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ABC multidrug transporter Cdr1p of Candida albicans has divergent
nucleotide-binding domains which display functional asymmetry
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Abstract

In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans,

we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an

uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally con-

served in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group.

However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants

the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have inves-

tigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swap-

ping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal

NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged

fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment

of Cdr1p�s ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters

such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to

the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for

the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine

residues within the respective Walker A motifs is functionally not interchangeable.
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1. Introduction

Candida albicans is an opportunistic diploid fungus

that causes infections in immunocompromised and

debilitated patients [1–3]. Wide-spread and prolonged

usage of azoles in recent years has led to the rapid

development of the phenomenon of multidrug resist-
ance (MDR) which poses a major hurdle in anti-

fungal therapy. Various mechanisms which contribute

towards the development of multidrug resistance have

been implicated in Candida and some of these include
. Published by Elsevier B.V. All rights reserved.
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overexpression/mutations in the target enzyme of azoles,

lanosterol 14a-demethylase [3,4] or overexpression of

drug efflux pumps belonging to the ATP-Binding Cas-

sette (ABC) [5] and Major Facilitator Superfamilies of

transporters (MFS) [6,7]. Among ABC transporters,

Cdr1p has been shown to play a key role in azole resist-
ance in C. albicans as deduced from its high level of

expression found in several azole-resistant clinical iso-

lates recovered from patients receiving long-term anti-

fungal therapy [8,9]. Additionally, a high level of

expression of CDR1 invariably contributes to an in-

creased efflux of fluconazole, thus corroborating its di-

rect involvement in drug efflux [4,10]. Cdr1p thus has

not only acquired significant clinical importance but is
Fig. 1. (a) Topological model of Cdr1p showing two putative transmembran

TMD comprises six a-helices spanning the lipid membrane. The cytoplasmic

terminus, respectively. (b) Amino acid sequence alignment of NBD1 and NB

bold) the conservation of the cysteine and lysine residues within Walker A. (

substitution carried out in this study.
considered a critical factor in design of therapeutic strat-

egies to combat antifungal resistance.

Cdr1p is a 1501 amino acid-long polypeptide, organ-

ized into two homologous halves. Each half is predicted

to include a hydrophilic domain containing a nucleo-

tide-binding domain (NBD), followed by a hydrophobic
transmembrane domain (TMD) comprising six trans-

membrane segments (TMS) (Fig. 1(a)) [11]. The NBDs

of ABC-type transporter proteins are the site of ATP

hydrolysis and hence the hub of energy generation for

drug efflux. Inactivation of these NBDs completely

abrogates the functionality of the pump. Studies on hu-

man MDR1/P-gp, the mammalian homolog of Cdr1p,

suggest that both NBDs are capable of performing an
e domains (TMD) and two nucleotide-binding domains (NBD). Each

domains of Cdr1p, i.e. NBD1 and NBD2, are located at the N- and C-

D2 of Cdr1p with other fungal ABC type transporters, highlighting (in

c) Sequence of Walker A motif of Cdr1p, highlighting the amino acid
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ATPase function, and inhibition of hydrolysis at one of

the NBDs effectively abolishes hydrolysis at the other

[12]. It is also know that hydrolysis at the two NBDs

may occur in an alternate fashion. However, the ques-

tion whether the two NBDs of Cdr1p are functionally

identical or asymmetrical still remains unanswered.
The amino acid sequence of NBDs contains certain

conserved amino acid stretches, which are critical for this

domain�s functionality [13]. These include the Walker A

motif with a consensus sequence GxxGxGKS/T where

�x� represents any amino acid, the Walker B motif with

a hhhhD sequence where �h� is any aliphatic residue,

and an ABC signature consisting of LSGGQQ/R/KQR.

Structural and biochemical analyses of NBDs show that
the conserved lysine residue within the Walker A motif

binds to the b- and c-phosphates of ribonucleotides

and plays a critical role in ATP hydrolysis [14]. It is

well-established from studies of other ABC transporters

that the mutation of this key lysine residue leads to severe

loss in ATPase activity without significantly affecting

ATP binding [15].

