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Abstract Generally, the first step in modeling molecular magnetshraobtaining the low-
lying eigenstates of a Heisenberg exchange Hamiltonianiwtonserves total spin and belongs
usually to a non-Abelian point group. In quantum chemisthas been a long standing problem
to target a state which has definite total spin and also bsltng definite irreducible represen-
tation of the point group. Many attempts have been made cearsy but unfortunately these
have not resulted in methods that are easy to implementeor &vplicable to all point groups.
Here we present a general technique which is a hybrid metaseidon Valence Bond basis and
the basis of z-component of the total spin, which is applie#d all types of point groups and
is easy to implement on computer. We illustrate the powehefrhethod by applying it to the
molecular magnetic syster@ugFeg, with cubic symmetry. We emphasize that our method is
applicable to spin clusters with arbitrary site spins anebisily extended to fermionic systems.

1 Introduction

The field of molecular magnetism has witnessed an explositrei number of systems that ex-
hibit molecular magnetic phenomena such as quantum resturareling and photomagnetism
(see reviews J1,12]). This explosive growth has also presknohallenges to theorists model-
ing these systems. The problems encountered by theorigits Wwéh modeling the nature of

exchange interactions between pairs of magnetic ions. &¥milelectronic many-body Hamil-

tonian has to be solved for determining the nature of exabatigs is often circumvented by

guessing the nature of exchange based on the knowledge lajdies, electron configuration

of the transition metal ion and the geometry of the complédye Second problem concerns with
obtaining the eigenstates of the exchange Hamiltonian,
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describing the coupling between pairs of magnetic iGns with exchange constagyj. Of-
ten, the Fock space of the Hamiltonian of the magnetic systaund be very large (in case of
Mn12Ac, it is as large as a hundred millian [4] andkie; 2 ferric wheel, it is more than two bil-
lion [3]) and obtaining even a few low-lying states of the H&omian could pose a challenge.
Since the exchange Hamiltonian conserves both total sgirzaromponent of total spirMs),
the problem can be simplified by specializing the basis, ircivthe matrix representation of
the Hamiltonian is sought, to the case of fixed z-componeftit@total spin. Further simplifi-
cation could come from exploiting spatial symmetries of t@del. An ideal situation would
correspond to one in which all the spin and spatial symnsetie utilized to construct a fully
symmetrized basis to minimize the size of the Hamiltoniatrixthat needs to be diagonalized.

The conservation of th&;, the total z-component of spin is trivially achieved by ckoo
ing from the Fock space, states whose tMglvalue corresponds to the desired value. This is
possible since individuay operators commute with tH&,, operator. It is also quite straight-
forward to set up the Hamiltonian matrix in this basis and/edbr a few low-lying states in
cases where the Hilbert space is spanned by a few hundradmstiates/[30]. However, the
exchange Hamiltonian of molecular magnets often consisisteractions that are geometri-
cally frustrated. In such a system, the ground state spiftés mot predictable and one needs
to obtain the lowest state in each total spin subspace todigpin of the ground state. Besides,
low energy states with different total spins lie close inrggeand it is numerically difficult to
achieve convergence to nearly degenerate eigenstates tindy can be dispersed into orthogo-
nal Hilbert spaces. We can patrtially alleviate this probsnemploying the parity symmetry of
the exchange Hamiltonian. This symmetry corresponds #diout of all the spins in the system
around the x or y-axis by an angtewhich leaves the Hamiltonian invariant, in thés = 0
sector.

