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Overexpression of drug extrusion pumps belonging to 
the ABC (ATP-binding cassette) super family of pro-
teins is one of the most common mechanisms of multi-
drug resistance in various organisms. Both pathogenic 
and non-pathogenic yeast cells also become resistant 
to a variety of drugs by overexpressing genes encod-
ing ABC drug efflux pumps. Recent evidences reveal 
that not only the well-characterized human drug  
extrusion pump (MDR1/P-gp), but its close homo-
logues in yeast also mediate several cellular functions. 
Keeping in view the importance of ABC drug trans-
porters in yeasts, this review particularly focuses on 
their physiological roles. 

THE rapidly growing ATP-Binding Cassette (ABC) super-
family, also known as ‘traffic ATPases’, comprises an 
extremely diverse class of membrane-transport proteins1–5. 
These proteins, which were discovered almost two dec-
ades ago in bacteria as high-affinity nutrient transporters, 
shot to prominence when their ability to confer multidrug 
resistance (MDR) in cancer cells was realized6. Among 
several mechanisms that seem to contribute to the MDR 
phenomenon, overexpression of drug extrusion pumps 
belonging to the ABC superfamily is the most frequent 
cause of resistance to antifungals, herbicides, anticancer 
and cytotoxic drugs. To date, the most documented and 
well-characterized ABC drug extrusion pump has been 
the P-glycoprotein (human MDR1/P-gp) of tumour cells6. 
The presence of proteins homologous to human MDR1/ 
P-gp in all organisms, ranging from the prokaryotes to 
eukaryotes, including yeasts and plants, portrays drug 
extrusion as a general mechanism of MDR. 
 ABC proteins can transport a variety of structurally 
diverse hydrophobic substrates2. The functional diversity 
of the ABC proteins is also reflected in their ever-
emerging physiological roles in nutrient, peptide, lipid 
and cholesterol transport, the biosynthesis of molecules 
like heme, cell development in plants, apoptosis, and 
translational regulation7–13. Interestingly, human diseases 
such as cystic fibrosis, adrenoleukodystrophy, Dubin–
Johnson syndrome, Tangier disease are associated with 
mutations in human genes encoding ABC transporters, 
which again reflects their relevance in cellular physio-
logy14,15. In view of the above, a general question pertaining 

to the physiological importance of ABC drug-transporter 
proteins always comes up. It is expected that such a large 
family of transporters cannot be dedicated merely to drug 
efflux. This view is supported by the fact that very close 
homologues of the ABC proteins are not drug extrusion 
pumps, and mediate dedicated physiological functions. 
Studies dealing with physiological signals that control 
the expression of the drug extrusion pumps have also 
provided new insights not only into the complexities of 
regulatory circuits but also into the requirement of these 
pumps in normal cell functioning16. 
 When challenged with antifungals and other drugs, 
both pathogenic and non-pathogenic yeasts have the capa-
city to overcome their inhibitory action through specific 
resistance mechanisms17–23. One of the most prominent 
resistance mechanisms includes overexpression of genes 
encoding drug extrusion pumps belonging to the ABC 
superfamily. In view of the limited scope of the article, 
we have not attempted to discuss the physiological func-
tions mediated by all the ABC proteins of yeasts; rather 
we have focused on the cellular functions of only the drug 
extrusion pumps of this superfamily. How these pumps 
are involved in conferring multidrug resistance in yeasts 
is a widely reviewed subject and hence this aspect has 
not been discussed in this article18–23. 

Drug transporters of the ABC superfamily  
of yeasts 

Yeast ABC transporters, like their mammalian homo-
logues, possess specific domains for membrane association 
and ATP-binding and hydrolysis. A typical yeast ABC 
protein comprises of two homologous halves, each made 
up of a hydrophilic, cytoplasmic, nucleotide-binding domain 
(NBD) and a hydrophobic domain represented by six 
transmembrane stretches (TMS). In addition, the NBD 
consists of one Walker A, Walker B and a signature or C-
motif. The completion of the Saccharomyces cerevisiae 
genome-sequence project led to the identification of 30 
putative ABC proteins which are divided into six clus-
ters, viz. the PDR, MDR, MRP/CFTR, RL1, YEF3 and 
ALDP subfamilies14,24,25. The PDR subfamily is the larg-
est among these clusters and most of the drug transport-
ers of S. cerevisiae belong to this subfamily of ABC 
proteins (discussed below). Table 1 lists only those ABC  *For correspondence. (e-mail: rp47@hotmail.com) 
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Table 1. ABC transporters of yeast 
      
      
Organism Gene name     Subfamilya Sizeb Function         Topologyc 
      
      

PDR5 PDR 1511 Drug efflux pump, phospholipid trans- 
locator41,86,106 

Saccharomyces  
 cerevisiaed 

PDR10 PDR 1564 Drug efflux pump107 
 PDR12 PDR 1511 Resistance to water-soluble, monocarboxylic 

acids with chain lengths from C-1 to C-7  
(ref. 59) 

 PDR15 PDR 1529 Potential drug transporter24,108 
 PDR11 PDR 1411 Sterol transporter in anaerobic yeast75 
 SNQ2 PDR 1501 Drug efflux pump47 

