between
vertices on a cube.

in general generate “illegal” VB diagrams as per the VB rules. Decomposition of the resultant
“illegal” VB diagrams to “legal” VB diagrams could present aserious bottle-neck in comput-
ing the Hamiltonian matrix elements. In view of these difficulties, a fully symmetrized VB
approach to solving Heisenberg exchange Hamiltonian particularly in the context of molecular
magnets is not feasible.

3 Hybrid method based on VB Basis and Constant MS Basis

In the constantMS basis, a basis state of an ensemble of spinss1, s2, · · ·, sN, is represented by
a direct product of thems states of each spin such that the totalMS = ∑mi . The basis states
in the constantMS representation are orthonormal by construction. Given thedefinition of a
line in the VB diagram, every VB diagram can be broken up into alinear combination of the
constantMS basis states. A VB diagram withp singlet lines give rise to 2p basis states in the
constantMS basis. To effect the conversion of VB diagrams to constantMS functions, each
singlet line gives two states; in one state, the site at whicha singlet line begins is replaced by
anα spin and the one at which it ends by aβ spin with phase +1 and in the other the spins are
reversed and the associated phase is -1. Once the VB diagramsare converted to constantMS

basis states with constituent spins, it is possible to associate ami value with a composite spin,
given bymi = (ni↑−ni↓)/2, whereni↑ is the number of up-spin halves andni↓ is the number
of down-spin halves at the site i. However, there is a normalization constant wi , which follows
from Clebsch-Gordan coefficients, given by,

wi =

[

(2si)!
(si +mi)!(si −mi)!

]−1/2

(5)
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for a site with spin si in statemi [29]. We can assume without loss of generality that theMS value
of the VB diagram is alsoS. Computationally, finding the transformation of a state in the VB
basis to constantMS basis is straightforward. We initialize the coefficients inthe constantMS

basis to zero. We then decompose, sequentially, each VB diagram into constantMS states and
update the coefficient of the basis state of correspondingMS by adding to it the VB coefficient
times the product of Clebsch-Gordan factors with appropriate phases. The matrix relating the
VB basis states to constantMS basis states,C, is aV ×M matrix, whereV is the dimensionality
of the VB space andM that of the constantMS space.

The construction of the projection operator for projectingall the states of a given symmetry
representation in a given spin space can now be accomplished. We construct the matrix repre-
sentation of a symmetry operator,R̂, of the point group in the chosen spin space by operating
with R̂ on each state in the constantMS basis and searching for the resulting state in the list of
MS basis states. Each basis state in this representation is carried over to another basis state by a
symmetry operation of the point group. Thus, the matrixRM though anM×M matrix contains
only one nonzero element in each row; this makes manipulations with this matrix computa-
tionally fast. The knowledge of theC and theRM matrices give the effect of operating by the
symmetry operator̂R on a VB state as a linear combination of the constantMS basis states via
the matrixBR=CRM. The projection operator for projecting out the basis states on to a chosen
irreducible representation of the point groupΓ is given by,

PΓ = ∑̂
R

χirr
Γ (R̂)R̂ (6)

where,χirr
Γ (R̂) is the character under the symmetry operationR̂ in the character table of the

point group of the system [31]. The matrix representation ofPΓ in the mixed VB and constant
MS basis is given by,

QΓ = ∑
R

χirr
Γ (R)BR (7)

where,QΓ is aV ×M matrix. However, the rows of the matrixQΓ are not linearly indepen-
dent, since the symmetrized basis spans a much smaller dimensional Hilbert space. The exact
dimension of the Hilbert space spanned by the system in the irreducible representationΓ can be
knowna priori. The dimension of the spaceΓ, VΓ, is given by,

VΓ = (dΓ/h)∑̂
R

χ(R̂)χirr
Γ (R̂) (8)

wheredΓ is the dimensionality of the irreducible representationΓ, h is the number of elements
in the point group andχ(R̂) is the reducible character for the operationR̂. TheVΓ×M projection
matrix,PΓ of rankVΓ is obtained by Gram-Schmidt orthonormalization of the rowsof the matrix
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QΓ until VΓ orthonormal rows are obtained. TheseVΓ orthonormal rows represent the projection
matrix PΓ. TheM×M Hamiltonian matrix,HM is constructed in the constantMS basis which
is described elsewhere [30]. Since the basis states in this representation are orthonormal, we
do not encounter the problem of “illegal” states as with the VB representation. TheVΓ ×VΓ
Hamiltonian matrix in the fully symmetrized basis is given by PΓHM (PΓ)† and one could use
any of the well known full diagonalization routines to obtain the full eigenspectrum or use
Davidson algorithm to get a few low-lying states of the symmetrized block Hamiltonian in the
chosen spin and symmetry subspace.