[H,R,(T)] = 0; where R,(6) = e 105/n 2)

The action of parity operatolf’q on a basis state with sites valuesm, mp, Mz ... My, is to flip
all the spins in the system, i.e.,

|3\m1mg...rrh>:(—1)”|—m1—mg...—mn);Wheren:Zsi (3)

Thus, the parity operator which conserves the thtalvalue, only wherMs = 0, is a sym-
metry element of the Hamiltonian matrix in tivds = O sector. In the general case where the
individual objects have spis, if §;s is even then symmetric (antisymmetric) combination of
the basis states, under parity, will span a space of ever) totll spin states. The method
can be extended easily to systems which allow only half odielgier total spin. Since in most
cases, the lowest excited state usually has a spin whicteiglifferent from that of the ground
state, this symmetry renders it easy to obtain the spin gapraiely. However, the size of
the Hilbert space is only reduced by approximately half ef size of the fullMs = 0 space,
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by using this symmetry. Use of parity is still advantageosigxploiting spatial symmetries is
straightforward, even when the point group is not Abelian.

Construction of spin adapted configuration state functi@®F) has been a problem of long
standing interest in quantum chemistry. The CSFs are samedtus eigenstates of to&; and
St and setting up the Hamiltonian matrix in this basis leads atrives of smaller size besides
allowing automatic labeling of the states by the total sfesides, the eigenvalue spectrum
is enriched, since we can obtain several low-lying statesaich total spin sector. This is in
contrast to obtaining several low-lying states in a givealthls sector as the latter would have
states with total spinyg >Ms. There are many ways of achieving this task [5]. The simplest
method involves setting up the matrix of the total spin ofmer&,, in the CSF basis of fixed
Ms and obtain the eigenstates corresponding to given totahgbue; these eigenstates which
are linear combinations of the constavg CSFs are then the spin adapted CSFs. For large
systems this method is not practical. Another method wrsgome times used is thewdin
projection method [6,/7] in which a projection operaRgy given by,

Ps=Tg.s(§F-S(S+1)) (4)

is used to project out all undesired states of s@rexcept the spin S of interest, from a given
CSF. The methods that have been extensively in vogue fotremtion of the spin adapted CSFs
are the Graphical Unitary Group Approach (GUGA)([8, 9, 1@jynetry Group Graphical Ap-
proach (SGGA)[11] and the Valence Bond (VB) approach [12/143 15/ 17]. In the GUGA
method, the total spin adapted CSFs are represented ast$jnaphs or Paldus arrays and the
matrix element of a term (which corresponds to a generatthveotinitary group) in the Hamil-
tonian between any two CSFs is obtained by comparing the tvagsor graphs corresponding
to the CSFs. Similarly, graphs are used to represent spptedi&€SFs in the SGGA method
and rules for computing matrix elements between two CSFg@fra in the Hamiltonian have
been derived (see for example reviews [18,/19, 20]). Usiegehmethods it is possible to carry
out large scale configuration interaction (Cl) calculasiowhile in all these methods the total
spin symmetry is fully exploited, spatial symmetry adaiptatis not an easy task [18]. The
CSFs are each built up of several orbitals with each orbitgeineral transforming according to
some specific irreducible representation of the point gufithe system. The direct product of
the irreducible representations of a general symmetrymi®oot a single irreducible represen-
tation of the same group. Thus it is not possible to assoaraiereducible representation with
a given CSF unless the point group to which the system belisrays Abelian group [21, 22].
Otherwise, symmetry operation on a CSF leads to a linear gw@tibn of many CSFs which
is in general difficult to construct. For small dimensiotias of the Hilbert spaces, matrix rep-
resentation of the symmetry operators can be obtained isghee of CSFs. The projection
matrix for a given irreducible representation can be cares¢d from these matrices and from
these, the symmetry adapted CSFEs [23]. However, this apipisaf limited value in real large
scale problems [18]. In quantum chemical literature thiadilty is bypassed by dealing with
Abelian subgroups of the systems point group [24, 25]. Buig tan lead to ambiguities in
assigning the irreducible representation of a staté [26hoAg the methods for constructing
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spin adapted CSFs, the VB method is the simplest and will heidered in the next section.