 

  
YCF1 

 
MRP/CFTR 

 
1515 

 
Cd2+ and glutathione-S conjugate pump48 

 YOR1/YRS1 MRP/CFTR 1477 Oligomycin and multidrug resistance, phospho-
lipid translocator46,86,109 

 STE6 MDR 1290 a-factor export31 
 BAT1  1559 Bile acid transporter110 

 

      
 ATM1 MDR 690 Mitochondrial DNA maintenance, essential  

protein111 
 

 MDL1 MDR 695 Peptide transporter112 
 MDL2/SSH1 MDR 812 Peptide transporter112 
 PXA1/SSH2/PAL1 ALDP 870 β-oxidation of fatty acids113 
 PXA2/PAT1 ALDP 853 Interaction with PXA1, small-molecule  

transport113 

 

 
Schizosaccharo- 
 myces pombe  
 
 
 

 
BFR1/HBA2 

 
PDR 

 
1530 

 
Brefeldin A transport114 

 

 Mam1 MDR 1336 M-factor transport115 
 pmd1 MDR 1362 Drug efflux pump116 
 Abc1 PDR 1427 Unknown117 

 

 

 

 Hmt1 ALDP 830 Vacuolar transporter of phytochelatins  
(the metal chelating peptide)118 
 

 

CaCDR1 PDR 1501 Drug efflux pump, phospholipid trans- 
locator52,84,85 

Candida  
 albicans 

CaCDR2 PDR 1499 Drug efflux pump, phospholipid trans-
locator52,84,85 

 CaCDR3 PDR 1501 Opaque-phase specific, phospholipid 
translocator29,85 

 CaCDR4 PDR 1490 Phospholipid translocator?30,56 
 

 

 HST6 MDR 1323 Transport of a-factor, drugs?93 
 

     

 

 CaYOR1 MRP/CFTR ND Drug efflux pump?119 
 CaCDR5 PDR – Drug efflux pump?44 
 CaYCF1 MRP/CFTR 1606 Drug efflux pump?120 

 

 
nd 

CgCDR1 PDR 1499 Drug efflux pump121 Candida  
 glabrata PDH1 PDR 1542 Drug efflux pump122 

 

 

 CgCDR2 PDR – Drug efflux pump121,123 

 
nd 

Candida  
 dubliniensis 

CdCDR1 
CdCDR2 

PDR 
PDR 
 

– 
– 

Drug efflux pump?124 
 

nd 

Candida krusei ABC1 PDR – Drug efflux pump?125 
 ABC2 PDR – Drug efflux pump?125 

nd 
            
aNames of subfamilies based on sequence similarity with the subfamilies characterized in S. cerevisiae. 
bNumber of amino acid residues. 
cTopology of proteins is shown schematically. Spheres depict the nucleotide binding domains while the grey curves depict the transmembrane seg-
ments. 
dFor  S. cerevisiae and C. albicans only those genes are listed that have been identified with a function. 
nd, Topology not determined or predicted. 
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transporters of yeasts that have been assigned functions 
with their predicted topology. 

Among various pathogenic fungi, most of the MDR-
related studies have predominantly been focused on Can-
dida and particularly C. albicans, as it accounts for a  
majority of systemic infections in immunocompromised 
patients. It is the most common form of fungemia in 
Western hospitals and more than 80% of the HIV-infected 
population develops oropharyngeal and clinical thrush26. 
Infections caused by non-albicans species, such as C. 
glabrata, C. parapsilosis, C. tropicalis and C. krusei have 
also been increasing, especially in neutropenic patients 
and neonates22,27. A large number of drug transporters of 
the ABC superfamily, viz. the CDRs (Candida Drug Resis-
tance), have already been identified in C. albicans as well 
as in other non-albicans species (Table 1). 
 

Physiological role of the drug extrusion pumps 

While the role of ABC transporters in expelling xenobio-
tics from the cells is highly conserved, there is ample 
evidence to suggest that such a large family of proteins 
performs many other physiological functions. Several 
studies have demonstrated that not only the human MDR1/ 
P-gp, but also the yeast ABC drug transporters can mediate 
a variety of cellular functions (Figure 1)13,28. The obvious 
question emerges as to how these ABC proteins, in spite 
of bearing close sequence similarity, are able to mediate 
diverse physiological functions. Of note is the fact that 
all the homologous ABC transporters are not drug trans-
porters. For example, Ste6p of S. cerevisiae and Cdr3p 
and Cdr4p of C. albicans are similar to yeast drug-
transporters proteins like Cdr1p, Cdr2p, Pdr5p and human 