Studies on various ABC transporters have revealed
that ATP hydrolysis and substrate transport are strongly

dependent on cooperativity between NBD1 (N-terminal)

and NBD2 (C-terminal) [16]. Interestingly, though

NBD1 of Cdr1p contains the conservedWalker A (GRP-

GAGCST), the commonly conserved lysine residue with-

in the Walker A motif is replaced by a cysteine which

appears to be a unique feature of most of the fungal

ABC transporters [17]. Conversely, the NBD2 of Cdr1p
contains the commonly conserved lysine (GASGAGKT)

at equivalent position in its Walker A motif. There is a

complete lack of understanding with regard to the func-

tional equivalence of both the NBDs of Cdr1p and the

significance of the variation in their Walker A amino acid

sequence. We have recently cloned and used purified the

soluble domain of NBD1 from the full Cdr1p, to demon-

strate in vitro that the uncommon cysteine 193 present
within the Walker A motif is critical for ATPase activity

[18,19]. Our recent study also has shown that the con-
Table 1

List of plasmids and strains used in this study

Name Description

Plasmid

pPS-CDR1GFP Plasmid carrying CDR1-GFP ORF cloned at S

pSJCG-C193K Plasmid pPS-CDR1GFP carrying C193K muta

pSJCG-K901C Plasmid pPS-CDR1GFP carrying K901C muta

pSJCG-C193K/K901C Plasmid pPS-CDR1GFP carrying C193K/K90

Strain

AD1-8u� MATa pdr1-3 his1 ura3Dyor1::hisG Dsnq2::his
Dpdr10::hisG Dpdr11::hisG Dycf1::hisGDpdr3:

CDR1GFP AD1-8u� cells harboring CDR1GFP ORF inte

SJCG-C193K CDR1GFP cells carrying C193K mutation in C

SJCG-K901C CDR1GFP cells carrying K901C mutation in C

SJCG-C193K/K901C CDR1GFP cells carrying C193K/K901C muta
served aspartate 327 of Walker B of NBD1 is critical

for ATP binding (unpublished observation).

In the present study we have examined the in vivo sig-

nificance and contributions of the divergent Walker A

motifs of both NBDs of the native Cdr1p with respect

to Cdr1p localization, sensitivity to various drugs,
ATPase activity, and ability to expel substrates from

the cells. Considering all the functional parameters,

our results suggest that NBD1 and NBD2 of Cdr1p

have asymmetric contributions to the Cdr1p function.
2. Materials and methods

2.1. Strains and media

Plasmids were maintained in Escherichia coli DH5a.
E. coli was cultured in Luria-Bertani medium (Difco),

to which ampicillin was added (100 lg ml�1) as required.

The bacterial and Saccharomyces cerevisiae strains used

in this study are listed in Table 1. The yeast strains were

cultured in YEPD broth (1% yeast extract, 2% peptone
and 2% glucose (HiMedia, Mumbai, India), or in SD

ura� drop-out media (0.67% YNB, 0.2% drop-out mix

and 2% glucose, Difco). For agar plates, 2% (w/v)

Bactoagar (HiMedia) was added to the medium. All

chemicals used in this study were of analytical grade.

2.2. Site-directed mutagenesis of CDR1 and generation of

transformants

Site-directed mutagenesis was performed by using the

QuikChange mutagenesis system from Stratagene (La

Jolla, CA, USA). The mutations were introduced into

plasmid pPSCDR1-GFP according to the manufac-

turer�s instructions. The primers used for this purpose

were complementary oligonucleotides harboring C193K

and K901C mutations (Table 2). The desired alterations
in nucleotide sequence were confirmed by DNA sequenc-

ing of the ORF. The mutated plasmid pPSCDR1-GFP,
Reference

peI site of pSKPDR5PPUS [21]

tion in CDR1 ORF This study

tion in CDR1 ORF This study

1C mutation in CDR1 ORF This study

G Dpdr5::hisG
:hisG Dpdr15::hisG

[23]

grated at PDR5 locus This study

DR1 ORF and integrated at PDR5 locus This study

DR1 ORF and integrated at PDR5 locus This study

tion in CDR1 ORF and integrated at PDR5 locus This study



Table 2

List of oligonucleotides used in this study

Sequence Purpose

C193K/F 5 0-GGGAGACCCGGTGCTGGTAAATCCACATTGTTAAAGACC-3 0 Forward primer for mutating C! K