The ultimate goal of symmetry adaptation is to be able to@kghe full spatial and spin
symmetries of the system, both for computational efficiesnag for labeling of the state by the
irreducible representation to which it belongs. In the reedtion, we give a brief introduction
to the symmetrized valence bond (VB) approach that was dpeel earlier and highlight the
difficulties associated with the technique [16]. In the dhsection, we present a hybrid VB-
constantMs method which overcomes these difficulties. In the fourthtieagcwe illustrate an
application of this method to a magnetic spin cluster. Infthal section, we summarize and
discuss the future prospects for the technique.

2 The Symmetrized VB Approach

Exploiting the invariance of both total spin and its z-coment is nontrivial, since eigenstates
of the §,; operator expressed as a product of the eigenstates of aff tbperators are not
simultaneously eigenstates of tg, operator. The situation is further complicated by the fact
that in a molecular magnet, often the spins of all the camstit magnetic centers, are not
the same. In such a situation, the easiest way of constguttenspin adapted functions is the
diagrammatic valence bond (VB) method based on modified Riraeling rules([12, 14]. In
this method, a magnetic site with a given spi fs replaced by & spin-half objects. To obtain
a state with total spi&from N such spin-1/2 objects from all the magnetic centés; @S) of
these spin-1/2 objects are singlet spin paired expliatipject to the following restrictions: (1)
there should be no singlet pairing of any two spin-half otgd&elonging to the same magnetic
center (this ensures that thg Bbjects are in a totally symmetric combinationl[29]) , (2btat

of 2S spin-half objects are left unpaired, (3) when all the spaif-bbjects are arranged at the
vertices of a regular polygon with number of vertices eqaalumber of spin-half objects, N,
and straight lines are drawn between spin paired vertibese tshould be no intersecting lines
in the resulting diagram and (4) when all the spin-half otg@ce arranged on a straight line and
lines are drawn between spin paired objects, these linaddhot enclose any unpaired spin-
1/2 object. These rules follow from the generalization & Bumer-Pauling rules to objects
with spin greater than 1/2 and total spin greater than zetwe Set of diagrams which obey
these rules would hence forth be called “legal” VB diagrarBeme legal VB diagrams are
shown in Fig. 1. A line in the VB diagram between two spin -1ieats i and j corresponds to
the state(aiBj — Biaj)/v/2 where we choose to correspond t¢T) andB to | | ) orientations of
the spin. The phase convention assumed is that the ordinab&ui” is less than the ordinal
number ‘§”. The 2Sspin-1/2 objectk; ko k3 . . . . kos which are left unpaired can be taken
to represent the state witis = Sgiven byay, o, 0,...0,. VB states corresponding to other
Ms value for this state with spin S, can be obtained by operatiedz,: operator on the state
by the required number of times. Since the exchange Hamaltas isotropic, each eigenstate
in the spin S is (2S+1) fold degenerate and it is sufficient tokwn subspace of chosend\
value. The VB state corresponding to a given diagram is aymtoof the states representing
the constituent parts of the diagram. On a computer, a “lagaldiagram of any spin can be
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Figure 1: Above VB diagram shows spin pairings to yield altefan S:=0 state from ten
spin-1/2 objects, constituent elementary spins of two §pamd two spin 3/2. Its bit represen-
tation corresponds to unique integer | = 856. The bottom \@ydim shows &=1 state, the
corresponding unique integer is | = 888.

uniquely represented by an integer of 2N bits with a one lgtegenting the beginning of a
singlet line and a zero bit the ending of singlet line. Theairgd spins are also represented as
one-bits. Fig. 1 also shows bit representation of typicaldi&jrams.