MDR1/P-gp, but are incapable of extruding drugs29–32 
(Table 1). Therefore, there is a concerted effort to iden-
tify the molecular determinants within these proteins, 
which permit this diversity in function. Studies involving 
human MDR1/P-gp have already identified protein seg-
ments and amino acid residues implicated in drug bind-
ing, drug transport and ATP hydrolysis33,34. 
 In comparison, studies pertaining to the identification 
of the molecular determinants of yeast ABC drug trans-
porters have only been initiated recently. These studies 
have already revealed the importance of some of the amino 
acid residues, and stretches of yeast ABC drug transporters 
are crucial in protein folding, membrane localization and 
in drug transport. In a study employing Cdr1p, the ABC 
drug extrusion pump of C. albicans, it has been shown 
that the deletion of a 79 amino acid stretch from the C-
terminal, which encompasses the transmembrane segment 
12 (TMS 12) of this transporter, did not result in the total 
loss of its ability to efflux cytotoxic agents35. The expres-
sion of this truncated CDR1 (∆Cdr1p) in S. cerevisiae 
resulted in impaired sensitivity to selected drugs like 
cycloheximide, anisomycin, sulphomethuron methyl and 
nystatin, while its ability to confer resistance to drugs 
like o-phenanthroline, 4-nitroquinoline-N-oxide, cerulenin, 
azoles, oligomycin, erythromycin, chloramphenicol and 
benomyl remained unaltered. Of note is the finding that 
the TMS 12 deletion neither led to any significant impair-
ment in NTPase (ATPase and UTPase) activities nor in 
its ability to efflux rhodamine123 and β -estradiol. The 
deletion of TMS 12 also did not affect the targetting of 
∆Cdr1p to the plasma membrane, when overexpressed in 
baculovirus–insect cell expression system35. In order to 
identify the important residues and domains in the S. cer-
evisiae Pdr5p, the entire PDR5 gene was subjected to 
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Figure 1. Multifunctional roles attributed to ABC drug transporters in yeast. The other ABC transporters, which are not involved in MDR such as 
CDR3, CDR4, STE6 and HST6 (marked with *) are also included to highlight a particular function42,46–48,52,68–70,85,93,94,104. 
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random in vitro mutagenesis and screened for mutants, 
which conferred altered drug resistance36. The sequencing 
of selected mutants revealed that mutations were pre-
dominantly found to be localized in each nucleotide-
binding domain, the transmembrane (TMS) domain 10, 
and, even in the predicted extracellular hydrophilic loops 
(Table 2)36,37. Interestingly, some point mutations also 
affected folding of Pdr5p, suggesting that a proper fold-
ing of this protein is a major determinant of substrate 
specificity. 
 While random screening for MDR inhibitors represents 
the most common approach to look for effective drugs, a 
clear understanding of the structure and function of ABC 
proteins involved in drug resistance represents another 
approach which could lead to rational designing of inhi-
bitors to block the drug-efflux-pump proteins38. To date, 
most of our knowledge of ABC protein structure comes 
from the secondary structure predictions based upon the 
primary protein sequences. Hence, there is a great need 
for a biochemically, biophysically and genetically tested 

3D structure of these proteins. In this regard it is perti-
nent to mention that an initial structure of purified deter-
gent-solubilized and liposome-reconstituted human MDR1/ 
P-gp has been determined to 2.5 nm resolution by ele-
ctron microscopy and single-particle image analysis39. 
This structural model confirmed the existence of cyto-
plasmic NBDs and twelve TMS. These studies predicted 
the presence of a large aqueous pore at the extracellular 
face of the membrane as well as the existence of a pore 
opening to the lipid phase. The presence of a large pore is 
suggested to be consistent with the broad substrate speci-
ficity of this pump. Recently, the determination of a high-
resolution crystal structure of MsbA (lipid A transporter 
of Escherichia coli), which is closely related to mammalian 
P-gps, further confirms the general architecture of the 
MDR–ABC transporters40. These crystal structures are 
beginning to confirm the biochemical data obtained earlier 
with these proteins. Such structural data of yeast ABC 
drug transporters, particularly of pathogenic yeasts, would 
certainly set the stage for studies related to the mechanistic 

Table 2. Phenotypic analyses of PDR5p mutantsa  

        
        
 
Mutant 

Amino acid 
substitutionb 

 
Domain     

Subcellular 
localization 

Drug resistance  
profile 

Rhodamine  
6G efflux 

Steroid  
transport 

 
FK506  

                
Pdr5-14 C199Y 

A676V 
T1460I 
V1467I 

NBD1, Walker A 
TMD5 
Extracellular loop 6 
Extracellular loop 6 

Plasma  
membrane 

Reduced resistance to 
cycloheximide, itracona-
zole and ketoconazol than 
wild type Pdr5p. 

Reduced  
efflux than 
wild type 
Pdr5p. 

Severely reduced  
transport of 
dexamethasone 
and estradiol than 
wild type Pdr5p. 
 

Sensitive 

PDR5-26 G557D 
A1398T 
P1421S 
C1427Y 

Extracellular loop 1 
TMD 11 
Extracellular loop 6 
Extracellular loop 6 

Endoplasmic 
reticulum 

Sensitive to cycloheximide, 
itraconazole and ketocona-
zol in comparison to wild 
type Pdr5p. 
 

No efflux Not determined Sensitive 

PDR5-46 V149M 
 
G905S 
G908S 

N-terminal cytoplasmic 
domain 
NBD2, Walker A 
NBD2, Walker A 

Plasma  
membrane 

Sensitive to cycloheximide, 
itraconazole and ketocona-
zol in comparison to wild 
type Pdr5p.  
 