at 193 amino acid position

C193K/R 5 0-GGTCTTTAACAATGTGGATTTACCAGCACCGGGTCTCCC-3 0 Reverse primer for mutating C! K

at 193 amino acid position

K901C/F 5 0-CATTGTTGAATTGTTTATCTGTGTGAGTCACTACTGGTATTATTA-3 0 Forward primer for mutating K ! C

at 901 amino acid position

K901C/R 5 0-TAATAATACCAGTAGTGACTCACACAGATAAACAATTCAACAATG-30 Reverse primer for mutating K!C

at 901 amino acid position

NBD1F 5 0-CGGGGATCCTCAGATTCTAAGATGTCG-3 0 For sequencing

NBD1R 5 0-CGCGGATCCCGACGGATCACCTTTCAT-3 0 For sequencing

NBD1F-DWA 5 0-CGGGATCCAAGACCATTGCTGTTAAC-30 For sequencing

NBD1R-DWB 5 0-CGGAATTCTCTTTCACCACCGGAAAC-30 For sequencing

CDF10 5 0-CATTACCGTGGTAAAGTTATTTATTCTGC-3 0 For sequencing

CDR10 5 0-GCAGAATAAATAACTTTACCACGGTAATG-30 For sequencing
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after linearizing with XbaI, was used to transform AD1-

8u� cells for uracil prototrophy by a lithium acetate-

based method of transformation [20]. Genomic DNA

was isolated from the transformants thus obtained using

a previously described procedure [21,22]. Genomic DNA

was digested with restriction endonuclease (EcoRV,

BamHI, and PstI; Roche Biochemicals). Digested geno-

mic DNA (10 lg) was separated on a 1%-agarose gel
and transferred to a Hybond+ nylon membrane (Amer-

sham). Membranes were hybridized with a a-32P-labeled
dATPCDR1-specific probe (ORF nucleotides 1–280) un-

der high-stringency conditions [7].

2.3. Preparation of plasma membrane proteins

Purified plasma membrane (PM) fractions of yeast
cells were prepared as described previously [23,24]. The

PM protein concentration was determined by Bradford

assay using bovine serum albumin as the standard.

2.4. Immunodetection of Cdr1p and its mutants

Protein samples (10 lg) were separated by eletropho-

resis on sodium dodecyl sulfate-polyacrylamide (SDS)
gels (8% acrylamide) and either stained with Coomassie

blue or electroblotted onto nitrocellulose membrane

(Highbond-C; Amersham). For Western blots, mem-

branes were incubated with a 1:5000 dilution of anti-

GFP antibody (BD Biosciences Clontech, Palo Alto,

CA, USA), or 1:100 dilution of anti-Pma1p (plasma

membrane ATPase) antibody. Immunoreactivity was

detected using horseradish peroxidase-labeled antibody
with a dilution of 1:5000 using the enhanced chemilumi-

nescence assay system (ECL kit, Amersham).

2.5. Drug susceptibility assay

Drug susceptibilities of yeast strains were measured by

three independent methods: filter disk assay, spot assay
and minimum inhibitory concentration, as described ear-

lier [25].

2.6. ATPase assay

The amount of inorganic phosphate (Pi) released

from the PM fraction of cells expressing either native

or mutant variant of Cdr1p was measured as described
previously [18,23,26].

2.7. Rhodamine 6G efflux assay

The efflux of rhodamine 6G (R6G) from S. cerevisiae

cells was determined as previously reported [26]. The

R6G fluorescence of the samples was measured with

a Cary Eclipse spectrofluorimeter (Varian, Inc.,
Australia).
3. Results

3.1. Mutations in the Walker A motifs of NBD1 and

NBD2 do not affect Cdr1p localization and expression

The significance of the presence of uncommon cys-

teine and invariant lysine in Walker A of NBD1 and

NBD2, respectively, was examined by mutating Cys

193 to Lys (C193K) and Lys 901 to Cys (K901C)

(Fig. 1). For this we used a hyper-expression system

where Cdr1p was stably overexpressed from the PDR5

locus in a S. cerevisiae mutant, AD1-8u�. The AD1-

8u� was derived from a Pdr1-3 mutant strain with a
gain-of-function mutation in the transcription factor