To spatially symmetrize a VB basis, it is necessary to knosvrésult of a symmetry op-
erator operating on a legal VB diagram. In general, the tastibf such an operation on a
“legal” VB diagram is an “illegal” VB diagram. An example diit is shown in Fig. 2[16]. An
illegal VB diagram can be decomposed into a linear combonati legal VB diagrams, a pro-
cess that is computationally demanding. In practice, thesp@ce is broken down into smaller
invariant subspaces of the symmetry group and within ea@riemt space, a symmetrized lin-
ear combination of the VB basis is constructed. Howeversthecture of the invariant spaces
is very complex and constructing disjoint invariant spaisesot simple. While constructing
symmetrized VB basis, a projection operator for a given sygitnyrrepresentation is employed
to project the symmetrized linear combinations by actingeaoh of the VB states in the in-
variant space. While the number of linearly independentraginy combinations of a given
representation is knowa priori, the actual linear combinations are obtained by carrying ou
Gram-Schmidt orthonormalization of the projected statdswever, since the VB diagrams
are not orthogonal the orthonormalization process is bothputationally involved and time
consuming.

Furthermore, in case of molecular magnets containing ntagioas with spin greater than
half, the exchange operator between such high-spin cealsvsgenerates “illegal” VB dia-
grams as it involves non-nearest neighbor exchange int@nadoetween constituent elemen-
tary spins([14]. To illustrate, exchange between a centerithA 8ay spin one and a center B
with spin 3/2,S4 - Sg, is expressed aSa, +Sa,) - (Se; + S8, +S8;). These exchange terms op-
erate on a VB diagram with constituent elementary spins kvare non-nearest neighbors and
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Figure 2: The effect of operation by th% Gymmetry operator about the (1,8) axis. Top left
shows the initial and final VB diagrams with spin couplingsAmen vertices of the cube shown
as dark lines. Bottom left shows the same states as spiningagdetween vertices of a reg-
ular octagon. The resultant is an “illegal” diagram. Decosipg the resultant to “legal” VB
diagrams yields a sum of five VB diagrams shown on the rightt) wpin couplings between
vertices on a cube.

in general generate “illegal” VB diagrams as per the VB rul@scomposition of the resultant
“illegal” VB diagrams to “legal” VB diagrams could presensarious bottle-neck in comput-
ing the Hamiltonian matrix elements. In view of these diffi@s, a fully symmetrized VB
approach to solving Heisenberg exchange Hamiltonianquaatily in the context of molecular
magnets is not feasible.

3 Hybrid method based on VB Basisand Constant M s Basis

In the constanMs basis, a basis state of an ensemble of sgins,- -, s\, IS represented by
a direct product of thens states of each spin such that the tdtkl = > m;. The basis states
in the constanMsg representation are orthonormal by construction. Givendéfenition of a
line in the VB diagram, every VB diagram can be broken up intme@ar combination of the
constantMg basis states. A VB diagram with singlet lines give rise toRbasis states in the
constantMg basis. To effect the conversion of VB diagrams to conskdgtunctions, each
singlet line gives two states; in one state, the site at whisinglet line begins is replaced by
ana spin and the one at which it ends b apin with phase +1 and in the other the spins are
reversed and the associated phase is -1. Once the VB diagraneenverted to constahts
basis states with constituent spins, it is possible to aswoam value with a composite spin,
given bym = (nj; —nj|)/2, wheren;; is the number of up-spin halves and is the number
of down-spin halves at the site i. However, there is a noma#bn constant yywhich follows
from Clebsch-Gordan coefficients, given by,

- (25)! 2
" s m)is —my! ©)
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for a site with spin sin statem; [29]. We can assume without loss of generality that\hgralue

of the VB diagram is als& Computationally, finding the transformation of a statehia VB
basis to constan¥lg basis is straightforward. We initialize the coefficientdhe constanMs
basis to zero. We then decompose, sequentially, each VBaaiegto constaniis states and
update the coefficient of the basis state of corresponidigy adding to it the VB coefficient
times the product of Clebsch-Gordan factors with appropéeases. The matrix relating the
VB basis states to consta¥is basis state<, is aV x M matrix, whereV is the dimensionality
of the VB space ani¥ that of the constaritls space.