No efflux Does not transport 
either estradiol or 
dexamethasone. 

Sensitive 

PDR5-57 G138D 
 
G1009C 
 

N-terminal cytoplasmic 
domain 
NBD2, C-motif 

Plasma  
membrane 

More sensitive to cyclo-
heximide than the wild type 
Pdr5p. Resistance to 
itraconazole and 
ketoconazole similar to 
wild type Pdr5p.  

Reduced  
efflux than 
wild type 
Pdr5p.  

Not determined Sensitive 

PDR5-71 G302D NBD1, C-motif Plasma  
membrane 

More sensitive to cyclo-
heximide than wild type 
Pdr5p. Resistance to itra-
conazole and ketoconazole 
similar to wild type Pdr5p. 

No efflux Transports both 
dexamethasone 
and estradiol but 
at a lower level 
than wild type 
Pdr5p. 
 

Sensitive 

PDR5-127 S140N 
 
V150L 
 
T360I 
 
V782I 
V783I 
S1360F 

N-terminal cytoplasmic 
domain 
N-terminal cytoplasmic 
domain 
N-terminal cytoplasmic 
domain 
TMD 6 
TMD 6 
TMD 10 

Plasma  
membrane 

More sensitive to cyclo-
heximide and itraconazole 
than wild type Pdr5p.  
Resistance to ketoconazole 
similar to wild type Pdr5p. 

Reduced  
efflux than 
wild type 
Pdr5p.  

Does not transport 
dexamethasone. 
Transports estra-
diol, but at a 
lower level the 
wild type Pdr5p. 

Resistant 

        
        
aCompiled from ref. 36. 
bAmino acid substitution(s) responsible for the phenotype is marked in bold. 
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aspects of these proteins. The following sections examine 
the physiological functions mediated by yeast ABC drug 
transporters. 
 

Protection against natural toxins/metabolites 

PDR5/STS1/LEM1 (Pleiotropic Drug Resistance, Spori-
desmin Toxicity Suppressor, Ligand Effect Modulator), 
the well-characterized drug transporter of S. cerevisiae, 
was identified on the basis that it could confer resistance 
to a number of unrelated drugs when overexpressed41–43. 
Thereafter, several yeast ABC transporters were charac-
terized whose overexpression led to resistance to one or 
more drugs. However, the drug resistance phenotype in S. 
cerevisiae is not always the result of overexpression of a 
single gene, but is rather a consequence of the up-
regulation of numerous other genes that encode ABC drug 
extrusion pumps44. For example, there are SNQ2 (Sensi-
tivity to 4-Nitroquinoline N-oxide), YOR1 (Yeast Oligo-
mycin Resistance) and YCF1 (Yeast Cadmium Factor) 
whose overexpression is known to result in resistance to 
specific compounds45–48. While SNQ2 is a close homo-
logue of PDR5 (40% amino acid identity to PDR5), 
YOR1 and YCF1 are similar to their human homologue 
MRP1 and MDR1/P-gp. Unlike Pdr5p and Snq2p that are 
localized in the plasma membrane, Ycf1p is localized in 
the vacuolar membrane and is capable of expelling drugs 
only as glutathione conjugates49. The homology of Ycf1p 
to human CFTR has fuelled studies on its role as a drug 
transporter48,50. A comprehensive study on the toxicity  
of 349 compounds on the pdr5, snq2 and yor1 deleted 
strains demonstrated that these drug transporters have a 
substrate profile that is overlapping to a large extent and 
yet different and specific51. 
 C. albicans and other pathogenic yeasts have also re-
cruited a battery of genes to render common antifungals 
ineffective. CDR1, the ABC transporter of C. albicans 
and a homologue of PDR5 of S. cerevisiae, expels a vari-
ety of drugs, including antifungals like azoles52. A search 
for other homologues of CDR1 in C. albicans has led to 
the identification of CDR2, CDR3 and CDR4, of which 
only CDR2 – which is 84% identical to CDR1 – is found 
to be involved in antifungal resistance29,30,53. The deletion 
of CDR2 alone did not render C. albicans cells (CAF4-2) 
hypersensitive to tested drugs; however, its deletion in a 
mutant background where CDR1 was deleted elicited 
hypersensitivity to many antifungals. The lack of hyper-
sensitivity of the single ∆cdr2 mutant to drugs was attri-
buted to the absence of its mRNA in azole-susceptible 
isolates53. The azole-resistant clinical isolates of C. albi-
cans, isolated from AIDS patients show among other genes 
(ERG11 and CaMDR1), an overexpression of the mRNA 
encoding the ABC drug extrusion pumps CDR1 and CDR2 
(refs 54 and 55), thus confirming their role in antifungal 
resistance. In contrast, CDR3 is a phase-specific gene29, 