Pdr1p, resulting in a constitutive hyperinduction of the

PDR5 promoter [23,26]. The cells expressing these mu-

tant variants of NBDs were designated as SJCG-

C193K, SJCG-K901C and SJCG-C193K/K901C (Table

1). The stable single-copy integration in our heterolo-

gous hyper-expression system was confirmed by Southern



Fig. 2. (a) Confocal images of Saccharomyces cerevisiae cells expressing GFP-tagged Cdr1p and its mutant variants. Cells were washed and

resuspended in an appropriate volume of 50 mM HEPES, pH 7.0, and placed on the glass slides; a drop of antifade reagent (Fluoroguard� high

performance antifade reagent, Biorad, Hercules, CA) was added to prevent photobleaching. The cells were directly viewed with 100· oil immersion

objective on a Biorad confocal microscope (MRC 1024). (b) Expression profile of wild-type and mutant Cdr1 proteins. PM of wild- type and mutant

proteins were prepared as described earlier [24]. Immunodetection of the proteins was performed by running the samples (as indicated) on a 8% SDS–

PAGE and transferring to nitrocellulose membrane (electrophoretically), followed by probing with anti-GFP antibody and anti-Pma1 antibody and

detecting by chemiluminescence using an ECL Kit (Amersham).

S. Jha et al. / FEMS Yeast Research 5 (2004) 63–72 67
hybridization (data not shown). The surface localization

of native Cdr1p was confirmed by confocal microcopy.

The well-defined green-rimmed appearance in confocal

images clearly confirmed that the GFP-tagged Cdr1p

and its mutant variants were properly localized to the

plasma membrane (PM) (Fig. 2(a)). The localization of

Cdr1p in the hyper-expression system was further veri-

fied by probing with plasma membrane-specific anti-
body (Pma1). For this, equal amounts of purified PM

proteins isolated from SJCG-C193K, SJCG-K901C

and SJCG-C193K/K901C cells were loaded and sepa-

rated on 8% SDS–PAGE and the proteins were trans-

ferred to nitrocellulose membrane (Amersham). The

resolved proteins were probed with anti-GFP antibody.

The results are depicted in Fig. 2(b), where it is evident

that the expression levels of Cdr1p variants in PM of
mutants and wild type were similar. Stripping and

reprobing of the same blot with anti-Pma1 antibody

(kind gift from R. Serrano, Valencia) validated the puri-

fied PM preparations (Fig. 2(b), lower panel). The con-

focal data and Western blotting excluded the possibility

of mislocalization and altered expression of Cdr1p due

to mutation within Walker A of NBD1 and NBD2.
3.2. Mutations in NBD1 and NBD2 differentially affect

the drug susceptibility of C. albicans

We examined the effect of mutations in Walker A of

Cdr1p on drug sensitivity of cells expressing mutant
proteins by three independent drug susceptibility assays:

filter disc, spot assay, and MIC.

As can be judged from the size of inhibition zones in

filter disc assays (Fig. 3) the host cells (AD1-8u�) were

expectedly sensitive to all the tested drugs, i.e. fluconaz-

ole (FLC), miconazole (MIC), cycloheximide (CYH)

and ansiomycin (ANS). In contrast, the transformants

harboring Cdr1p (CDR1-GFP) wild-type protein
showed a high degree of resistance, evident from the

zone of inhibition which was either reduced (ANS and

MIC) or completely absent (FLC and CYH) at the indi-

cated concentrations (Fig. 3). Compared to the wild-

type cells (CDR1-GFP), the C193K mutants showed a

modest increase in sensitivity to FLC and ANS, and a

650% rise in sensitivity to MIC and CYH. Interestingly,

the cells expressing the Walker A mutant (K901C) of
NBD2 were hypersensitive to all the tested drugs, and

their level of drug susceptibility was comparable to that

of host cells (AD1-8u�). The simultaneous mutations in

both NBDs (C193K/K901C) resulted in hypersensitivity

to all the tested drugs, to the level comparable to that of

host cells (AD1-8u�).