The construction of the projection operator for projecitighe states of a given symmetry
representation in a given spin space can now be accomplisiiedonstruct the matrix repre-
sentation of a symmetry operat®, of the point group in the chosen spin space by operating
with R on each state in the constavig basis and searching for the resulting state in the list of
Ms basis states. Each basis state in this representatiorrisccaver to another basis state by a
symmetry operation of the point group. Thus, the ma®jixthough arM x M matrix contains
only one nonzero element in each row; this makes manipulatath this matrix computa-
tionally fast. The knowledge of thé and theRy, matrices give the effect of operating by the
symmetry operatoR on a VB state as a linear combination of the conskagbasis states via
the matrixBR=CRy. The projection operator for projecting out the basis stateto a chosen
irreducible representation of the point grdujs given by,

A=Y xr' (RIR (6)

R

Where,)(irrr (IQ) is the character under the symmetry operafom the character table of the
point group of the system [31]. The matrix representatioRoin the mixed VB and constant
Ms basis is given by,

Qr = gx‘r” (R)Br (7)

where,Qr is aV x M matrix. However, the rows of the matr@Qr are not linearly indepen-
dent, since the symmetrized basis spans a much smaller siiomahHilbert space. The exact
dimension of the Hilbert space spanned by the system inttb@vicible representatidncan be
knowna priori. The dimension of the spa€e Vr, is given by,

A A

Vi = (dr/h) Y X(RIXI (R) ®)

R

wheredr is the dimensionality of the irreducible representafioi is the number of elements
in the point group ang(R) is the reducible character for the operatinTheV x M projection
matrix, Pr of rankV is obtained by Gram-Schmidt orthonormalization of the roithe matrix
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Qr until Vr orthonormal rows are obtained. Th&georthonormal rows represent the projection
matrix Pr. TheM x M Hamiltonian matrixHy is constructed in the constaMis basis which

is described elsewhere [30]. Since the basis states ingpresentation are orthonormal, we
do not encounter the problem of “illegal” states as with thH& Mpresentation. Ther x Vr
Hamiltonian matrix in the fully symmetrized basis is given®r-Hy (Pr)T and one could use
any of the well known full diagonalization routines to olstahe full eigenspectrum or use
Davidson algorithm to get a few low-lying states of the syrnnmed block Hamiltonian in the
chosen spin and symmetry subspace.

The above procedure does not lead to the smallest block dfi@ingltonian matrix, when
the irreducible representation for the block is degenemsieh as the E, T or H representa-
tions. In such cases, it is advantageous to work with basggrdmsform according to one of
the components of the irreducible representation. Thisheaachieved by choosing an axis of
guantization and projecting out bases states of the iributepresentation which are diag-
onal about a rotation about the quantization axes. For ebanmpthe case of the irreducible
representation that transforms as T, we can choose one @stl@es as a quantization axis
and project the basis states of the irreducible representasing (I+@+Cgl) as the projection
operator. This operator projects states that transformeaér‘l{ component of the three fold de-
generate irreducible tensor operator. Similarly, for thefresentation, we could use any of the
C, axis as a quantization axis and use the projection opeﬂat@%Xto project out basis states
that transform as one of its components. This is equivateptdjecting out the states which
transform as a given row of the irreducible representatibe;latter are not listed in standard
group theoretical character tables.

Computation of static properties such as spin densitiesspimdspin correlation functions
in the eigenstates of the Hamiltonian is rendered simplealtiee orthogonality of the constant
Ms basis. The site spin operators such as the z-component spthare diagonal in this basis,
while other operators such as the raising and lowering égex;athough not diagonal in this
basis, have a very simple matrix representation. In comgwarious properties, the procedure
we follow is to express the eigenstates in the unsymmetadnedtanMs basis and to compute
the desired properties using this representation.