The above procedure does not lead to the smallest block of theHamiltonian matrix, when
the irreducible representation for the block is degenerate, such as the E, T or H representa-
tions. In such cases, it is advantageous to work with bases that transform according to one of
the components of the irreducible representation. This canbe achieved by choosing an axis of
quantization and projecting out bases states of the irreducible representation which are diag-
onal about a rotation about the quantization axes. For example, in the case of the irreducible
representation that transforms as T, we can choose one of theC3 axes as a quantization axis
and project the basis states of the irreducible representation using (I+C1

3+C−1
3 ) as the projection

operator. This operator projects states that transform as the Y0
1 component of the three fold de-

generate irreducible tensor operator. Similarly, for the Erepresentation, we could use any of the
C2 axis as a quantization axis and use the projection operator (I+C1

2) to project out basis states
that transform as one of its components. This is equivalent to projecting out the states which
transform as a given row of the irreducible representation;the latter are not listed in standard
group theoretical character tables.

Computation of static properties such as spin densities andspin-spin correlation functions
in the eigenstates of the Hamiltonian is rendered simple dueto the orthogonality of the constant
MS basis. The site spin operators such as the z-component of thespin are diagonal in this basis,
while other operators such as the raising and lowering operators, though not diagonal in this
basis, have a very simple matrix representation. In computing various properties, the procedure
we follow is to express the eigenstates in the unsymmetrizedconstantMS basis and to compute
the desired properties using this representation.

The additional steps involved in the hybrid VB-Constant MS method are (i) constructing the
C matrix, whose ith row contains the coefficients of the constant MS functions appearing in the
ith VB basis function. This is a very fast step as the constant MS states are an ordered sequence
of integers and a VB state withn lines is a linear combination of 2n constant MS functions.
(ii) In the hybrid approach, computation of theC matrix involves the matrix multiplication,
C(∑Rχirr

Γ (R)RM) = CR′
M. The number of arithmetic operations involved is however very small,

since bothC andR′
M are sparse matrices. In both constant MS and hybrid approaches one has

to obtain the projection operatorPΓ by retaining only the orthogonal rows of the matrixR′
M or

QΓ respectively. Since the number of orthogonal rows inQΓ is far fewer than inR′
M, this step

is faster in the hybrid approach than in the constantMS approach by a factor D(ΓS)/D(ΓMS),
where D(ΓS) is the dimensionality of the space of the irreducible representationΓ with spin
S and D(ΓMS) is similarly the dimension of the spaceΓ with constant MS. This advantage is
largely off-set by the fact that theR′

M matrix in constantMS basis is more sparse than theQΓ
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Figure 3: Schematic ofCu6Fe8 cluster. Filled and open circles correspond to Fe and Cu (both
spin-1/2) sites respectively. Lines represent the exchange coupling between various spin sites.

matrix in the hybrid approach.Computation of the eigenvalues in the constantMS approach is
slower than in the hybrid approach, since D(ΓMS)>D(ΓS) for most S. This advantage may be
partially off-set because the Hamiltonian matrix in the hybrid approach is usually more dense.
The memory required for the hybrid approach is not very different from that of constantMS

approach since the matrices though smaller in the hybrid approach, are slightly denser. The
only additional array required in the hybrid approach is thestorage ofC matrix, which is very
sparse. The major advantage of the hybrid approach is that wecan obtain a far richer spectrum,
since we are targeting each spin sector separately, unlike in the constantMS approach. Thus,
if we can obtain, say 10 states in each S sector of the 2n spin-1/2 problem, we would have
10(n+1) unique states compared to the constantMS technique where many of these spin states
would be repeated in differentMS sectors.

4 Application to Cu6Fe8

We have applied the above method to model the susceptibilitybehavior of the molecule [(T p)8

(H2O)6CuII
6 FeIII

8 (CN)24] (ClO4)4 · 12H2O · 2Et2O [27], where Tp stands for hydrotris (pyra-
zolyl) borate (Fig. 3). In this molecule theCuII ions as well as theFeIII are in spin-1/2 state.
The eightFeIII ions are at cube corners and the sixCuII ions are on the outward perpendicular
to the face centers of the cube. EachCuII ion is connected to the four nearestFeIII ions via
ferromagnetic exchange interactions. There are no Fe-Fe orCu-Cu interactions. The molecule
has a spin 7 ground state. This system has a very high symmetryof the cube and incorporates
all the complexities that can be encountered in the application of our technique. From the sus-
ceptibility data, the strength of the exchange interactionJ, was estimated to be 30 cm−1 [27].
Because of the high symmetry of this system, we chose this as an example for applying our
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Table 1: Dimensionalities of the total spin spaces of a system of 14 spin-1/2 objects.D(S) is
the dimensionality of the constant S basis andD(MS) is the dimensionality of the constantMS

basis.