In order to further validate the above-mentioned

observation, drug susceptibilities of native and mutant
protein-expressing cells was examined by employing

two other independent methods, i.e. spot and MIC as-

says. In spot assays, the host strain (AD1-8u�) was

expectedly sensitive to all the drugs when compared to

the growth control (without drug). Conversely, substan-

tial growth in presence of drugs was observed for the



Fig. 3. Drug resistance profiles of wild-type and Walker A mutants determined by filter disc assay as described earlier [25]. For filter disc assay, the

drugs were spotted in a volume of 1 to 5 ll at the indicated amounts: fluconazole (64 lg ml�1), anisomycin (32 lg ml�1), miconazole (0.25 lg ml�1)

and cycloheximide (0.25 lg ml�1). Cells were incubated at 30 �C for 48 h and the zone of inhibition for each drug was measured.

Fig. 4. Drug resistance profiles of wild-type and Walker A mutants determined by spot assays and minimum inhibitory concentration as described

earlier [25]. In the spot assay, 5 ll of five-fold serial dilutions of each yeast culture (each with cells suspended in normal saline to an OD of 0.1 (A600))

were spotted on YEPD plates in absence (control) and presence of the following drugs: fluconazole (1 lg ml�1), anisomycin (6 lg ml�1), miconazole

(0.1 lg ml�1) and cycloheximide (0.15 lg ml�1).
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cells expressing native Cdr1p. It was found that at

1 lg ml�1 of FLC, 6 lg ml�1 of ANS, 0.1 lg ml�1 of

MIC and 0.15 lg ml�1 of CYH, mutant variant
C193K- and K901C-expressing cells showed substantial

differences in sensitivity to these drugs. It is evident from

Fig. 4 that, while mutant C193K continued to grow at

these concentrations of most of the drugs (except MIC

where C193K cells did not show any growth), the cells

expressing K901C or C193K/K901C showed almost no

growth with these drugs, thus displaying hypersensitivity

(Fig. 4). The results of the microdilution method also
corroborated the drug sensitivity profile of cells express-

ing native or mutant Cdr1p. Interestingly, there was a
difference in minimum inhibitory concentrations

between C193K and K901C which indicated the asym-

metric affect of these mutations (Table 3). The results
of all three independent drug sensitivity tests established

that the two mutations in Walker A motifs of NBD1

and NBD2 have differential effect on Cdr1p-mediated

drug resistance.

3.3. ATPase activity is affected by NBD mutations

We performed ATPase assays with the PM of wild
type and mutants to ask the question whether mutations

in NBDs in any way affect the ATPase activity of the full



Table 3

Drug resistance profiles of wild-type Cdr1p and its NBD mutants

Minimum inhibitory concentration (lg ml�1)a

Fluconazole Anisomycin Miconazole Cycloheximide

AD1-8u� 0.25 0.12 0.3 0.007

SJCDR1GFP 64 32 2 1

SJCG-C193K 8 8 0.5 0.125

SJCG-K901C 1 2 0.25 0.016

SJCG-C193K/K901C 0.5 0.25 0.3 0.007

a Determined following National Committee for Clinical Laboratory Standards.
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protein and hence eventually contribute to the observed

drug susceptibility phenotypes. The purified PM frac-

tion from cells expressing native Cdr1p (CDR1-GFP)

exhibited a significant increase in the ATPase activity
Fig. 5. (a) Comparison of ATPase activity of Cdr1p with its mutants. ATPas

K901C and C193K/K901C) was assayed and each reaction was performed in

independent experiments. (b) Comparison of R6G efflux between wild-type an

[26] and incubated with R6G at 30 �C for 2 h. Glucose (2%) was added and at

concentration of R6G in the supernatant was determined spectrofluorometr

concentration of R6G in the supernatant 30 min after the addition of glucose

means (indicated by the bars) ± standard deviations of three independent ex
as compared to that of the host cells (AD1-8u�). This

substantial and hence measurable difference in oligomy-

cin-sensitive ATPase activity gave us an opportunity to

look for the effect of mutations in the divergent Walker
e activity of the wild type (Cdr1p) and the Walker A mutants (C193K,

triplicate; the values plotted (with ±SD) represent the average of three

d Walker A mutant cells. Cells were de-energized as detailed elsewhere

different time points cells were rapidly centrifuged and the extracellular

ically [26]. R6G efflux is represented by bars showing the extracellular

to the cells in wild-type and Walker A mutant cells. The values are the

periments.
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A motifs of Cdr1p [23,26]. As depicted in Fig. 5(a), we