The additional steps involved in the hybrid VB-Constarg idethod are (i) constructing the
C matrix, whose " row contains the coefficients of the constang fdnctions appearing in the
it VB basis function. This is a very fast step as the constanstdtes are an ordered sequence
of integers and a VB state with lines is a linear combination of'2Zonstant M functions.
(ii) In the hybrid approach, computation of tl@& matrix involves the matrix multiplication,
C(3rXE (R)Rm) = CR},. The number of arithmetic operations involved is howevey genall,
since bothC andR}, are sparse matrices. In both constanrg&hd hybrid approaches one has
to obtain the projection operat®¥ by retaining only the orthogonal rows of the matRy; or
Qr respectively. Since the number of orthogonal rowQinis far fewer than irR},, this step
is faster in the hybrid approach than in the constdgtapproach by a factor Dg)/D(I" ),
where D(g) is the dimensionality of the space of the irreducible reprgation” with spin
S and D(vg) is similarly the dimension of the spa€ewith constant M. This advantage is
largely off-set by the fact that thig), matrix in constanMs basis is more sparse than Qe



Figure 3: Schematic dfusFeg cluster. Filled and open circles correspond to Fe and Cuh(bot
spin-1/2) sites respectively. Lines represent the exobhangpling between various spin sites.

matrix in the hybrid approach.Computation of the eigensalin the constaritls approach is
slower than in the hybrid approach, sincdpf)>D("s) for most S. This advantage may be
partially off-set because the Hamiltonian matrix in the tglapproach is usually more dense.
The memory required for the hybrid approach is not very diffet from that of constanls
approach since the matrices though smaller in the hybridoagp, are slightly denser. The
only additional array required in the hybrid approach issterage ofC matrix, which is very
sparse. The major advantage of the hybrid approach is theawebtain a far richer spectrum,
since we are targeting each spin sector separately, umikeei constanMg approach. Thus,
if we can obtain, say 10 states in each S sector of thegdn-1/2 problem, we would have
10(n+ 1) unique states compared to the constptechnique where many of these spin states
would be repeated in differeMg sectors.

4 Application to CugFeg

We have applied the above method to model the susceptibéitavior of the moleculdT p)s
(H20)6C U FeJ! (CN)24] (ClO4)4 - 12H,0 - 2Et,0 [27], where Tp stands for hydrotris (pyra-
zolyl) borate (Fig. 3). In this molecule tf@u' ions as well as th&€'!" are in spin-1/2 state.
The eightFe'! ions are at cube corners and the@i¥' ions are on the outward perpendicular
to the face centers of the cube. Ed@tl' ion is connected to the four nearé=t!' ions via
ferromagnetic exchange interactions. There are no Fe-Beal<€u interactions. The molecule
has a spin 7 ground state. This system has a very high symofdtrg cube and incorporates
all the complexities that can be encountered in the appicatf our technique. From the sus-
ceptibility data, the strength of the exchange interacfipwas estimated to be 30 ch[27].
Because of the high symmetry of this system, we chose this @&ample for applying our



Table 1: Dimensionalities of the total spin spaces of a sysi€14 spin-1/2 objectsD(S) is
the dimensionality of the constant S basis &dlls) is the dimensionality of the constalits
basis.

SMs || 0 | 1 | 2 | 3 | 4 5]6]7
D(S) || 429 | 1001 1001| 637 | 273| 77| 13
D(Ms) || 3432] 3003 | 2002| 1001|364 | 91| 14 | 1

=

Table 2: Dimensionalities of various subspaces ofatigFel' cluster for irreducible represen-
tation[l".

Ay | 13 15| 19| 8 | 5| 0
E; | 34| 90 | 90 | 60 | 26] 10
Tig | 78 | 165|171] 99 |39 6
Tog | 66 | 216| 186 | 138| 54 | 21

Ay 17 | 20 | 27 | 15 | 10| 2
= 36 | 78 | 84 | 48 | 20| 6
Ty 105|180| 219| 123 | 66 | 15
Toy 69 | 186| 168 | 111| 42| 12

O OO O WOoOIN O FIo
OO0 OO0 o000k

technique. The dimensions of the various subspaces ane igiviable 1.