which is upregulated in the opaque phase, while CDR4 is 
a putative phospholipid translocator56. In addition to the 
above genes, partial sequences of fourteen new genes 
bearing homology to the NBDs of human MDR1 have 
been identified in C. albicans57. These new sequences 
show no significant homology to known CDRs, but none-
theless some of them could have an effect on drug sus-
ceptibilities of C. albicans. 
 Several properties of ABC drug transporters, particu-
larly their wider specificity and occurrence do point to 
their role in the protection of cells against cytotoxic 
agents. A physiological role for human MDR1/P-gp in 
effluxing compounds has been confirmed on the basis  
of its expression on the apical membranes of gut epithe-
lia, liver cells, kidney tubules and at the blood–tissue 
barrier28. The pattern of MDR1/P-gp expression in tissues 
and studies on MDR1/P-gp knockout mice indicate that it 
may protect the organism from toxic compounds in our 
diet. The ability of ABC drug transporters of yeast to 
extrude unrelated drugs should be seen as part of their 
ability to expel the cytotoxic agents. Interestingly, the exp-
ression of PDR5 and CDR1 is growth-phase-dependent, 
being highest in the stationary growth phase and possibly 
linked to their role in effluxing intracellular cytotoxic 
metabolites accumulating during growth45,54,55,58. Dicot-
tignies et al.45 observed that the disruption of both PDR5 
and SNQ2 genes in S. cerevisiae cells reduced the expo-
nential cell growth rate, suggesting that the presence of 
either PDR5 or SNQ2 is important for cell growth. These 
transporters may expel intracellular toxic products accu-
mulated during cell growth. 
 In spite of the fact that ABC transporter Pdr12p of S. 
cerevisiae shares a > 37% identity with PDR5 and SNQ2, 
it neither confers resistance to NQO, a substrate specific 
for SNQ2 nor to cycloheximide, a substrate specific to 
PDR5 (ref. 59). Pdr12p confers resistance to weak organic 
acids like sorbate, benzoate, acetate and propionate that 
are used as food preservatives. Weak acids induce the exp-
ression of Pdr12p and as a result, it becomes one of the 
most abundant membrane proteins in acid-adapted cells. 
Interestingly, wild-type S. cerevisiae cells, if cultured at 
low pH (4.5) in the absence of weak acids, do not display 
active efflux of fluorescein (a flourescent substrate used 
to monitor Pdr12p-mediated efflux)60. Thus, it appears 
that Pdr12p is not an active transporter in the absence of 
weak acid stress. Further, experiments have shown that 
Pdr12p activity may be negatively regulated by the Cmk1p 
Ca2+/calmodulin-dependent protein kinase61. Interestingly, 
the activity of Pdr12p homologues in Klyveromyces lactis 
is regulated by a Sit4p phosphatase, suggesting that acti-
vities of certain ABC pumps are subject to post-translation 
modification cycles62. That ABC transporters may be 
subjected to post-translation modification was further 
demonstrated in a recent study, where it is shown that the 
drug transporters of C. glabrata, Cdr1p and Pdh1p, are 
phosphorylated in a glucose-dependent manner63. Taken 
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together, it appears that the physiological function of PDR12 
is to protect cells against potential toxicity of weak orga-
nic acids secreted by competitor organisms (that share the 
same niche with yeasts), wherein it extrudes acid anions 
and releases them into aqueous phase of periplasm. Such 
energy-dependent efflux may be able to lower the intra-
cellular level of weak acids. The involvement of an active 
extrusion pump for weak acids also indicates why some 
species of yeast are capable of causing food spoilage in 
spite of the addition of weak organic acids as food pre-
servatives64. 

Sterol transport and homeostasis 

Earlier studies showed that human MDR1/P-gp when 
overexpressed could export dexamethasone, corticosterone 
and aldosterone65. The relative abundance of human MDR1/ 
P-gp in the mouse pregnant uterus and adrenal glands 
favours their role in steroid hormone secretion66. Taken 
together, this led to the question if the yeast ABC drug 
transporters could also extrude steroids. Subsequent stud-
ies indeed confirmed that yeast drug transporters could 
expel human steroid hormones. While investigating for 
interactive non-receptor proteins that could potentiate the 
human glucocorticoid receptor (GR) and ligand inter-
action in yeast, a ligand effect modulator (LEM1) protein 
was identified. Further, analysis of LEM1 showed that it 
was an interactive non-receptor protein identical to pre-
viously characterized PDR5 (refs 43 and 67). Two studies 
later demonstrated that steroids indeed were the sub-
strates for Pdr5p and Snq2p (refs 68 and 69). 
 Cdr1p can also specifically transport human steroid 
hormones, namely β -estradiol and corticosterone70. The 
CDR1-mediated steroid transport activity was demon-
strated by using a pdr5 null mutant strain of S. cerevisiae. 
This S. cerevisiae transformant harbouring the CDR1 gene, 
accumulated less (two-to-three-fold) β-estradiol and cortico-
sterone than the non-transformed counterpart70. Further-
more, another steroid hormone, progesterone that also 
induces the overexpression of CDR1, was not transported 
and also did not affect the accumulation of either β -
estradiol or corticosterone54. Interestingly, progesterone 
is also not a substrate of human MDR1/P-gp transporter, 
although it can bind to it65. This shows the functional 
conservation in terms of substrate specificity between the 
drug extrusion pumps. 
 In a recent study it was shown that PDR5-mediated 
fluconazole resistance could be altered due to mutations 
that affect sterol homeostasis. Pdr1-100, a gain of func-
tion allele of the transcription regulator, PDR1 is known 
to upregulate PDR5, thus leading to high level of drug 
resistance71. In this study erg3 single mutation, which is 
defective in converting toxic episterol to ergosta-5,7,24 
(28)-tetraenol, was found to be resistant to fluconazole. 
Interestingly, the resistance to fluconazole decreased in a 
S. cerevisiae erg3 pdr1-100 double mutant strain, which 