observed a clear and distinct difference between ATPase

activity of the PM prepared from the wild type and from

mutants. Substitution of Cys 193 to Lys (C193K) in

Walker A motif of NBD1 resulted in a 78% decrease

in its ability to hydrolyze ATP, while Lys 901 to Cys
(K901C) had a more severe effect as it had only 12%

of the native protein activity. The simultaneous substitu-

tion of Cys 193 and Lys 901 (C193K/K901C) reduced

the ATPase activity to 610% of that of the native pro-

tein (Fig. 5(a)). The results of ATPase assays suggested

that there is a differential effect, albeit not very large, on

the ability to hydrolyze ATP when Cys 193 or Lys 901

are substituted independently (C193K, K901C) or
simultaneously (C193K/K901C).

3.4. R6G efflux suggests asymmetry in substrate export

ability between NBD1 and NBD2

The difference in the ability to hydrolyze ATP and the

sensitivity to drugs further lead us to the question

whether there is an asymmetry between NBD1 and
NBD2 of Cdr1p with regard to their ability to expel sub-

strates. We monitored rhodamine 6G (R6G) efflux in

energy-depleted cells expressing native or mutant vari-

ant Cdr1p. The ability of Cdr1p to expel R6G from

the cells is ATP-dependent, as has been established ear-

lier by us as well as by others [26]. In this study, when

R6G efflux was carried out with cells expressing the var-

iant Walker A mutants of Cdr1p and compared with
that of cells expressing the native protein, we observed

K901C and K901C/C193K double substitution to signif-

icantly affect the R6G efflux ability of Cdr1p, correlated

well with the observed hypersensitivity to tested drugs

displayed by these mutants. However, drug-sensitive

C193K mutant cells showed efflux levels of R6G compa-

rable to those of native-protein-expressing cells (Fig.

5(b)). Thus the substitution of conserved Lys 901 of
NBD2 and atypical Cys 193 resulted in an asymmetrical

effect on their expulsion ability.
4. Discussion

Multidrug resistance has been linked with ABC trans-

porters in many disease-causing organisms, including
several fungal pathogens, and human cancers [1–3].

Although we have a fair understanding of drug-binding

and catalytic function of mammalian ABC drug trans-

porters such as human P-gp/MDR1 and MRPs, the

same is unfortunately not true for fungal transporters.

Considering the importance of ABC transporters like

Cdr1p and Cdr2p in azole resistance commonly encoun-

tered in clinical isolates of C. albicans, we have been
functionally characterizing Cdr1p [18,19,23]. Recently,

by using a soluble purified N-terminal NBD1 domain
of Cdr1p, we have demonstrated that this domain elicits

a cation dependent general ribonucleotide triphospha-

tase activity [18]. We also have found an evolutionary

divergence in this domain wherein a conserved variation

exists within the catalytically crucial Walker A motif of

NBD1 [18]. Reports from other systems suggest that the
Walker A motifs of NBDs and especially the well-con-

served lysine residue within it are indispensable for

ATP hydrolysis, hence its mutation to Arg or Met in

either or both NBDs abrogates the drug transport and

ATPase activities of mammalian ABC transporters

[15]. Our study has highlighted the evolutionary devia-

tion and conservation of cysteine (GxxGxGKS/T) resi-

due instead of a typically found lysine in the Walker A
motif of NBD1 of Cdr1p and other fungal transporters.

By both biochemical analyses and deduced structural

homology modeling, we have demonstrated the indis-

pensability of this evolutionarily divergent Cys 193 in

ATP hydrolysis [18,19]. However, since these observa-

tions were an outcome of analyses of an in vitro isolated

domain, we wanted to understand the significance of

variant Walker A motifs of NBD1 and NBD2 in the
context of the full protein. The present in vivo study

was designed to explore the relative contribution of both

the N- and C-terminal NBDs in ATP-binding, hydroly-

sis and transporter activity of Cdr1p. In order to address

these questions, we swapped atypical Cys 193 of Walker

A of NBD1 (C193K) and conserved Lys 901 (K901C) of

Walker A of NBD2. The effect on ATP hydrolysis and

transport activity of such substitution in the full protein
of Cdr1p or of its mutant variants was studied using a

heterologous hyper-expression system [23]. We observed

that mutation within the Walker A of both the NBDs

did not affect the expression and the localization of the

mutant variant protein, as was evident from Western

blots and GFP-tagged fluorescence (Fig. 2). Of note,

we earlier had observed that mutant variant C193K in

Walker A of the NBD1 domain where Cys 193 was re-
placed by Lys resulted in an unstable protein ([18] and

unpublished data). Interestingly, C193K mutation in

the whole protein (this study) did not affect its stability.