Using the hybrid VB-constan¥ls method, we have broken down the space in each total
spin sector into basis states that transform as differeedurcible representations of the cubic
point group. The dimensionalities of the various subspaceshown in Table 2. The subspaces
transforming as the E representations are broken down iitspsces of half their dimension
by quantizing the system along a @xis. Similarly, the subspaces transforming as the T repre-
sentations are broken down into one third their dimensiofigble 2, by using a £2axis as the
axis of quantization.

We have set up the Hamiltonian matrix in each of the subspaugsbtained all the eigen-
values. We have also used a constdgtbasis and using the full cubic symmetry, factored the
space into various irreducible representations and ofdaal the eigenvalues in each subspace.
From the eigenvectors, we have computed the total spin cftdte. We find a one to one cor-
respondence to numerical accuracy, between the two setdafiations. We have also fitted
thexT vs. T experimental plot by using the full spectrum of the ldalserg Hamiltonian and
computing [28]
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Figure 4: Fit of thexT vs. T plot for theCull Felj! cluster. The best fit parameters are, J = 27.2
cm1 (ferromagnetic)zJ = -0.008cnt?! (antiferromagnetic), D = -0.15cnd and g = 2.1.

3 g’F(J,T)
XT=3 1—zJF(J,T)/keT ©)

where, we have taken the g factor to be 2.1, the ferromagerticange constant J to be 27.2
cmL. Here,xT is in units ofNpg. The function F(J,T) is given by,

_ YsTmsMEexi—Eo(S Ms) /keT]
" S S e -Eo(S Mo ] 0

with Eq(S Ms) being the eigenvalue of the sum of exchange Hamiltonian hadrtagnetic
anisotropy ternDS% andzJ is the intermolecular exchange interaction. Here we haserasd
that the molecular anisotropy is along the global z-axid,this term is treated as a perturbation
to the exchange Hamiltonian in Eq. 1. In Fig. 4, we show theffihe experimental data to the
model.
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5 Summary and Outlook

The problem of exploiting total spin invariance togethethvéipatial symmetries, especially of
non-Abelian point groups has been a long standing one. Vlilspin symmetry adaptation
can be achieved by various techniques such as the use of fagionugroups, unitary groups
and the VB method, the last mentioned is the easiest andd@®asy chemical visualiza-
tion of the basis states. The main objection to the VB teamnijad been that the basis is
nonorthogonal and leads to nonsymmetric representatitmedfiamiltonian matrix. However,
with the modification of the Davidsam algorithm [32] to nonsymmetric matrices by Rettrup
[33], this objection has ceased to be important. The eagewhich VB states with any given
total spin can be generated from objects with assorted isha# spins, is an advantage which
far outweighs the other historical objections to the VB noeth

However, even the VB basis suffers from the serious disadgariike all other spin adapted
methods, when the question of full spatial symmetry adaptatomes up. The constakts
basis methods do not suffer from this disadvantage. In #ygep we have demonstrated, how
by combining the ease of spin symmetry adaptation of the VBhatkwith the spatial symmetry
exploitation of the constas methods, we can devise a scheme which is fully spin and $patia
symmetry adapted. This has been possible because of thefeasesformation of the VB basis
to the constanis basis. We have demonstrated the power of the method by agptyio the
exchange Hamiltonian of the molecular magnegfy which has cubic symmetry. We note
that the hybrid VB-constarls method also allows easy manipulation of the eigenstatdseof t
Hamiltonian for computing properties. The method describere can easily be extended to
fermionic systems and should provide a significant improseinfor obtaining exact eigenstates
of spin conserving model Hamiltonians.
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