S/MS 0 1 2 3 4 5 6 7
D(S) 429 1001 1001 637 273 77 13 1
D(MS) 3432 3003 2002 1001 364 91 14 1

Table 2: Dimensionalities of various subspaces of theCuII
6 FeIII

8 cluster for irreducible represen-
tationΓ.

Stot →
Γ ↓ 0 1 2 3 4 5 6 7

A1g 6 32 24 24 9 5 1 1
A2g 13 15 19 8 5 0 0 0
Eg 34 90 90 60 26 10 2 0
T1g 78 165 171 99 39 6 0 0
T2g 66 216 186 138 54 21 3 0
A1u 5 19 13 11 2 0 0 0
A2u 17 20 27 15 10 2 1 0
Eu 36 78 84 48 20 6 0 0
T1u 105 180 219 123 66 15 6 0
T2u 69 186 168 111 42 12 0 0

technique. The dimensions of the various subspaces are given in Table 1.

Using the hybrid VB-constantMS method, we have broken down the space in each total
spin sector into basis states that transform as different irreducible representations of the cubic
point group. The dimensionalities of the various subspacesare shown in Table 2. The subspaces
transforming as the E representations are broken down into subspaces of half their dimension
by quantizing the system along a C2 axis. Similarly, the subspaces transforming as the T repre-
sentations are broken down into one third their dimensions in Table 2, by using a C3 axis as the
axis of quantization.

We have set up the Hamiltonian matrix in each of the subspacesand obtained all the eigen-
values. We have also used a constantMS basis and using the full cubic symmetry, factored the
space into various irreducible representations and obtained all the eigenvalues in each subspace.
From the eigenvectors, we have computed the total spin of thestate. We find a one to one cor-
respondence to numerical accuracy, between the two sets of calculations. We have also fitted
theχT vs. T experimental plot by using the full spectrum of the Heisenberg Hamiltonian and
computing [28]
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Figure 4: Fit of theχT vs. T plot for theCuII
6 FeIII

8 cluster. The best fit parameters are, J = 27.2
cm−1 (ferromagnetic),zJ′ = -0.008cm−1 (antiferromagnetic), D = -0.15cm−1 and g = 2.1.

χT =
3
8

[

g2F(J,T)

1−zJ′F(J,T)/kBT

]

(9)

where, we have taken the g factor to be 2.1, the ferromagneticexchange constant J to be 27.2
cm−1. Here,χT is in units ofNµB. The function F(J,T) is given by,

F(J,T) =
∑S∑MS

M2
Sexp[−E0(S,MS)/kBT]

∑S∑MS
exp[−E0(S,MS)/kBT]

(10)

with E0(S,MS) being the eigenvalue of the sum of exchange Hamiltonian and the magnetic
anisotropy termDS2

Z andzJ
′
is the intermolecular exchange interaction. Here we have assumed

that the molecular anisotropy is along the global z-axis, and this term is treated as a perturbation
to the exchange Hamiltonian in Eq. 1. In Fig. 4, we show the fit of the experimental data to the
model.

11



5 Summary and Outlook

The problem of exploiting total spin invariance together with spatial symmetries, especially of
non-Abelian point groups has been a long standing one. Whilefull spin symmetry adaptation
can be achieved by various techniques such as the use of permutation groups, unitary groups
and the VB method, the last mentioned is the easiest and provides easy chemical visualiza-
tion of the basis states. The main objection to the VB technique had been that the basis is
nonorthogonal and leads to nonsymmetric representation ofthe Hamiltonian matrix. However,
with the modification of the Davidson,s algorithm [32] to nonsymmetric matrices by Rettrup
[33], this objection has ceased to be important. The ease with which VB states with any given
total spin can be generated from objects with assorted individual spins, is an advantage which
far outweighs the other historical objections to the VB method.

However, even the VB basis suffers from the serious disadvantage like all other spin adapted
methods, when the question of full spatial symmetry adaptation comes up. The constantMS

basis methods do not suffer from this disadvantage. In this paper, we have demonstrated, how
by combining the ease of spin symmetry adaptation of the VB method with the spatial symmetry
exploitation of the constantMS methods, we can devise a scheme which is fully spin and spatial
symmetry adapted. This has been possible because of the easeof transformation of the VB basis
to the constantMS basis. We have demonstrated the power of the method by applying it to the
exchange Hamiltonian of the molecular magnet Cu6Fe8 which has cubic symmetry. We note
that the hybrid VB-constantMS method also allows easy manipulation of the eigenstates of the
Hamiltonian for computing properties. The method described here can easily be extended to
fermionic systems and should provide a significant improvement for obtaining exact eigenstates
of spin conserving model Hamiltonians.
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