The drug resistance profile of Cdr1p C193K or

K901C mutants gave an interesting insight into the func-

tioning of the two NBDs. Indeed, cells expressing both

mutant variants were sensitive to all the tested drugs

but there was a drastic difference in their level of
sensitivity, as was revealed by three independent drug

susceptibility assays. The cells expressing K901C were

hyper-sensitive to drugs when compared to the C193K

variant or to native Cdr1p. This clearly established that

the two NBDs respond asymmetrically to the substitu-

tion of conserved residues of their respective Walker A

motifs. The divergence in functioning of the two NBDs

was further evident when we compared the export abil-
ity of these mutant proteins. It was observed that the ex-

port of the fluorescent substrate R6G by a Cdr1p was
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severely inhibited in cells expressing K901C as com-

pared to cells expressing the C193K variant. It is intrigu-

ing why substitution of C193 does not result in

significant impairment of R6G efflux as compared to

the K901 mutation. An in-depth analysis of the catalytic

cycle, i.e. nucleotide binding, hydrolysis and substrate
binding/efflux will be required to answer the questions

behind the dichotomy in functioning of the NBDs. This

study, however, demonstrates that a diverse N-terminal

NBD (GxxGxGCS/T) of Cdr1p is functional where

uncommon C193 is critical. Considering that all other

fungal ABC transporters, including the well-studied

Pdr5p of S. cerevisiae, have the uncommon cysteine in

Walker A of NBD1 (with the exception of Ste6p of
S. cerevisiae), it is expected that this residue will have

an indispensable role in the catalytic cycle [17].

The purified PM isolated from cells expressing mu-

tant variants of Cdr1p showed that replacements of

C193K and K901C in Walker A of NBD1 and NBD2

resulted in 78% and 88% impairment of ATPase activity,

respectively (Fig. 5). It would mean that the swapping of

the cysteine and lysine residues in the Walker A between
the two NBDs could not retain the normal ATPase

function of the native protein. This further not only sig-

nifies the crucial positioning of the C193 and K901 at

their respective domains, but also demonstrates that

the swapping of the two residues within the two NBDs

is intolerable to the Cdr1p function. The difference in

loss of ATPase activity between the two mutant proteins

was not substantial; therefore, the activity cannot be di-
rectly correlated with the differences observed between

C193K and K901C mutant proteins with regard to drug

resistance and efflux of R6G. Since both mutations

occurring independently and simultaneously impaired

ATPase function substantially, it is difficult to comment

if there are any synergestic contributions of these muta-

tions. Based on overall results, it is clear that the two

NBDs of Cdr1p function divergently in vivo. Of note,
the C193A mutation and K901A in the full protein also

showed impaired ATPase activity (data not shown).

The two NBDs of a number of ABC transporters have

been shown to be functionally divergent, playing different

roles in the transport process. In prokaryotic ABC type

transporters such as the histidine permease ofE. coli, both

NBDs are functionally identical and equally contributive

to the protein�s activity. Inactivation of either one of these
NBDs in the full protein results in a transporter that has

its activities reduced to 50%. On the other hand, the

NBDs of the eukaryotic transporters such as the human

P-gp/MDR1, CFTR (Cystic Fibrosis Transmembrane

conductance Regulator) and MRP1, though highly con-

served and similar in sequence, do not appear to be func-

tionally complementary, as inactivation of either of them

completely abolishes ATPase and transport activities of
the protein [15]. The whole issue whether the two NBDs

are functionally identical or asymmetric remains to be
resolved. In this context our present study clearly demon-

strates that the multidrug ABC transporter Cdr1p of

pathogenic C. albicans possesses functionally divergent

NBDs. These results would pave ways to understand

the catalytic cycle of drug efflux involving the two NBDs

of this medically important ABC drug transporter.
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