was attributed to a competition between the endogenous 
sterols and azoles (both being substrates of Pdr5p)71. Addi-
tional genetic evidence supporting this concept came from 
another study by Kaur and Bachhawat72, who observed 
that Pdr5p functions less efficiently in erg mutant strains 
of S. cerevisiae defective in ergosterol metabolism. Addi-
tionally, it was observed that the loss of function of 
CPR1 gene, which codes for the NADPH-dependent cyto-
chrome P-450 oxidoreductase and of YMR034c, which 
codes for a putative sterol transporter results in azole hyper-
sensitivity71. That there is a genetic interaction between 
sterol homeostasis and Pdr1-100 was further evident from 
the mutants, where resistance to fluconazole was decreased 
in ymr034 and cpr1 background. The importance of human 
MDR1/P-gp in cholesterol trafficking has already been 
demonstrated, where MDR1/P-gp transports cholesterol 
and its precursors from the plasma membrane to the 
ER73,74. A role of the ABC drug transporters of yeast in 
sterol homeostasis still remains an open area. Recently, 
PDR11 has been shown to be responsible for ergosterol 
entry into anaerobic S. cerevisiae cells, which is sugges-
tive of their role in sterol homeostasis75. 
 Any fluctuation in sterol composition which in turn 
affects membrane fluidity, also alters functioning of ABC 
drug transporters of yeasts72,76,77. In order to ascertain the 
functioning of the drug extrusion pumps CDR1 (ABC 
family) and CaMDR1 (Major Facilitator Superfamily)  
of Candida albicans in different lipid environments, they 
were independently expressed in S. cerevisiae erg mutants 
background. While the fold change in drug resistance 
mediated by CaMDR1 remained same or increased in erg 
mutants, susceptibility to fluconazole and cycloheximide 
mediated by CDR1 was increased (decrease in fold resis-
tance). These recent results demonstrate that between the 
two drug extrusion pumps, Cdr1p appeared to be more 
adversely affected by the fluctuations in membrane lipid 
environment (particularly to ergosterol). Taken together, 
it appears that the functioning of yeast ABC pump is 
closely linked to the status of membrane lipids, wherein 
the overall drug susceptibility phenotype of a cell appears 
to be an interplay between drug diffusion, extrusion pumps 
and membrane lipid environment77. 
 

Phospholipid translocation 

Asymmetric distribution of phospholipids is well known 
across the plasma membrane of numerous cell types78,79. 
In the majority of cell types, phosphatidylethanolamine 
(PtdEtn) and phosphatidylserine (PtdSer) are located in 
the inner monolayer, whereas phosphatidylcholine (PtdCho), 
sphingomyelin and glycolipids are located in the outer 
monolayer of the plasma membrane78,79. The asymmetri-
cal distribution of membrane lipids is specific and its loss 
has been linked to various pathophysiological conse-
quences78,80–82. 
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 Interestingly, human MDR1/P-gp has been shown to 
be involved in maintaining the membrane lipid asym-
metry, where it acts as a general phospholipid transloca-
tor for different phospholipids and sphingomyelins, while 
MDR2 (or MDR3) appears to be rather specific for trans-
locating PtdCho between the two lipid monolayers of the 
plasma membrane83. Recently, some ABC proteins of S. 
cerevisiae and C. albicans have also been shown to func-
tion as phospholipid translocators. Cdr1p, the drug extrusion 
pump of C. albicans, elicits energy-dependent in-to-out 
translocation (floppase) of phospholipids84. The decrease 
in the availability of PtdEtn in the exoplasmic leaflet of 
the plasma membrane (PM) of a homozygous CDR1 dis-
ruptant confirmed its involvement in phospholipid trans-
location. Of note, a double disruption of CDR1 and CDR2 
drug transporters encoding genes resulted in even lesser 
PtdEtn in the outer monolayer compared to the single 
CDR1 disruptant, thereby implicating that CDR2 could also 
contribute to phospholipid translocation. Interestingly, a 
S. cerevisiae transformant expressing CaMDR1 (a drug 
transporter of the major facilitator superfamily) of C. 
albicans does not affect PtdEtn distribution pattern between 
the two leaflets, thus suggesting that phospholipid trans-
location activity is specific to and a feature of the ABC 
drug transporters84. 
 Additional experiments using fluorescent-tagged phos-
pholipid analogues revealed that Cdr1p and Cdr2p elicit 
outwardly-directed phospholipid transbilayer exchange (flop-
pases), while Cdr3p, which is not a drug extrusion pump 
and does not confer MDR, is involved in inwardly (out-
to-in) directed translocation of phospholipids (flippase)85. 
In addition to the difference in the directionality of phos-
pholipid translocation, the floppase activities of Cdr1p 
and Cdr2p and the flippase activity of Cdr3p are further 
distinguishable. For example, flippase and floppase acti-
vities of these ABC transporters have distinct sensitivities 
to mercurials like N-ethylmalemide (NEM) which specifi-
cally block –SH groups and Cytochalasin E which induces 

alterations in cytoskeleton, by particularly disrupting the 
actin organization in a variety of eukaryotic cells (Table 3). 
Interestingly, drugs like fluconazole, cycloheximide and 
miconazole can affect transbilayer movement of phospho-
lipids mediated by Cdr1p and Cdr2p, but have no effect 
on Cdr3p-mediated transbilayer exchange85. These studies 
suggest that Cdr1p and Cdr2p presumably have common 
binding sites for drugs and phospholipids, while the flip-
pase activity of Cdr3p is independent of drug binding. 
The difference in the directionality of phospholipid trans-
fer between Cdrps could be linked to their ability to efflux 
cytotoxic drugs. It is thus presumed that since Cdr3p 
pump is inwardly directed (flippase) it is unable to par-
ticipate in drug efflux. However, comprehension of the 
molecular basis of functional differences between these 
transporters will have to wait for further experimentation. 
The S. cerevisiae ABC drug extrusion pumps are also 
involved in phospholipid translocation across the plasma 
membrane86,87. Decottignies et al.86 have demonstrated that 
the absence of ABC transporter YOR1 or PDR5 resulted 
in increased accumulation of a fluorescent PtdEtn, thus 
suggesting that Pdr5p and Yor1p are PtdEtn transloca-
tors. The fluorescent intensity of the double deleted strain 
∆yor1∆pdr5 was even more pronounced, indicating that 
the transporters may act independently. None of the other 
tested ABC transporters SNQ2, PDR10, PDR11, YCF1, 
PDR15 exhibited phospholipid translocase activity86. 
 

Peptide transport/secretion 

Localization of mouse mdr2, a homologue of human MDR3, 
in the canalicular membrane, suggests its function in bil-
iary secretion. Disruption of mdr2 in murine cells leads 
to the formation of abnormal bile, with a specific defi-
ciency in PtdCho (refs 88 and 89). PtdCho-deficient bile 
causes extensive liver damage, thereby implying the impor-
tance of mdr2 in phospholipid secretion. The secretory  

Table 3. Yeast ABC transporters as phospholipid translocators 
      
      

Translocator 
   
   

 
 
Yeast 

 
Drug  

transporter Substrate Direction Inhibitor 

 
 

Reference 
            
S. cerevisiae PDR5 Phosphatidylethanolamine Not determined Not determined 86 
  

YOR1 
 
Phosphatidylethanolamine 

 
Not determined 

 
Not determined 

 
86 
 

C. albicans CDR1 Phosphatidylethanolamine,  
phosphatidylcholine,  
phosphatidylserine 

In-to-out (floppase) Cytochalasin E and 
NEM sensitive 

84, 85 

 CDR2 Phosphatidylethanolamine,  
phosphatidylcholine,  
phosphatidylserine 

In-to-out (floppase) Cytochalasin E and 
NEM sensitive 

84, 85 

 CDR3 Phosphatidylethanolamine,  
phosphatidylcholine,  
phosphatidylserine 

Out-to-in (flippase) Cytochalasin E and 
NEM insensitive 

85 

 CDR4 Phosphatidylethanolamine In-to-out (floppase)? Not determined 56 
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role of ABC transporters is not restricted to mammals, as 
these proteins also play an important role in the plant–
fungal pathogen interaction90. These transporters in the 
plant pathogenic fungi are required for ensuring the infec-
tion process, probably by secreting compounds which 
protect them from plant defence mechanisms90. Nonethe-
less, such secretory roles for the yeast ABC drug trans-
porters, if any, have not been identified, except for the 
demonstration of a well-defined secretory function for 
STE6 of S. cerevisiae (secretion of mating pheromone). 
Ste6p secretes or transports the ‘a’ pheromone peptide in 
S. cerevisiae, an essential component of the mating path-
way of this budding yeast. Although Ste6p displays high 
homology to the human MDR1/P-gp and other drug trans-
porters of yeasts, it is unable to confer drug resistance31. 
Interestingly, although the human MDR1/P-gp gene can 
functionally complement the yeast ste6 mutant, it is also 
capable of conferring resistance to the immunosuppressive 
agent FK520 (refs 91 and 92) (Table 1). The Ste6p-
mediated export of a-factor is dependent on ATP hydro-
lysis as the energy source. This has been confirmed by 
mutational analyses, where a mutation in the NBD led to 
impairment in the transport of a-factor42. In addition, it 
has been demonstrated that both NBDs are required  
for the transport of pheromone, since the two duplicate 
halves of this transporter are incapable of functioning 
independent of each other. They can function only when 
co-expressed in a cell where they tightly interact with 
each other to form a functional pore for facilitating the 
transport of the a-factor42. 
 A homologue of STE6 designated as HST6 (Homo-
logue STE6) has been characterized in C. albicans, which 
can complement the mating defect of ste6 mutant strain 
of S. cerevisiae, implying that a-factor can be recognized 
as its substrate93. HST6 is expressed constitutively and its 
expression levels do not change between different morpho-
logical forms, thereby suggesting an important biological 
role for HST6 in C. albicans. Although the relevance of 
HST6 in C. albicans remains to be elucidated, its role in a 
cryptic sexual cycle in C. albicans can be anticipated. It 
would not be out of context to mention here that the  
genome-sequencing project of C. albicans revealed the 
presence of a MTL (MAT-like) locus94. The possibility of 
‘forced mating’ in C. albicans has recently been demon-
strated simultaneously by two groups95,96. Taken together, 
the existence of HST6 and the possibility of existence of 
a sexual cycle in C. albicans may suggest an important 
secretory role of this ABC transporter. 

Ion transport 

The overexpression of human MDR1/P-gp protein, which 
presumably is directly responsible for the extrusion of 
drugs, is the most commonly accepted mechanism of drug 
resistance. However, the pump model contains a number 
of unsettled aspects: for example, the wider specificity of 

MDR protein violates the enzyme specificity, coupling 
principle and appears to be inconsistent with the kinetics 
of passive diffusion and energetics of partitioning for many 
drugs97. An altered partitioning model, where MDR1/P-
gp protein is envisaged to act as complex ion transporter, 
is proposed for settling some of the above-mentioned 
inconsistencies97. The altered partitioning model proposes 
that the overexpression of MDR proteins alters intracellular 
concentration of drugs rather indirectly by affecting intra-
cellular pH and membrane potential, and does not directly 
translocate drugs2,98–100. In accordance with the proposed 
role, human Mdr1p/P-gp has been shown to inhibit Cl

–
/ 

HCO3
–   exchange, regulate Cl

–
 conductance, and if over-

expressed in S. cerevisiae, act as an H+/K+ pump101,102.  
It has also been suggested that MDR1/P-gp is associ- 
ated with volume-regulated chloride channels103. Recently, 
it has been proposed that the yeast drug extrusion  
pumps could also participate in H+ transport across the 
plasma membrane. The antifungal FMDP-conjugate peptides  
[N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoicacid], are 
transported into C. albicans cells through peptide per-
meases104. The accumulated conjugate is cleaved intracel-
lularly by peptidases and as a consequence, the released 
FMDP inhibits the activity of the glucosamine-6-phosphate 
synthase. The enzyme glucosamine-6-phosphate synthase 
is an important enzyme for cell-wall synthesis and hence 
its inhibition is crucial for the survival of C. albicans 
cells. It was observed that the carrier-mediated entry of 
FMDP-conjugates into yeast cells was pH-dependent, 
since its antifungal activity was more pronounced at low 
external pH104. Interestingly, it was observed that S. cere-
visiae cells expressing CDR1 were hypersensitive to this 
peptide conjugate. Furthermore, CDR1 transformants were 
found to elicit a threefold faster efflux of protons com-
pared to the parent cell type. Subsequently, it was shown 
that lowering of external pH due to ejection of protons by 
Cdr1p stimulated the uptake of FMDP-conjugate and thus 
potentiates its antifungal activity104. Therefore, it can be 
inferred that Cdr1p can also act as a proton pump, par-
ticularly affecting the accumulation of those antifungals 
whose entry is pH-dependent and carrier-mediated. Re-
cently, a K+-dependent sensitivity of fluconazole has been 
demonstrated in S. cerevisiae strain S228c. It was obser-
ved that the addition of 150 mM KCl rendered yeast cells 
more sensitive to fluconazole and this effect was due to 
of K+-ion rather than of anion or osmolarity of the  
medium. The presence of KCl did not affect the intra and 
extracellular pH. These results suggest that the ionic 
movements linked to MDR proteins could be an impor-
tant determinant in eliciting drug susceptibility105. 
 

Concluding remarks 

The finding that the multidrug transporters have not ex-
clusively been ‘evolved’ for extrusion of drugs is becom-
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ing increasingly apparent. It has already been established 
that human MDR1/P-gp, a drug transporter of malignant 
cells might have other cellular functions. This functional 
aspect of human MDR1/P-gp seems to be conserved, as 
is evident that yeast drug transporters also mediate seve-
ral physiological functions. In this review we have  
attempted to analyse a few of the known physiological 
functions that are associated with yeast ABC drug extru-
sion pumps. Clearly, the interest in physiological rele-
vance of multidrug transporters is now expanding and it 
would be worthwhile to examine in greater detail as to 
how ABC drug transporters achieve this multifunctional 
feat. The molecular dissection of these proteins would be 
the first step wherein identification of the responsible 
residues and domains could help elucidate the molecular 
mechanism of their diverse functions. Determination of 
the crystal structure of the yeast ABC drug extrusion pump 
protein would be of considerable medical importance, 
since it would not only explain the basis of proposed ad-
ditional functions but will also lead to a rational design of 
inhibitors for blocking drug extrusion from resistant cells. 
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